Железо и его соединения. Оксид серы (VI)

Это, конечно, минимальные сведения, которые могут пригодиться для решения заданий С2.

В процессе подготовки учащихся к решению заданий С2 можно предложить им составить тексты заданий в соответствии со схемами превращений . Это задание позволит учащимся освоить терминологию и запомнить характерные признаки веществ.

Пример 1:

t o C t o C/H 2 HNO 3 (конц) NaOH, 0 o C

(CuOH) 2 CO 3 → CuO → Cu → NO 2 → X

Текст: Малахит прокалили, полученное твердое черное вещество нагрели в токе водорода. Образовавшееся красное вещество полностью растворили в концентрированной азотной кислоте. Выделившийся бурый газ пропустили через холодный раствор гидроксида натрия.

Пример 2:

O 2 H 2 S р-р t o C/Al H 2 O

ZnS → SO 2 → S → Al 2 S 3 → X

Текст: Сульфид цинка подвергли обжигу. Образовавшийся газ с резким запахом пропустили через раствор сероводорода до выпадения жёлтого осадка. Осадок отфильтровали, просушили и сплавили с алюминием. Полученное соединœение поместили в воду до прекращения реакции.

На следующем этапе можно предложить учащимся самим составлять как схемы превращения веществ, так и тексты заданий. Конечно же, «авторы» заданий должны представить и собственное решение . При этом ученики повторяют всœе свойства неорганических веществ. А учитель может сформировать банк заданий С2.

После этого можно переходить крешению заданий С2 . При этом учащиеся по тексту составляют схему превращений, а затем и соответствующие уравнения реакций. Для этого в тексте задания выделяются опорные моменты: названия веществ, указание на их классы, физические свойства, условия проведения реакций, названия процессов.

Приведем примеры выполнения некоторых заданий.

Пример 1. Нитрат марганца (II) прокалили, к полученному твёрдому бурому веществу прилили концентрированную хлороводородную кислоту. Выделившийся газ пропустили через сероводородную кислоту. Образовавшийся раствор образует осадок с хлоридом бария.

Решение:

Нитрат марганца (II) – Mn(NO 3) 2 ,

Прокалили – нагрели до разложения,

Твёрдое бурое вещество – MnО 2 ,

Концентрированная хлороводородная кислота –HCl,

Сероводородная кислота – р-р Н 2 S,

Хлорид бария – BaCl 2 , образует осадок с сульфат-ионом.

t o C HCl Н 2 Sр-р BaCl 2

Mn(NO 3) 2 → MnО 2 → Х → У → ↓ (BaSO 4 ?)

1) Mn(NO 3) 2 → MnО 2 + 2NO 2

2) MnО 2 + 4 HCl → MnCl 2 + 2H 2 O + Cl 2 (газ Х)

3) Cl 2 + Н 2 S → 2HCl + S (не подходит, т.к. нет продукта͵ который дает осадок с хлоридом бария) или 4Cl 2 + Н 2 S + 4Н 2 О → 8HCl + Н 2 SO 4

4) Н 2 SO 4 + BaCl 2 → BaSO 4 + 2HCl

Пример 2. Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. Выпавший синий осадок отфильтровали, просушили и прокалили. Полученное при этом твёрдое черное вещество поместили в стеклянную трубку, нагрели и пропустили над ним аммиак.

Решение:

· Выделœение опорных моментов:

Оранжевый оксид меди – Cu 2 O,

Концентрированная серная кислота – Н 2 SO 4 ,

Голубой раствор – соль меди (II), СuSO 4

Гидроксид калия –КОН,

Синий осадок – Cu(OH) 2 ,

Прокалили – нагрели до разложения,

Твёрдое черное вещество – CuO,

Аммиак – NH 3 .

· Составление схемы превращений:

Н 2 SO 4 КОН t o C NH 3

Cu 2 O → СuSO 4 → Cu(OH) 2 ↓ → CuO → X

· Составление уравнений реакций:

1) Cu 2 O + 3Н 2 SO 4 → 2СuSO 4 + SO 2 +3H 2 O

2) СuSO 4 + 2КОН → Cu(OH) 2 + K 2 SO 4

3) Cu(OH) 2 → CuO + Н 2 О

4) 3CuO + 2NH 3 → 3Cu + 3Н 2 О + N 2

Fe(OH)3 написать уравнение диссоциации.

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)3 прокалили. Это как?

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)2 + HNO3 = ..; Fe(OH)3 + H2SO4 = ..; MgO + HCl = .. .

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)3 + HCl = ..; Fe(OH)3 + H2SO4 = .. .

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)3 + NaOH = .. .

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

HNO3 + Zi2O -> ..; HNO3 + ZnCO3 -> ..; HNO3 + Fe(OH)3 -> .. .

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)3 + кислотный оксид = .. .

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)3 + H2SO4 = ..; написать ионы.

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe(OH)3 + HNO3 -> ..; сделать реакцию ионного обмена.

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

Fe -> FeCl3 -> Fe(OH)3; реакция ОВР.

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

H2SO4 + Fe(OH)3; составить уравнение реакции.

Внимание! Решения предоставлены обычными людьми, поэтому в решениях могут быть ошибки или неточности. Используя решения, не забудьте их перепроверить!

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

Физические свойства

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


Способы получения железа

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




Восстановление происходит постепенно, в 3 стадии:


1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


2) Fe 3 O 4 + СО = 3FeO +СO 2


3) FeO + СО = Fe + СO 2


Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


2. Очень чистое железо получают одним из способов:


а) разложение пентакарбонила Fe


Fe(CO) 5 = Fe + 5СО


б) восстановление водородом чистого FeO


FeO + Н 2 = Fe + Н 2 O


в) электролиз водных растворов солей Fe +2


FeC 2 O 4 = Fe + 2СO 2

оксалат железа (II)

Химические свойства

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


3Fe + 2O 2 = Fe 3 O 4


В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


3 Fe + 4Н 2 O(г) = 4H 2


Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

Виды коррозии


Защита железа от коррозии


1. Взаимодействие с галогенами и серой при высокой температуре.

2Fe + 3Cl 2 = 2FeCl 3


2Fe + 3F 2 = 2FeF 3



Fe + I 2 = FeI 2



Образуются соединения, в которых преобладает ионный тип связи.

2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

Fe + Р = Fe x P y


Fe + C = Fe x C y


Fe + Si = Fe x Si y


Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

Fe 0 + 2Н + → Fe 2+ + Н 2


Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


Fe + 2HCl = FeCl 2 + Н 2


Fe + H 2 SO 4 = FeSO 4 + Н 2

4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

Fe 0 - 3e - → Fe 3+


Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


Очень хорошо растворяется в смеси НСl и HNO 3

5. Отношение к щелочам

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

6. Взаимодействие с солями менее активных металлов

Fe + CuSO 4 = FeSO 4 + Cu


Fe 0 + Cu 2+ = Fe 2+ + Cu 0

7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

Соединения Fe(III)

Fe 2 O 3 - оксид железа (III).

Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

Способы получения:

1) разложение гидроксида железа (III)


2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


2) обжиг пирита


4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


3) разложение нитрата


Химические свойства

Fe 2 O 3 - основный оксид с признаками амфотерности.


I. Основные свойства проявляются в способности реагировать с кислотами:


Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


Fe 2 О 3 + СаО = Ca(FeО 2) 2


Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

Fe(OH) 3 - гидроксид железа (III)

Способы получения:

Получают при действии щелочей на растворимые соли Fe 3+ :


FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

Химические свойства

Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


1) реакции с кислотами протекают легко:



2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


Fe(OH) 3 + 3КОН = K 3


В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

Соли Fe 3+

Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)

При гравиметрическом определении железа в растворах его предварительно окисляют до Fe3+, а затем действием NH4OH доводят до конца гидролиз соли железа:

Fe3+ + H20 FeOH2+ + H+

Fe(OH)++ H2O -> Fe(OH)3I+ H+

При прокаливании Fe(OH)3 (вернее, водная окись железа Fe2O3-ZiH2O) теряет воду и превращается в безводную окись:

2Fe(OH)3 -* Fe2O3+ 3H2Of

которую и взвешивают. Растворимость гидроокиси железа очень мала (ПР = 3,2 10~38), поэтому она количественно осаждается даже из слабокислых растворов. Малая растворимость приводит к тому, что относительное пересыщение раствора во время осаждения очень велико, поэтому выделяющийся осадок аморфен и имеет очень большую поверхность. Для лучшей коагуляции осадка осаждение проводят при нагревании в присутствии электролита (солей аммония). Осадок нелегко пептизируется, его можно промывать горячей водой, но если промывание продолжается долго, то вместо воды лучше использовать 1%-ный раствор NH4Cl. Прокаливать осадок нужно на горелке при доступе воздуха, особенно во время сжигания бумажного фильтра; длительного прокаливания следует избегать, чтобы не произошло частичного восстановления окиси железа углеродом до Fe3O4 (и даже до металлического железа).

Ход определения. К раствору соли Мора (7-10 мл, содержащих не более 0,1 г железа) прибавляют 10 мл H2O, 3 г х. ч. NH4Cl1 раствор нагревают почти до кипения (но не кипятят), добавляют по каплям при перемешивании 1-2 мл концентрированной HNO3 и продолжают нагревание еще 3-5 мин. Затем добавляют в раствор 100-150 мл горячей воды и NH4OH (1: I) при перемешивании до появления явного запаха аммиака**; раствор с осадком оставляют на 5 мин и приступают к фильтрованию.

* Данное определение носит учебный характер и служит хорошим примером осаждения аморфных осадков. На практике обычно пользуются титриметриче-скими методами определения железа как более точными и быстрыми.

** Прибавляя аммиак, нужно убедиться, что им пахнет раствор; осадок гидроокиси железа не амфотерен, поэтому небольшой избыток NH4OH не по-Кредиг определению.

Фильтровать следует через фильтр средней плотности (белая лента) диаметром 9 см. Слив на фильтр жидкость с осадка, промывают фильтр несколько раз декантацией горячей водой. После этого переносят осадок на фильтр, оставшиеся на стакане и палочке частицы осадка снимают кусочками беззольного фильтра.

Промывание осадка на фильтре продолжают до полного удаления Cb, т. е. до тех пор, пока порция промывных вод, подкисленная HNO3, не перестанет давать мути с AgNO3-Осаждение, отфильтровывание и промывание осадка заканчивают обязательно в один прием, оставлять не промытый до конца осадок на фильтре нельзя, он высыхает, в нем образуются каналы, и в дальнейшем промывная жидкость не будет извлекать из осадка загрязняющие вещества.

Промытый осадок подсушивают и еще слегка влажным вместе с фильтром переносят в прокаленный до постоянной массы тигель. Далее осторожно подсушивают фильтр и обугливают его на маленьком пламени горелки так, что бы он не загорелся. Затем озоляют его и, постепенно усиливая нагревание, прокаливают тигель с осадком до постоянной массы. Лучше прокаливать осадок в муфельной печи при 800-900 °С.

Вычисление. Найдя массу осадка, рассчитывают, сколько в нем содержится железа, пользуясь фактором пересчета.

Аналогично определяют железо в различных содержащих его объектах. Например, при анализе железной проволоки навеску* ее (около 0,1 г) растворяют при нагревании в 10-15 мл 2 н. HNO3. Раствор Fe(NO3J3 анализируют, как описано выше. Найдя количество железа в осадке Fe2O3, рассчитывают процентное содержание железа в навеске проволоки.

МЕТОДИКА ПОДГОТОВКИ УЧАЩИХСЯ К РЕШЕНИЮ

ЗАДАНИЙ С 2 (мысленный эксперимент) ЕГЭ ПО ХИМИИ

В 2012 году в задании С2 ЕГЭ по химии предусмотрено изменение. Учащимся будет предложено описание химического эксперимента, в соответствии с которым им нужно будет составить 4 уравнения реакции.

О содержании и уровне сложности этого задания мы можем судить по демо-версии варианта ЕГЭ 2012 года. Задание сформулировано следующим образом: Соль, полученную при растворении железа в горячей концентрированной серной кислоте, обработали избытком раствора гидроксида натрия. Выпавший бурый осадок отфильтровали и прокалили. Полученное вещество сплавили с железом. Напишите уравнения описанных реакций.

Анализ содержания задания показывает, что первые два вещества, вступающие в реакцию, указаны в открытом виде. Для всех остальных реакций указан реагент и условия проведения. Подсказками можно считать указания на класс полученного вещества, его агрегатное состояние, характерные признаки (цвет, запах). Заметим, что два уравнения реакций характеризуют особые свойства веществ (1 – окислительные свойства концентрированной серной кислоты; 4 – окислительные свойства оксида железа (III)), два уравнения характеризуют типичные свойства важнейших классов неорганических веществ (2 – реакция ионного обмена между растворами соли и щелочи, 3 – термическое разложение нерастворимого основания).

t o C NaOH (изб.) t o C + Fe/t o C

Fe + H 2 SO 4 (к) → соль → бурый осадок → X → Y

Выделять подсказки, ключевые моменты, например: бурый осадок – гидроксид железа (III), говорит о том, что соль образована ионом железа (3+).

2Fe + 6H 2 SO 4 (к) → Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O

Fe 2 (SO 4) 3 + 6NaOH(к) → 2Fe(OH) 3 + 3Na 2 SO 4

2Fe(OH) 3 Fe 2 O 3 + 3H 2 O

Fe 2 O 3 + Fe → 3 FeO

Какие затруднения могут вызвать у учащихся подобные задания?

  1. Описание действий с веществами (фильтрование, выпаривание, обжиг, прокаливание, спекание, сплавление). Учащиеся должны понимать, где с веществом происходит физическое явление, а где – химическая реакция. Наиболее часто используемые действия с веществами описаны ниже.

Фильтрование – способ разделения неоднородных смесей с помощью фильтров – пористых материалов, пропускающих жидкость или газ, но задерживающих твёрдые вещества. При разделении смесей, содержащих жидкую фазу, на фильтре остается твердое вещество, через фильтр проходит фильтрат .



Выпаривание - процесс концентрирования растворов путём испарения растворителя. Иногда выпаривание проводят до получения насыщенных растворов, с целью дальнейшей кристаллизации из них твердого вещества в виде кристаллогидрата, или до полного испарения растворителя с целью получения растворенного вещества в чистом виде.

Прокаливание – нагревание вещества с целью изменения его химического состава.

Прокаливание может проводиться на воздухе и в атмосфере инертного газа.

При прокаливании на воздухе кристаллогидраты теряют кристаллизационную воду:

CuSO 4 ∙5H 2 O →CuSO 4 + 5H 2 O

Термически нестойкие вещества разлагаются (нерастворимые основания, некоторые соли, кислоты, оксиды): Cu(OH) 2 →CuO + H 2 O; CaCO 3 → CaO + CO 2

Вещества, неустойчивые к действию компонентов воздуха, при прокаливании окисляются, реагируют с компонентами воздуха: 2Сu + O 2 → 2CuO;

4Fe(OH) 2 + O 2 →2Fe 2 O 3 + 4H 2 O

Для того, чтобы окисление при прокаливании не происходило, процесс проводят в инертной атмосфере: Fe(OH) 2 → FeO + H 2 O

Спекание, сплавление – это нагревание двух и более твердых реагентов, приводящее к их взаимодействию. Если реагенты устойчивы к действию окислителей, то спекание можно проводить на воздухе:

Al 2 O 3 + Na 2 CO 3 → 2NaAlO 2 + CO 2

Если же один из реагентов или продукт реакции могут окисляться компонентами воздуха, процесс проводят с инертной атмосфере, например: Сu + CuO → Cu 2 O

Обжиг – процесс термической обработки, приводящий к сгоранию вещества (в узком смысле. В более широком понимании, обжиг – разнообразные термические воздействия на вещества в химическом производстве и металлургии). В основном, используется по отношению к сульфидным рудам. Например, обжиг пирита:

4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2. Описание характерных признаков веществ (цвет, запах, агрегатное состояние).

Указание характерных признаков веществ должно служить для учащихся подсказкой или проверкой правильности выполненных действий. Однако, если учащиеся не знакомы с физическими свойствами веществ, подобные сведения не могут оказать вспомогательной функции при выполнении мысленного эксперимента. Ниже представлены наиболее характерные признаки газов, растворов, твердых веществ.

ГАЗЫ:

Окрашенные : Cl 2 – желто-зеленый; NO 2 – бурый; O 3 – голубой (все имеют запахи). Все ядовиты, растворяются в воде, Cl 2 и NO 2 реагируют с ней.

Бесцветные без запаха : Н 2 , N 2 , O 2 , CO 2 , CO (яд), NO (яд), инертные газы. Все плохо растворимы в воде.

Бесцветные с запахом : HF, HCl, HBr, HI, SO 2 (резкие запахи), NH 3 (нашатырного спирта) –хорошо растворимы в воде и ядовиты,

PH 3 (чесночный), H 2 S(тухлых яиц) - мало растворимы в воде, ядовиты.

ОКРАШЕННЫЕ РАСТВОРЫ :

ОКРАШЕННЫЕ ОСАДКИ,

ПОЛУЧАЮЩИЕСЯ ПРИ ВЗАИМОДЕЙСТВИИ РАСТВОРОВ

ДРУГИЕ ОКРАШЕННЫЕ ВЕЩЕСТВА

Это, конечно, минимальные сведения, которые могут пригодиться для решения заданий С2.

В процессе подготовки учащихся к решению заданий С2 можно предложить им составить тексты заданий в соответствии со схемами превращений . Это задание позволит учащимся освоить терминологию и запомнить характерные признаки веществ.

Пример 1:

t o C t o C/H 2 HNO 3 (конц) NaOH, 0 o C

(CuOH) 2 CO 3 → CuO → Cu → NO 2 → X

Текст: Малахит прокалили, полученное твердое черное вещество нагрели в токе водорода. Образовавшееся красное вещество полностью растворили в концентрированной азотной кислоте. Выделившийся бурый газ пропустили через холодный раствор гидроксида натрия.

Пример 2:

O 2 H 2 S р-р t o C/Al H 2 O

ZnS → SO 2 → S → Al 2 S 3 → X

Текст: Сульфид цинка подвергли обжигу. Образовавшийся газ с резким запахом пропустили через раствор сероводорода до выпадения жёлтого осадка. Осадок отфильтровали, просушили и сплавили с алюминием. Полученное соединение поместили в воду до прекращения реакции.

На следующем этапе можно предложить учащимся самим составлять как схемы превращения веществ, так и тексты заданий. Конечно же, «авторы» заданий должны представить и собственное решение . При этом ученики повторяют все свойства неорганических веществ. А учитель может сформировать банк заданий С2. После этого можно переходить крешению заданий С2 . При этом учащиеся по тексту составляют схему превращений, а затем и соответствующие уравнения реакций. Для этого в тексте задания выделяются опорные моменты: названия веществ, указание на их классы, физические свойства, условия проведения реакций, названия процессов.

Приведем примеры выполнения некоторых заданий.

Пример 1. Нитрат марганца (II) прокалили, к полученному твёрдому бурому веществу прилили концентрированную хлороводородную кислоту. Выделившийся газ пропустили через сероводородную кислоту. Образовавшийся раствор образует осадок с хлоридом бария.

Решение:

· Выделение опорных моментов:

Нитрат марганца (II) – Mn(NO 3) 2 ,

Прокалили – нагрели до разложения,

Твёрдое бурое вещество – MnО 2 ,

Концентрированная хлороводородная кислота –HCl,

Сероводородная кислота – р-р Н 2 S,

Хлорид бария – BaCl 2 , образует осадок с сульфат-ионом.

t o C HCl Н 2 Sр-р BaCl 2

Mn(NO 3) 2 → MnО 2 → Х → У → ↓ (BaSO 4 ?)

1) Mn(NO 3) 2 → MnО 2 + 2NO 2

2) MnО 2 + 4 HCl → MnCl 2 + 2H 2 O + Cl 2 (газ Х)

3) Cl 2 + Н 2 S → 2HCl + S (не подходит, т.к. нет продукта, который дает осадок с хлоридом бария) или 4Cl 2 + Н 2 S + 4Н 2 О → 8HCl + Н 2 SO 4

4) Н 2 SO 4 + BaCl 2 → BaSO 4 + 2HCl

Пример 2. Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. Выпавший синий осадок отфильтровали, просушили и прокалили. Полученное при этом твёрдое черное вещество поместили в стеклянную трубку, нагрели и пропустили над ним аммиак.

Решение:

· Выделение опорных моментов:

Оранжевый оксид меди – Cu 2 O,

Концентрированная серная кислота – Н 2 SO 4 ,

Голубой раствор – соль меди (II), СuSO 4

Гидроксид калия –КОН,

Синий осадок – Cu(OH) 2 ,

Прокалили – нагрели до разложения,

Твёрдое черное вещество – CuO,

Аммиак – NH 3 .

· Составление схемы превращений:

Н 2 SO 4 КОН t o C NH 3

Cu 2 O → СuSO 4 → Cu(OH) 2 ↓ → CuO → X

· Составление уравнений реакций:

1) Cu 2 O + 3Н 2 SO 4 → 2СuSO 4 + SO 2 +3H 2 O

2) СuSO 4 + 2КОН → Cu(OH) 2 + K 2 SO 4

3) Cu(OH) 2 → CuO + Н 2 О

4) 3CuO + 2NH 3 → 3Cu + 3Н 2 О + N 2