По заданным координатам построить проекции точек. Физминутка для глаз

Плоскости проекций V , H , W принимаются за координатные плоскости, а оси проекций X , Y , Z за координатные оси как положительные, так и отрицательные (рис. 10).

Положение точки в пространстве задается тремя координатами – X , Y , Z . Проекции точки задаются двумя координатами: а (х , y ), а′ (х , z ), а′′ (y , z ).

Зная направление для положительного и отрицательного значений координатных осей, принимая во внимание свойства проекций точки, можно построить проекции точки по координатам. Рассмотрим несколько задач на эту тему.

Задача. Построить проекции точки А (–10; 40; –30) (рис. 10).

Рис. 10. Построение проекций точки А по координатам

Для построения фронтальной проекции а′ точки А справа от точки О на оси Х откладываем значение Х = –10. Вниз от точки О по направлению оси Z откладываем значение Z = –30. Пересечением перпендикуляров из точек а X и а Z ,восстановленных к соответствующим осям Х и Z , определяем точку а′.

Для построения горизонтальной проекции а точки А по направлению оси Y вниз от точки О откладываем значение y = – 40. Через точку а Y проводим перпендикуляр до пересечения с линией связи а′а X . Отмечаем точку а – горизонтальную проекцию точки А . По расположению фронтальной и горизонтальной проекций точки А определяем, что точка А расположена в VΙΙΙ октанте.

Для построения профильной проекции а′′ точки А через ее фронтальную проекцию а′ проводим линию связи а′а Z и на ней, вправо от точки а Z , откладываем значение y = 40. Отмечаем точку а′′ – профильную проекцию точки А.

Задача. Построить проекции точек по координатам и указать октант, в котором находится каждая из них.

Исходные данные: А (10; –30; 40), В (70; 50; –10), С (20; 15; 0), D (60; 35; 40), Е (50; –10; –25).

Решение. Порядок выполнения графической части задачи (рис. 11):

1. Проводим оси координат Х , Y , Z. Указываем положительные и отрицательные их направления.

2. Построение точек выполняем в масштабе 1:1.

Точка А (10; –30; 40):

Фронтальную проекцию а′ точки А определяем по координатам Х , Z ; по оси Х откладываем 10 мм, по оси Z – 40 мм.

Горизонтальную проекцию а точки А определяем по координатам Х ,(–Y ), расстояние 30 мм откладываем по оси (–Y Z .

Профильную проекцию а′′ точки А определяем по координатам (–Y ), Z . В этом случае расстояние 30 мм откладывается по оси (–Y ), совпадающей с положительным направлением оси Х . Следовательно, точка А находится во ΙΙ октанте.

Точка В (70; 50; –10):

Строим фронтальную проекцию b′ (Х = 70; Y = –10) точки А . Расстояние 10 мм нужно отложить на отрицательном направлении оси Z . Уточните: фронтальная b′ и горизонтальная b проекции точки В будут расположены на линии связи ниже оси Х. Профильная проекция b′′ точки В располагается справа от оси Z и ниже оси Х . Анализируя знаки координат (+ + –) и расположение проекций точки, делаем вывод – точка В находится в ΙV октанте.

Точка С (20; 15; 0):

При построении этой точки очевидно, что фронтальная проекция с′ точки С лежит на оси Х , а ее профильная проекция а′′ лежит на оси Y , совпадающей с отрицательным направлением оси Х . Удаление точки С от плоскости проекций Н равно нулю (y = 0), следовательно, точка С лежит в плоскости Н , на границе Ι и ΙV октантов.

Точка D (60; 35; 40):

Все значения координат положительные, следовательно, точка D находится в Ι октанте.

Точка Е (50; –10; –25):

При отрицательных значениях Y и Z точка располагается в ΙΙΙ октанте. Проекции такой точки располагаются:

Фронтальная проекция е′ точки Е располагается ниже оси Х , слева от оси Y ;

Горизонтальная проекция е точки Е располагается выше оси Х , слева от оси Z ;

Профильная проекция е′′ точки Е располагается слева от оси Z , ниже оси Х .

Вывод. Положение точки в пространстве вполне определено, если известны три ее координаты или две любые ортогональные проекции. Как следствие из этого – по двум любым заданным ортогональным проекциям точки можно всегда построить недостающую ее третью ортогональную проекцию.

Рис. 11. Построение точек по координатам с указанием октантов

Рассмотри построение точки по двум заданным ортогональным проекциям.

Задача. По двум заданным ортогональным проекциям построить недостающую проекцию точки В (рис. 12).


Рис. 12. Графическое условие задачи

Решение. Анализируем графическое условие задачи: заданы фронтальная и профильная проекции точки В. Это значит, заданы все три координаты точки В. Следовательно, необходимо построить ее горизонтальную проекцию.

1. Для построения горизонтальной проекции точки В необходимо знать Х В и У В . Эти координаты находим на чертеже.

2. Замеряем У В = b Z b′′ и откладываем эту координату вдоль линии связи от оси ОХ от точки b Х.

3. Строим горизонтальную проекцию точки В (рис. 13).

Рис. 13. Построение недостающей проекции точки В


ПРЯМАЯ ЛИНИЯ

При ортогональном проецировании на плоскости проекций прямая линия проецируется в виде прямой. Чтобы построить проекции этой прямой линии, проходящей через заданные точки А и В , нужно построить проекции этих точек и провести прямые линии через их одноименные проекции (рис. 14). Получим:

аb – горизонтальную проекцию отрезка прямой;

а′b′ – фронтальную проекцию отрезка прямой.

Рис. 14. Проекции отрезка прямой, проходящего через две точки

Следы прямой

Прямая пересекает плоскости проекций в точках, которые называются следами прямой.

Точка пересечения прямой N с горизонтальной плоскостью проекций Н (П 1) называется горизонтальным следом N H .

Точка пересечения прямой с фронтальной плоскостью проекций V (П 2) – фронтальным следом N V .

Точка пересечения прямой N с профильной плоскостью проекций W (П 3) – профильным следом N W прямой.

Вывод:

· горизонтальный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая в горизонтальной плоскости проекций H (П 1);

· фронтальный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая во фронтальной плоскости проекций V (П 2);

· профильный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая в профильной плоскости проекций W (П 3).

Задача. Построить точки пересечения прямой N с горизонтальной Н (П 1) и фронтальной V (П 2) плоскостями проекций (рис. 15аб ).

Анализируя задачу, приходим к выводу, что необходимо построить горизонтальный и фронтальный следы прямой.

1. Построение фронтального следа N V .

N и фронтальной плоскости проекций. Согласно изложенному ранее материалу, горизонтальная проекция искомой точки должна:

– лежать на оси Х ;

– принадлежать горизонтальной проекции прямой N .

Порядок выполнения графической части задачи:

1.1. Отмечаем точку пересечения горизонтальной проекции n прямой N с осью Х , получаем точку n V – горизонтальную проекцию фронтального следа.

1.2. Через точку n V Х .

1.3. Находим точку пересечения линии связи с фронтальной проекцией n′ прямой N , получаем точку N V – фронтальную проекцию фронтального следа. Через эту точку прямая уходит во вторую четверть (рис. 15а ) и в третью четверть (рис. 15б ).

2. Построение горизонтального следа N H .

Необходимо построить точку, принадлежащую прямой N и горизонтальной плоскости проекций Н . Согласно изложенному ранее материалу, фронтальная проекция искомой точки должна:

– лежать на оси Х ;

– принадлежать фронтальной проекции прямой N .

Порядок выполнения графической части задачи:

2.1. Отмечаем точку пересечения фронтальной проекции n ′ прямой N с осью Х , получаем точку n H – фронтальную проекцию горизонтального следа.

2.2. Через точку n H проводим линию связи перпендикулярно оси Х .

2.3. Находим точку пересечения линии связи с горизонтальной проекцией n прямой N , получаем фронтальную проекцию фронтального следа. В этой точке прямая пересекает горизонтальную плоскость и уходит в четвертую четверть (рис. 15а ,б ).

а
б

Рис. 15. Построение следов прямой линии N :

а – прямая уходит во вторую четверть; б – прямая уходит в третью четверть

При построении точки по заданным координатам, необходимо помнить, что в соответствии с правилами черчения масштаб по оси Ох уменьшается в 2 раза в сравнении с масштабом по осями Оу и Оz.

1.Построить точкy: А(2; 1; 3) х А = 2; у A = 1; z A = 3

а) обычно в первую очередь строят проекцию точки на плоскость Оху. Отметить точки х A =2 и у A =1 и провести через них прямые, параллельные осям Ох и Оу. Точка их пересечения имеет координаты (2;1; 0) Построена точка A 1 (2;1; 0.)

А(2; 1; 3)

0 у A =1

х A =2 у

A 1 (2;1; 0) 0 у A =1 у

х х A =2 A 1 (2;1; 0)

х

б) далее из точки A 1 (2;1; 0) восстанавливают перпендикуляр к плоскости Оху (проводят прямую, параллельную оси Оz ) и откладывают на ней отрезок, равный трем: z A = 3.

2.Построить точкy: B(3; - 2; 1) х B = 3; у B = -2; Z B = 1

z

у B = - 2

B(3; -2; 1) О у

B 1 (3;-2) х B =3

х

3. Построить точку C(-2; 1; 3 ) zC (-2; 1; 3)

Х А = -2; Y A = 1; Z A = 3

х C = - 2 C 1 (-2;1;0)

у A =1 у

4.Дан куб. А...D 1 , ребро которого равно1 . Начало координат совпадает с точкой В, ребра ВА, ВС и ВВ 1 совпадают с положительными лучами осей координат. Назвать координаты всех остальных вершин куба. Вычислить диагональ куба.

z

АВ = ВС = ВВ 1 ВD 1 = =

В 1 (0;0;1) С 1 (0;1;1) = =

А 1 (1;0;1) D 1 (1;1;1)

В(0;0;0) С(0;1;0) у

А(1;0;0) D(1;1;0)

5.Постройте точки А(1;1;-1) и В(1; -1;1). Пересекает ли отрезок ось координат? плоскость координат? проходит ли отрезок через начало координат? Найдите координаты точек пересечения, если они есть. z Точки лежат в плоскости, перпендикулярной оси Ох.

Отрезок пересекает ось Ох и плоскость хОу в точке

В(1; -1;1)

0(0;0;0)

С(1;0;0)

А(1;1;-1)

6.Найти расстояние между двумя точками: А(1;2;3) и В(-1;1;1).

а) АВ = = = =3

б) С(3;4;0) и D(3; -1;2).

СD = = =

В пространстве для определения координат середины отрезка вводится третья координата.

В (х В; у В;z B)

С ( ; ; )

А(х А; у А; z A)

7.Найти координаты С середины отрезков: а) АВ, если А(3; – 2; – 7), В(11; – 8; 5),

х М = = 7; у М = = - 5; z М = = - 1; С(7; - 5; - 1)

8. Координаты точки А(х;у;z). Напишите координаты точек, симметричных данной относительно:

а) координатных плоскостей

б) координатных прямых



в) начала координат

а) Если точка А 1 симметрична данной относительно координатной плоскости хОу, то разница в
координатах точек будет только в знаке координаты z: А 1 (х;у;-z).

точка А 2 Охz, тогда А 2 (х; -у;z).

точка А 3 симметрична данной относительно плоскости Оуz, тогда А 2 (-х; у;z).

б) Если точка А 4 симметрична данной относительно координатной прямой Ох, то разница в
координатах точек будет только в знаках координат у и z: А 4 (х; -у;-z).

точка А 5 Оу, тогда А 5 (-х; у; -z).

точка А 6 симметрична данной относительно прямой Оz, тогда А 6 (-х; -у; z).

в) Если точка А 7 симметрична данной относительно начала координат, то А 6 (-х; -у; -z).

ПРЕОБРАЗОВАНИЕ КООРДИНАТ

Переход от одной системы координат в другую называется преобразованием системы координат.

Мы будем рассматривать два случая преобразования системы координат, и выведем формулы зависимости между координатами произвольной точки плоскости в разных системах координат. (Методика преобразованием системы координат аналогична преобразованию графиков).

1.Параллельный перенос . В этом случае меняется положение начала координат, а направление осей и масштаб остаются неизменными.

Если начало координат переходит в точку 0 1 с координатами 0 1 (х 0 ; у 0), то для точки М(х;у) связь между координатами системы х0у и х 0 0у 0 выражена формулами:

х = х 0 + х"

у = у 0 + у"

Полученные формулы позволяют найти старые координаты по известным новым х" и у" и наоборот.

у М(х;у) М(х"; у")


0 1 (х 0 ; у 0),х"

х 0 х"

2.Поворот осей координат . В этом случае обе оси поворачиваются на один и тот же угол , а начало координат и масштаб остаются неизменными.

М(х;у)

у 1 х 1

Координаты точки М в старой системе М(х;у) и М(х"; у") - в новой. Тогда полярный радиус в обеих системах одинаков, а полярные углы соответственно равны + и , где - полярный угол в новой системе координат.

По формулам перехода от полярных координат к прямоугольным имеем:

x = rcos( + ) x = rcos · cos - rsin ·sin

y = rsin(+ ) y = rcos · sin + rsin · cos

Но rcos = х" и rsin = у" , поэтому

x = х"· cos - у"·sin

y = х"· sin + у"· cos

Письменно ответьте на вопросы:

  1. Что называется прямоугольной системой координат на плоскости? в пространстве?
  2. Какая ось называется осью аппликат? Ординат? Абсцисс?
  3. Каково обозначение единичных векторов на осях координат?
  4. Что называется ортом?
  5. Как вычисляется в прямоугольной системе координат длина отрезка, заданного координатами своих концов?
  6. Как вычисляются координаты середины отрезка, заданного координатами своих концов?
  7. Что называется полярной системой координат?
  8. Какова связь между координатами точки в прямоугольной и полярной системах координат?

Выполните задания:

1. На каком расстоянии от координатных плоскостей находится точка А(1; -2; 3)

2. На каком расстоянии находится точка А(1; -2; 3) от координатных прямых а) Оу; б) Оу; в) Оz;

3. Какому условию удовлетворяют координаты точек пространства, одинаково удаленных:

а) от двух координатных плоскостей Оху и Оуz; АВ

б) от всех трех координатных плоскостей

4. Найдите координаты точки М середины отрезка АВ, А(-2; -4; 1); В(0; -1; 2) и назовите точку, симметричную точки М, относительно а) оси Ох

б) оси Оу

в) оси Оz.

5. Дана точка В(4; - 3; - 4). Найдите координаты оснований перпендикуляров, опущенных из точки на оси координат и координатные плоскости.

6.На оси Оу найти точку, равноудаленную от двух точек А(1; 2; - 1) и В(-2; 3; 1).

7. В плоскости Охz найдите точку, равноудаленную от трех точек А(2; 1; 0); В(-1; 2; 3) и С(0;3;1).

8. Найдите длины сторон треугольника АВС и его площадь, если координаты вершин: А(-2; 0; 1), В(8; - 4; 9), С(-1;2; 3).

9. Найдите координаты проекций точек А(2; -3; 5); В (3;-5; ); С(- ; - ; - ).

10. Даны точки А(1; -1; 0) и В(-3; - 1; 2). Вычислите расстояние от начала координат до данных точек.

ВЕКТОРЫ В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ПОНЯТИЯ

Все величины, с которыми имеют дело в физике, технике, обыденной жизни разделяют на две группы. Первые полностью характеризуются своим численным значением: температура, длина, масса, площадь, работа. Такие величины называются скалярными.

Другие величины, например, сила, скорость, перемещение, ускорение и т.д. определяются не только своим числовым значением, но и направлением. Называются такие величины векторными , или векторами. Векторная величина геометрически изображается в виде вектора.

Вектор -это направленный прямолинейный отрезок, т.е. отрезок, имеющий
определенную длину и направление.

Инструкция

Постройте три координатные плоскости, чтобы иметь начало отсчета в точке О. На чертеже плоскости проекций в виде трех осей – ох, оу и оz, причем ось оz направлена вверх, ось оу – вправо. Чтобы построить последнюю ось ох, разделите угол между осями оу и оz напополам (если вы рисуете на листе в клетку, просто проведите эту ось ).

Обратите внимание, если координаты точки А записаны в виде трех в скобках (а, b, с), то первое число а – от плоскости х, второе b – от у, третье c – от z. Сначала возьмите первую координату а и отметьте ее на оси ох, влево и вниз, если число а положительное, вправо и вверх, если оно отрицательное. Полученную букву назовите В.

Затем отложите последнее число с вверх по оси оz, если оно положительное, и вниз по этой же оси, если отрицательное. Отметьте полученную точку буквой D.

Из полученных точек проведите проекций искомой точки на плоскостях. То есть в точке В проведите две прямые, которые будут параллельны осям оу и oz, в точке С проведите прямые, параллельные осям ох и oz, в точке D – прямые, параллельные ох и оу.

Если одна из координат точки равна нулю, точка лежит в одной из плоскостей проекций. В таком случае просто отметьте известные координаты на плоскости и найдите точку пересечения их проекций. Будьте внимательны при построении точек с координатами (а, 0, с) и (а, b, 0), не забывайте, что проекция на ось ох осуществляется под углом в 45⁰.

Видео по теме

Источники:

  • по координатам построить

Совет 2: Как проверить, что точки не лежат на одной прямой

На основании аксиомы, описывающей свойства прямой : какова бы ни была прямая, есть точки , принадлежащие и не принадлежащие ей. Поэтому вполне логично, что не все точки будут лежать на одной прямой линии.

Вам понадобится

  • - карандаш;
  • - линейка;
  • - ручка;
  • - тетрадь;
  • - калькулятор.

Инструкция

В том случае, если (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) будет меньше нуля, точка К располагается выше или левее линии. Другими словами, только в том случае, если уравнение вида (x - x1) * (y2 - y1) - (x2 - x1) * (y - y1) = 0 справедливо, точки А, В и К будут расположены на одной прямой .

В остальных случаях лишь две точки (А и В), которые, по условию задания, лежат на прямой , будут ей принадлежать: через третью точку (точку К) прямая проходить не будет.

Рассмотрите второй вариант принадлежности точки примой: на этот раз нужно проверить принадлежит ли точка С(x,y) отрезку с концевыми точками В(x1,y1) и А(x2,y2), который является частью прямой z.

Точки рассматриваемого отрезка опишите уравнением pOB+(1-p)OА=z, при условии, что 0≤p≤1. ОВ и ОА являются векторами. Если есть число p, которое больше или равно 0, но меньше или равно 1, то pOB+(1-p)OА=С, а , точка С будет лежать на отрезке АВ. В противном случае, данная точка не будет принадлежать этому отрезку.

Распишите равенство pOB+(1-p)OА=С покоординатно: px1+(1-p)x2=x и py1+(1-p)y2=y.

Найдите из первого число р и подставьте его значение во второе равенство. Если равенство будет соответствовать условиям 0≤p≤1, то точка С принадлежит отрезку АВ.

Обратите внимание

Убедитесь в правильности расчетов!

Полезный совет

Чтобы найти k - угловой коэффициент прямой, нужно (y2 - y1)/(x2 - x1).

Источники:

  • Алгоритм проверки принадлежности точки многоугольнику. Метод трассировки луча в 2019

Трехмерное пространство состоит из трех основных понятий, которые вы постепенно изучаете в школьной программе: точка, прямая, плоскость. В ходе работы с некоторыми математическими величинами вам может понадобиться объединить эти элементы, например, построить плоскость в пространстве по точке и прямой.

Инструкция

Чтобы понять алгоритм построения плоскостей в пространстве, обратите внимание на некоторые аксиомы, которые описывают свойства плоскости или плоскостей. Первое: через три точки, не лежащие на одной прямой, проходит плоскость, при этом только одна. Стало быть, для построения плоскости вам достаточно трех точек, удовлетворяющих по положению аксиоме.

Второе: через любые две точки проходит прямая, при этом только одна. Соответственно, построить плоскость можно через прямую и точку, не лежащую на ней. Если от обратного: любая прямая содержит, как минимум, две точки, через которые она проходит, если известна еще одна точка, не на этой прямой, через эти три точки можно построить прямую, как в пункте первом. Каждая точка этой прямой будет принадлежать плоскости.

Третье: через две пересекающиеся прямые проходит плоскость, при этом только одна. Пересекающиеся прямые могут образовать только одну общую точку. Если в пространстве, они будут иметь бесконечное количество общих точек, и, следовательно, составлять одну прямую. Когда вам известны две прямые, имеющие точку пересечения, вы можете построить не более одной плоскости, проходящей через эти прямые.

Четвертое: через две параллельные прямые можно провести плоскость, при этом только одну. Соответственно, если вам известно, что прямые параллельны, вы можете провести через них плоскость.

Пятое: через прямую можно провести бесконечное количество плоскостей. Все эти плоскости могут быть рассмотрены как вращение одной плоскости вокруг заданной прямой, или как бесконечное множество плоскостей, имеющих одну линию пересечения.

Итак, построить плоскость вы можете, если найдены все элементы, которые определяют ее положение в пространстве: три точки, не лежащие на прямой, прямая и точка, не принадлежащая прямой, две пересекающиеся или две параллельные прямые.

Видео по теме

Знаете ли вы, что организм человека - это мини-электростанция? Каждый из нас вырабатывает небольшое количество электроэнергии. Это происходит как в движении, так и в покое - тогда выработка электричества происходит во внутренних органах, одним из которых является сердце.

Одним из медицинских исследований, позволяющих определить состояние сердца, является ЭКГ. Кардиолог снимает электрокардиограмму, чтобы узнать, расположено в грудной клетке, как работают предсердия, клапаны и желудочки, их форма и нет ли функциональных изменений. Один из важнейших показателей ЭКГ - направленность электрической оси сердца.

Что такое ось сердца и как ее найти?

Сердечную ось (как и ось земную) невозможно увидеть или потрогать. Она определяется только с помощью электрокардиографа, ведь он фиксирует электрическую активность сердца. Когда клетки сердечной мышцы напрягаются и расслабляются, повинуясь импульсам, идущим от нервной системы, они образуют электрическое поле, центром которого и является ЭОС (электрическая ось сердца).

Но если заглянуть в анатомический атлас, можно провести вертикальную линию, которая поделит сердце на две равные части - примерно так и располагается ось сердца. Отсюда можно сделать вывод, что ЭОС совпадает с так называемой анатомической осью. Конечно, каждый человек индивидуален, поэтому и электрическая ось у разных людей может располагаться по-иному (к примеру, если отталкиваться от серднестатистического значения, то у худого человека ЭОС расположена вертикально, а у тучного - горизонтально).

Когда сердечная ось меняет положение?

Сняв ЭКГ и узнав, как располагается ЭОС, кардиолог может сказать вам, как в грудной клетке , здоров ли миокард (сердечная ), как нервные импульсы проходят к разным отделам сердца.

Если электрокардиограмма показывает, что электрическая ось вправо или влево, это укажет врачу на какой-либо патологический процесс. Отклонение вправо может навести на подозрения о неправильном положении сердца (его смещение может быть врожденным или возникать вследствие расширения аорты, возникновения новообразований и прочих патологий). Кроме того, отклонение ЭОС - признак опасных для жизни состояний: декстрокардии, блокады пучка Гиса, инфаркта миокарда (его передней стенки).

Если же ЭОС значительно отклонена в левую сторону, это может быть признаком кардиомиопатии, гипертрофии некоторых отделов сердца, верхушечного инфаркта или врожденного порока.

Ряд заболеваний сердца может до поры протекать бессимптомно. Поэтому так важно периодически проходить медосмотр, одной из составляющих которого является ЭКГ. Ведь болезнь легче предупредить, . А болезни сердца нужно в обязательном порядке, ведь они - прямая угроза жизни.

Математика - наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.

Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.

Определение понятия

Координатная плоскость - это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат - строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Историческая справка

Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.

Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь "декартовой".

Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты - одну координату буквенную, вторую - цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Оси координат

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось - абсцисс - горизонтальная. Она обозначается как (Ox ). Вторая ось - ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy ). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0 . Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината - положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной - ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Работа с координатной плоскостью

Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.

В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

Правила построения плоскости

Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная - ординат. При этом важно помнить, что оси пересекаются под прямым углом.

Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

Отмечаем точку

Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая - по оси ординат.

Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy . Далее провести воображаемые линии от данных обозначений и найти место их пересечения - это и будет заданная точка.

Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.

Размещаем фигуру

Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.

В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами Рассмотрим нанесение прямоугольника, треугольника и окружности.

Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.

Нанесение треугольника ничем не отличается. Единственное - углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.

Касательно окружности тут следует знать координаты двух точек. Первая точка - центр окружности, вторая - точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.

Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.

Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.

Выводы

Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.

Мы с вами выяснили, что координатная плоскость - это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.

Основной навык, который следует выработать при работе с координатной плоскостью, - умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.

Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.

Словесная форма

Графическая форма

1. Отложить на осях X, Y, Ζ соответствующие координаты точки А. Получаем точки A x , A y , A z

2. Горизонтальная проекция А 1 находится на пересечении линий связи из точек A x и A y , проведенных параллельно осям X и Y

3. Фронтальная проекция А 2 находится на пересечении линий связи из точек A x и A z , проведенных параллельно осям X и Ζ

4. Профильная проекция А 3 находится на пересечении линий связи из точек A z и A y , проведенных параллельно осям Ζ и Y

3.2. Положение точки относительно плоскостей проекций

Положение точки в пространстве относительно плоскостей проекций определяется её координатами. Координатой Х определяется удалённость точки от плоскости П 3 (проекция на П 2 или П 1), координатой У – удалённость от плоскости П 2 (проекция на П 3 или П 1), координатой Z – удаленность от плоскости П 1 (проекция на П 3 или П 2). В зависимости от значения этих координат точка может занимать в пространстве как общее, так и частное положение по отношению к плоскостям проекций (рис. 3.1).

Рис. 3.1. Классификация точек

Т очка общего положения . Координаты точки общего положения не равны нулю (x ≠0, y ≠0, z ≠0 ), и в зависимости от знака координаты точка может располагаться в одном из восьми октантов (табл. 2.1).

На рис. 3.2 даны чертежи точек общего положения. Анализ их изображений позволяет сделать вывод, что они располагаются в следующих октантах пространства: А(+X;+Y; +Z(Iоктанту;B(+X;+Y;-Z(IVоктанту;C(-X;+Y; +Z(Vоктанту;D(+X;+Y; +Z(IIоктанту.

Точки частного положения . Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле проекций, другие две – на осях проекций. На рис. 3.3 такими точками являются точки А, В,C,D,G.AП 3 ,то точка Х А =0; ВП 3 ,то точка Х В =0; СП 2 ,то точкаY C =0;DП 1 ,то точкаZ D =0.

Точка может принадлежать сразу двум плоскостям проекций, если она лежит на линии пересечения этих плоскостей – оси проекций. У таких точек не равна нулю только координата на этой оси. На рис. 3.3 такой точкой является точкаG(GOZ,то точка Х G =0,Y G =0).

3.3. Взаимное положение точек в пространстве

Рассмотрим три варианта взаимного расположения точек в зависимости от соотношения координат, определяющих их положение в пространстве.

    На рис. 3.4 точки AиBимеют различные координаты.

Их взаимное расположение можно оценить по удаленности к плоскостям проекций: Y А >Y В, тогда точкаAрасположена дальше от плоскости П 2 и ближе к наблюдателю, чем точкаB; Z А >Z В, тогда точкаAрасположена дальше от плоскости П 1 и ближе к наблюдателю, чем точкаB; X А

    На рис. 3.5 представлены точки A, B, С, D, у которых одна из координат совпадает, а две другие отличаются.

Их взаимное расположение можно оценить по удалённости к плоскостям проекций следующим образом:

Y А =Y В =Y D , то точки А, В и D равноудалены от плоскости П 2 , и их горизонтальные и профильные проекции расположены соответственно на прямых [А 1 В 1 ]llОХ и [А 3 В 3 ]llOZ. Геометрическим местом таких точек служит плоскость, параллельная П 2 ;

Z А =Z В =Z С, то точки А, В и С равноудалены от плоскости П 1 , и их фронтальные и профильные проекции расположены соответственно на прямых [А 2 В 2 ]llОХ и [А 3 С 3 ]llOY. Геометрическим местом таких точек служит плоскость, параллельная П 1 ;

X А =X C =X D , то точки А, C и D равноудалены от плоскости П 3 и их горизонтальные и фронтальные проекции расположены соответственно на прямых [А 1 C 1 ]llOY и [А 2 D 2 ]llOZ . Геометрическим местом таких точек служит плоскость, параллельная П 3 .

3. Если у точек равны две одноименные координаты, то они называются конкурирующими . Конкурирующие точки расположены на одной проецирующей прямой. На рис. 3.3 даны три пары таких точек, у которых: X А =X D ; Y А =Y D ; Z D > Z А; X A =X C ; Z A =Z C ; Y C > Y A ; Y A =Y B ; Z A =Z B ; X B > X A .

Различают горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD, фронтально конкурирующие точки A и C, расположенные на фронтально проецирующей прямой AC, профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

Выводы по теме

1. Точка – линейный геометрический образ, одно из основных понятий начертательной геометрии. Положение точки в пространстве можно определить её координатами. Каждая из трёх проекций точки характеризуется двумя координатами, их название соответствует названиям осей, которые образуют соответствующую плоскость проекций: горизонтальная – A 1 (XA; YA); фронтальная – A 2 (XA; ZA); профильная – A 3 (YA; ZA). Трансляция координат между проекциями осуществляется с помощью линий связи. По двум проекциям можно построить проекции точки либо с помощью координат, либо графически.

3. Точка по отношению к плоскостям проекций может занимать в пространстве как общее, так и частное положение.

4. Точка общего положения – точка, не принадлежащая ни одной из плоскостей проекций, т. е. лежащая в пространстве между плоскостями проекций. Координаты точки общего положения не равны нулю (x≠0,y≠0,z≠0).

5. Точка частного положения – это точка, принадлежащая одной или двум плоскостям проекций. Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле плоскости проекций, другие две – на осях проекций.

6. Конкурирующие точки – точки, одноименные координаты которых совпадают. Существуют горизонтально конкурирующие точки, фронтально конкурирующие точки, профильно конкурирующие точки.

Ключевые слова

    Координаты точки

    Точка общего положения

    Точка частного положения

    Конкурирующие точки

Способы деятельности, необходимые для решения задач

– построение точки по заданным координатам в системе трех плоскостей проекций в пространстве;

– построение точки по заданным координатам в системе трех плоскостей проекций на комплексном чертеже.

Вопросы для самопроверки

1. Как устанавливается связь расположения координат на комплексном чертеже в системе трех плоскостей проекций П 1 П 2 П 3 с координатами проекций точек?

2. Какими координатами определяется удалённость точек до горизонтальной, фронтальной, профильной плоскостей проекций?

3. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, перпендикулярном профильной плоско­сти проекций П 3 ?

4. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, параллельном оси OZ?

5. Какими координатами, определяется горизонтальная (фронтальная, профильная) проекция точки?

7. В каком случае проекция точки совпадает с самой точкой пространства и где располагаются две другие проекции этой точки?

8. Может ли точка принадлежать одновременно трём плоскостям проекций и в каком случае?

9. Как называют точки, одноимённые проекции которых совпадают?

10. Каким образом можно определить, какая из двух точек ближе к наблюдателю, если их фронтальные проекции совпадают?

Задания для самостоятельного решения

1. Дать наглядное изображение точекA,B,C,Dотносительно плоскостей проекций П 1 , П 2 . Точки заданы своими проекциями (рис. 3.6).

2. Построить проекции точек А и В по их координатам на наглядном изображении и комплексном чертеже: А(13,5; 20), В(6,5; –20). Построить проекцию точки С, расположенной симметрично точке А относительно фронтальной плоскости проекций П 2 .

3. Построить проекции точек А, В, С по их координатам на наглядном изображении и комплексном чертеже: А(–20; 0; 0), В(–30; -20; 10), С(–10, –15, 0). Построить точку D, расположенную симметрично точке С относительно осиOХ.

Пример решения типовой задачи

Задача 1. Даны координатыX,Y,ZточекA,B,C,D,E,F(табл. 3.3)