So öffnen Sie eckige Klammern in einer Gleichung. Klammeröffnung: Regeln und Beispiele (Klasse 7)

Die Hauptfunktion von Klammern besteht darin, die Reihenfolge der Aktionen bei der Berechnung von Werten zu ändern. zum Beispiel, im numerischen Ausdruck \(5 3+7\) wird zuerst die Multiplikation berechnet und dann die Addition: \(5 3+7 =15+7=22\). Aber im Ausdruck \(5·(3+7)\) wird zuerst die Addition in Klammern berechnet und erst dann die Multiplikation: \(5·(3+7)=5·10=50\).


Beispiel. Erweitern Sie die Klammer: \(-(4m+3)\).
Entscheidung : \(-(4m+3)=-4m-3\).

Beispiel. Erweitern Sie die Klammer und geben Sie ähnliche Terme \(5-(3x+2)+(2+3x)\) ein.
Entscheidung : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).


Beispiel. Erweitern Sie die Klammern \(5(3-x)\).
Entscheidung : Wir haben \(3\) und \(-x\) in der Klammer und fünf vor der Klammer. Dies bedeutet, dass jedes Glied der Klammer mit \ (5 \) multipliziert wird - ich erinnere Sie daran Das Multiplikationszeichen zwischen einer Zahl und einer Klammer in der Mathematik wird nicht geschrieben, um die Größe von Datensätzen zu reduzieren.


Beispiel. Erweitern Sie die Klammern \(-2(-3x+5)\).
Entscheidung : Wie im vorherigen Beispiel werden die Klammern \(-3x\) und \(5\) mit \(-2\) multipliziert.

Beispiel. Vereinfachen Sie den Ausdruck: \(5(x+y)-2(x-y)\).
Entscheidung : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).


Es bleibt die letzte Situation zu betrachten.

Beim Multiplizieren von Klammern mit Klammern wird jeder Term der ersten Klammer mit jedem Term der zweiten multipliziert:

\((c+d)(a-b)=c(a-b)+d(a-b)=ca-cb+da-db\)

Beispiel. Erweitern Sie die Klammern \((2-x)(3x-1)\).
Entscheidung : Wir haben ein Produkt mit Klammern und es kann sofort mit der obigen Formel geöffnet werden. Aber um nicht verwirrt zu werden, machen wir alles Schritt für Schritt.
Schritt 1. Entfernen Sie die erste Klammer - jedes ihrer Mitglieder wird mit der zweiten Klammer multipliziert:

Schritt 2. Erweitern Sie die Produkte der Klammer wie oben beschrieben um den Faktor:
- das erste zuerst...

Dann die zweite.

Schritt 3. Jetzt multiplizieren wir und bringen ähnliche Terme:

Es ist nicht notwendig, alle Transformationen im Detail zu malen, Sie können sofort multiplizieren. Aber wenn Sie gerade lernen, Klammern zu öffnen - schreiben Sie detailliert, ist die Wahrscheinlichkeit geringer, einen Fehler zu machen.

Hinweis zum gesamten Abschnitt. Tatsächlich müssen Sie sich nicht alle vier Regeln merken, sondern nur eine, diese hier: \(c(a-b)=ca-cb\) . Wieso den? Denn wenn wir statt c eins einsetzen, erhalten wir die Regel \((a-b)=a-b\) . Und wenn wir minus eins einsetzen, erhalten wir die Regel \(-(a-b)=-a+b\) . Nun, wenn Sie anstelle von c eine andere Klammer einsetzen, erhalten Sie die letzte Regel.

Klammer in Klammer

In der Praxis gibt es manchmal Probleme mit Klammern, die in anderen Klammern verschachtelt sind. Hier ist ein Beispiel für eine solche Aufgabe: den Ausdruck \(7x+2(5-(3x+y))\) zu vereinfachen.

Um bei diesen Aufgaben erfolgreich zu sein, müssen Sie:
- die Verschachtelung von Klammern genau verstehen - welche in welcher steht;
- Öffnen Sie die Klammern nacheinander, beginnend zum Beispiel mit der innersten.

Es ist wichtig, wenn Sie eine der Klammern öffnen Berühren Sie den Rest des Ausdrucks nicht, schreiben Sie es einfach so um, wie es ist.
Nehmen wir die obige Aufgabe als Beispiel.

Beispiel. Öffnen Sie die Klammern und geben Sie ähnliche Terme \(7x+2(5-(3x+y))\) ein.
Entscheidung:


Beispiel. Erweitern Sie die Klammern und geben Sie ähnliche Terme ein \(-(x+3(2x-1+(x-5)))\).
Entscheidung :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Dies ist eine dreifache Verschachtelung von Klammern. Wir beginnen mit dem innersten (grün hervorgehoben). Da vor der Klammer ein Plus steht, wird es einfach entfernt.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Jetzt müssen Sie die zweite Klammer öffnen, dazwischen. Aber vorher werden wir den Ausdruck vereinfachen, indem wir ähnliche Begriffe in dieser zweiten Klammer einblenden.

\(=-(x\)\(+3(3x-6)\) \()=\)

Nun öffnen wir die zweite Klammer (blau markiert). Vor der Klammer steht ein Multiplikator – also wird jeder Term in der Klammer damit multipliziert.

\(=-(x\)\(+9x-18\) \()=\)

Und öffnen Sie die letzte Klammer. Vor der Klammer Minus - also alle Vorzeichen vertauscht.

Das Öffnen von Klammern ist eine Grundfertigkeit in der Mathematik. Ohne diese Fähigkeit ist es unmöglich, in den Klassen 8 und 9 eine Note über drei zu erreichen. Daher empfehle ich ein gutes Verständnis dieses Themas.

In diesem Video analysieren wir eine ganze Reihe linearer Gleichungen, die mit demselben Algorithmus gelöst werden – deshalb werden sie als die einfachsten bezeichnet.

Lassen Sie uns zunächst definieren: Was ist eine lineare Gleichung und welche davon sollte als die einfachste bezeichnet werden?

Eine lineare Gleichung ist eine, in der es nur eine Variable gibt, und zwar nur im ersten Grad.

Die einfachste Gleichung bedeutet die Konstruktion:

Alle anderen linearen Gleichungen werden mit dem Algorithmus auf die einfachsten reduziert:

  1. Offene Klammern, falls vorhanden;
  2. Verschieben Sie Begriffe, die eine Variable enthalten, auf eine Seite des Gleichheitszeichens und Begriffe ohne Variable auf die andere;
  3. Bringen Sie gleiche Terme links und rechts vom Gleichheitszeichen;
  4. Teilen Sie die resultierende Gleichung durch den Koeffizienten der Variablen $x$ .

Natürlich hilft dieser Algorithmus nicht immer. Tatsache ist, dass sich nach all diesen Machenschaften manchmal herausstellt, dass der Koeffizient der Variablen $x$ gleich Null ist. In diesem Fall sind zwei Optionen möglich:

  1. Die Gleichung hat überhaupt keine Lösungen. Wenn Sie beispielsweise etwas wie $0\cdot x=8$ erhalten, d.h. auf der linken Seite ist Null und auf der rechten Seite ist eine Zahl ungleich Null. Im folgenden Video werden wir uns einige Gründe ansehen, warum diese Situation möglich ist.
  2. Die Lösung sind alle Zahlen. Dies ist nur dann möglich, wenn die Gleichung auf die Konstruktion $0\cdot x=0$ reduziert wurde. Es ist ziemlich logisch, dass egal, was $x$ wir ersetzen, es immer noch herauskommt „Null ist gleich Null“, d.h. korrekte numerische Gleichheit.

Und nun schauen wir uns am Beispiel echter Probleme an, wie das alles funktioniert.

Beispiele zum Lösen von Gleichungen

Heute beschäftigen wir uns mit linearen Gleichungen, und zwar nur mit den einfachsten. Im Allgemeinen bedeutet eine lineare Gleichung jede Gleichung, die genau eine Variable enthält, und sie geht nur bis zum ersten Grad.

Solche Konstruktionen werden ungefähr auf die gleiche Weise gelöst:

  1. Zuerst müssen Sie die Klammern öffnen, falls vorhanden (wie in unserem letzten Beispiel);
  2. Dann ähnliches mitbringen
  3. Isolieren Sie schließlich die Variable, d.h. alles, was mit der Variablen zusammenhängt – die Begriffe, in denen sie enthalten ist – wird auf die eine Seite übertragen, und alles, was ohne sie bleibt, wird auf die andere Seite übertragen.

Dann müssen Sie in der Regel auf jeder Seite der resultierenden Gleichheit ähnliche Ergebnisse erzielen, und danach müssen Sie nur noch durch den Koeffizienten bei "x" dividieren, und wir erhalten die endgültige Antwort.

Theoretisch sieht das nett und einfach aus, aber in der Praxis können selbst erfahrene Gymnasiasten in ziemlich einfachen linearen Gleichungen anstößige Fehler machen. Normalerweise werden Fehler entweder beim Öffnen von Klammern oder beim Zählen von "Plus" und "Minus" gemacht.

Außerdem kommt es vor, dass eine lineare Gleichung überhaupt keine Lösungen hat, oder dass die Lösung der ganze Zahlenstrahl ist, also irgendeine Nummer. Wir werden diese Feinheiten in der heutigen Lektion analysieren. Aber wir werden, wie Sie bereits verstanden haben, mit den einfachsten Aufgaben beginnen.

Schema zum Lösen einfacher linearer Gleichungen

Lassen Sie mich zunächst noch einmal das gesamte Schema zur Lösung der einfachsten linearen Gleichungen aufschreiben:

  1. Erweitern Sie die Klammern, falls vorhanden.
  2. Trennen Sie Variablen, d.h. alles, was "x" enthält, wird auf die eine Seite übertragen und ohne "x" - auf die andere.
  3. Wir präsentieren ähnliche Begriffe.
  4. Wir teilen alles durch den Koeffizienten bei "x".

Natürlich funktioniert dieses Schema nicht immer, es hat gewisse Feinheiten und Tricks, die wir jetzt kennenlernen werden.

Reale Beispiele einfacher linearer Gleichungen lösen

Aufgabe 1

Im ersten Schritt müssen wir die Klammern öffnen. In diesem Beispiel sind sie jedoch nicht vorhanden, daher überspringen wir diesen Schritt. Im zweiten Schritt müssen wir die Variablen isolieren. Bitte beachten Sie: Wir sprechen hier nur von einzelnen Begriffen. Lass uns schreiben:

Wir geben links und rechts ähnliche Begriffe, aber dies wurde hier bereits getan. Deshalb fahren wir mit dem vierten Schritt fort: Dividieren durch einen Faktor:

\[\frac(6x)(6)=-\frac(72)(6)\]

Hier haben wir die Antwort bekommen.

Aufgabe Nr. 2

In dieser Aufgabe können wir die Klammern beobachten, also erweitern wir sie:

Sowohl links als auch rechts sehen wir ungefähr die gleiche Konstruktion, aber handeln wir nach dem Algorithmus, d.h. Sequester-Variablen:

Hier sind einige wie:

An welchen Wurzeln funktioniert das? Antwort: für alle. Daher können wir schreiben, dass $x$ eine beliebige Zahl ist.

Aufgabe Nr. 3

Interessanter ist schon die dritte lineare Gleichung:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Hier gibt es mehrere Klammern, aber sie werden mit nichts multipliziert, sie haben nur unterschiedliche Zeichen davor. Lassen Sie uns sie aufschlüsseln:

Wir führen den uns bereits bekannten zweiten Schritt durch:

\[-x+x+2x=15-6-12+3\]

Rechnen wir:

Wir führen den letzten Schritt aus - wir teilen alles durch den Koeffizienten bei "x":

\[\frac(2x)(x)=\frac(0)(2)\]

Was Sie beim Lösen linearer Gleichungen beachten sollten

Wenn wir zu einfache Aufgaben ignorieren, dann möchte ich Folgendes sagen:

  • Wie ich oben sagte, hat nicht jede lineare Gleichung eine Lösung - manchmal gibt es einfach keine Nullstellen;
  • Auch wenn es Wurzeln gibt, kann Null dazwischen kommen - daran ist nichts auszusetzen.

Null ist die gleiche Zahl wie der Rest, Sie sollten sie nicht irgendwie diskriminieren oder davon ausgehen, dass Sie etwas falsch gemacht haben, wenn Sie Null erhalten.

Ein weiteres Merkmal bezieht sich auf die Erweiterung von Klammern. Bitte beachten Sie: Wenn ein „Minus“ davor steht, entfernen wir es, aber in Klammern ändern wir die Zeichen in Gegenteil. Und dann können wir es nach Standardalgorithmen öffnen: Wir erhalten, was wir in den obigen Berechnungen gesehen haben.

Das Verständnis dieser einfachen Tatsache wird Ihnen helfen, dumme und verletzende Fehler in der High School zu vermeiden, wenn solche Handlungen als selbstverständlich angesehen werden.

Lösen komplexer linearer Gleichungen

Kommen wir zu komplexeren Gleichungen. Jetzt werden die Konstruktionen komplizierter und es erscheint eine quadratische Funktion, wenn verschiedene Transformationen durchgeführt werden. Sie sollten sich davor jedoch nicht fürchten, denn wenn wir nach der Absicht des Autors eine lineare Gleichung lösen, werden im Transformationsprozess zwangsläufig alle Monome reduziert, die eine quadratische Funktion enthalten.

Beispiel 1

Offensichtlich besteht der erste Schritt darin, die Klammern zu öffnen. Gehen wir sehr vorsichtig vor:

Kommen wir nun zum Datenschutz:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Hier sind einige wie:

Offensichtlich hat diese Gleichung keine Lösungen, also schreiben wir in der Antwort wie folgt:

\[\Vielfalt \]

oder keine Wurzeln.

Beispiel #2

Wir führen die gleichen Schritte aus. Erster Schritt:

Lassen Sie uns alles mit einer Variablen nach links und ohne sie nach rechts verschieben:

Hier sind einige wie:

Offensichtlich hat diese lineare Gleichung keine Lösung, also schreiben wir sie so:

\[\varnothing\],

oder keine Wurzeln.

Nuancen der Lösung

Beide Gleichungen sind vollständig gelöst. Am Beispiel dieser beiden Ausdrücke haben wir noch einmal darauf geachtet, dass selbst in den einfachsten linearen Gleichungen nicht alles so einfach sein kann: Es kann entweder eine oder keine oder unendlich viele geben. In unserem Fall haben wir zwei Gleichungen betrachtet, in beiden gibt es einfach keine Wurzeln.

Aber ich möchte Ihre Aufmerksamkeit auf eine andere Tatsache lenken: wie man mit Klammern arbeitet und wie man sie öffnet, wenn ein Minuszeichen davor steht. Betrachten Sie diesen Ausdruck:

Vor dem Öffnen müssen Sie alles mit "x" multiplizieren. Achtung: multiplizieren jeden einzelnen Begriff. Darin befinden sich zwei Terme - bzw. zwei Terme und wird multipliziert.

Und erst nachdem diese scheinbar elementaren, aber sehr wichtigen und gefährlichen Transformationen abgeschlossen sind, darf die Klammer unter dem Gesichtspunkt geöffnet werden, dass dahinter ein Minuszeichen steht. Ja, ja: erst jetzt, wenn die Transformationen abgeschlossen sind, erinnern wir uns daran, dass vor den Klammern ein Minuszeichen steht, was bedeutet, dass alles nach unten nur das Vorzeichen wechselt. Gleichzeitig verschwinden die Klammern selbst und vor allem verschwindet auch das vordere „Minus“.

Das Gleiche machen wir mit der zweiten Gleichung:

Es ist kein Zufall, dass ich auf diese kleinen, scheinbar unbedeutenden Tatsachen achte. Denn das Lösen von Gleichungen ist immer eine Abfolge von elementaren Transformationen, bei denen die Unfähigkeit, einfache Handlungen klar und kompetent auszuführen, dazu führt, dass Gymnasiasten zu mir kommen und wieder lernen, solche einfachen Gleichungen zu lösen.

Natürlich wird der Tag kommen, an dem Sie diese Fähigkeiten zum Automatismus verfeinern werden. Sie müssen nicht mehr jedes Mal so viele Transformationen durchführen, Sie schreiben alles in eine Zeile. Aber während Sie gerade lernen, müssen Sie jede Aktion separat schreiben.

Lösen noch komplexerer linearer Gleichungen

Was wir jetzt lösen werden, kann kaum als die einfachste Aufgabe bezeichnet werden, aber die Bedeutung bleibt dieselbe.

Aufgabe 1

\[\links(7x+1 \rechts)\links(3x-1 \rechts)-21((x)^(2))=3\]

Lassen Sie uns alle Elemente im ersten Teil multiplizieren:

Machen wir ein Retreat:

Hier sind einige wie:

Machen wir den letzten Schritt:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Hier ist unsere letzte Antwort. Und obwohl wir beim Lösen Koeffizienten mit einer quadratischen Funktion hatten, vernichteten sie sich gegenseitig, wodurch die Gleichung genau linear und nicht quadratisch wird.

Aufgabe Nr. 2

\[\links(1-4x \rechts)\links(1-3x \rechts)=6x\links(2x-1 \rechts)\]

Machen wir den ersten Schritt vorsichtig: Multiplizieren Sie jedes Element in der ersten Klammer mit jedem Element in der zweiten. Insgesamt sollten nach Transformationen vier neue Terme erhalten werden:

Und jetzt führen Sie die Multiplikation in jedem Term sorgfältig durch:

Verschieben wir die Terme mit "x" nach links und ohne - nach rechts:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Hier sind ähnliche Begriffe:

Wir haben eine definitive Antwort erhalten.

Nuancen der Lösung

Die wichtigste Bemerkung zu diesen beiden Gleichungen ist folgende: Sobald wir anfangen, Klammern zu multiplizieren, in denen mehr als ein Glied steht, dann geschieht dies nach folgender Regel: Wir nehmen das erste Glied vom ersten und multiplizieren mit jedem Element ab dem zweiten; dann nehmen wir das zweite Element aus dem ersten und multiplizieren auf ähnliche Weise mit jedem Element aus dem zweiten. Als Ergebnis erhalten wir vier Terme.

Über die algebraische Summe

Mit dem letzten Beispiel möchte ich die Schüler daran erinnern, was eine algebraische Summe ist. In der klassischen Mathematik meinen wir mit $1-7$ eine einfache Konstruktion: Wir subtrahieren sieben von eins. In der Algebra verstehen wir darunter folgendes: Zu der Zahl „eins“ fügen wir eine weitere Zahl hinzu, nämlich „minus sieben“. Diese algebraische Summe unterscheidet sich von der üblichen arithmetischen Summe.

Sobald Sie bei allen Transformationen, jeder Addition und Multiplikation ähnliche Konstruktionen wie oben beschrieben sehen, werden Sie in der Algebra einfach keine Probleme mehr haben, wenn Sie mit Polynomen und Gleichungen arbeiten.

Schauen wir uns abschließend noch ein paar weitere Beispiele an, die noch komplexer sein werden als die, die wir uns gerade angesehen haben, und um sie zu lösen, müssen wir unseren Standardalgorithmus leicht erweitern.

Gleichungen mit einem Bruch lösen

Um solche Aufgaben zu lösen, muss unserem Algorithmus ein weiterer Schritt hinzugefügt werden. Aber zuerst werde ich unseren Algorithmus daran erinnern:

  1. Klammern öffnen.
  2. Separate Variablen.
  3. Ähnliches mitbringen.
  4. Teile durch einen Faktor.

Leider ist dieser wunderbare Algorithmus bei aller Effizienz nicht ganz angemessen, wenn wir Brüche vor uns haben. Und in dem, was wir unten sehen werden, haben wir in beiden Gleichungen links und rechts einen Bruch.

Wie geht man in diesem Fall vor? Ja, es ist ganz einfach! Dazu müssen Sie dem Algorithmus einen weiteren Schritt hinzufügen, der sowohl vor als auch nach der ersten Aktion ausgeführt werden kann, nämlich Brüche beseitigen. Somit wird der Algorithmus wie folgt aussehen:

  1. Befreien Sie sich von Brüchen.
  2. Klammern öffnen.
  3. Separate Variablen.
  4. Ähnliches mitbringen.
  5. Teile durch einen Faktor.

Was bedeutet es, "Brüche loszuwerden"? Und warum ist dies sowohl nach als auch vor dem ersten Standardschritt möglich? Tatsächlich sind in unserem Fall alle Brüche in Bezug auf den Nenner numerisch, d.h. überall ist der Nenner nur eine Zahl. Wenn wir also beide Teile der Gleichung mit dieser Zahl multiplizieren, werden wir Brüche los.

Beispiel 1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Lassen Sie uns die Brüche in dieser Gleichung loswerden:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Achtung: Alles wird einmal mit „vier“ multipliziert, d.h. Nur weil Sie zwei Klammern haben, heißt das nicht, dass Sie jede von ihnen mit "vier" multiplizieren müssen. Lass uns schreiben:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Jetzt öffnen wir es:

Wir führen eine Absonderung einer Variablen durch:

Wir führen die Reduzierung ähnlicher Begriffe durch:

\[-4x=-1\links| :\links(-4 \rechts) \rechts.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Wir haben die endgültige Lösung erhalten, wir gehen zur zweiten Gleichung über.

Beispiel #2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Hier führen wir dieselben Aktionen aus:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Problem gelöst.

Das ist eigentlich alles, was ich heute sagen wollte.

Wichtige Punkte

Die wichtigsten Erkenntnisse lauten wie folgt:

  • Kennen Sie den Algorithmus zum Lösen linearer Gleichungen.
  • Fähigkeit, Klammern zu öffnen.
  • Machen Sie sich keine Sorgen, wenn Sie irgendwo quadratische Funktionen haben, höchstwahrscheinlich werden sie im Verlauf weiterer Transformationen reduziert.
  • Es gibt drei Arten von Wurzeln in linearen Gleichungen, selbst die einfachsten: eine einzelne Wurzel, der gesamte Zahlenstrahl ist eine Wurzel, es gibt überhaupt keine Wurzeln.

Ich hoffe, diese Lektion wird Ihnen helfen, ein einfaches, aber sehr wichtiges Thema für ein besseres Verständnis der gesamten Mathematik zu meistern. Wenn etwas nicht klar ist, gehen Sie auf die Website und lösen Sie die dort vorgestellten Beispiele. Bleiben Sie dran, es warten noch viele weitere interessante Dinge auf Sie!

"Klammern öffnen" - Mathematiklehrbuch Klasse 6 (Vilenkin)

Kurzbeschreibung:


In diesem Abschnitt erfahren Sie, wie Sie in Beispielen Klammern öffnen. Wofür ist das? Alles für das Gleiche wie bisher - um dir das Zählen immer leichter zu machen, weniger Fehler zu machen und im Idealfall (der Traum deines Mathelehrers) alles fehlerfrei zu lösen.
Sie wissen bereits, dass Klammern in der mathematischen Notation gesetzt werden, wenn zwei mathematische Zeichen hintereinander stehen, wenn wir die Vereinigung von Zahlen, ihre Neuordnung zeigen wollen. Klammern zu erweitern bedeutet, überzählige Zeichen loszuwerden. Zum Beispiel: (-15)+3=-15+3=-12, 18+(-16)=18-16=2. Erinnern Sie sich an das Verteilungsgesetz der Multiplikation in Bezug auf die Addition? Schließlich haben wir in diesem Beispiel auch die Klammern weggelassen, um die Berechnungen zu vereinfachen. Die genannte Eigenschaft der Multiplikation lässt sich auch auf vier, drei, fünf oder mehr Glieder anwenden. Zum Beispiel: 15*(3+8+9+6)=15*3+15*8+15*9+15*6=390. Ist Ihnen aufgefallen, dass beim Öffnen von Klammern die darin enthaltenen Zahlen ihr Vorzeichen nicht ändern, wenn die Zahl vor der Klammer positiv ist? Fünfzehn ist schließlich eine positive Zahl. Und wenn Sie dieses Beispiel lösen: -15*(3+8+9+6)=-15*3+(-15)*8+(-15)*9+(-15)*6=-45+( - 120)+(-135)+(-90)=-45-120-135-90=-390. Wir hatten eine negative Zahl minus fünfzehn vor den Klammern, als wir die Klammern öffneten, begannen alle Zahlen ihr Vorzeichen in ein anderes zu ändern - das Gegenteil - von Plus zu Minus.
Basierend auf den obigen Beispielen können zwei Grundregeln für das Öffnen von Klammern ausgesprochen werden:
1. Wenn Sie vor den Klammern eine positive Zahl haben, ändern sich nach dem Öffnen der Klammern alle Vorzeichen der Zahlen in den Klammern nicht, sondern bleiben genau so wie sie waren.
2. Wenn Sie vor den Klammern eine negative Zahl haben, wird nach dem Öffnen der Klammern das Minuszeichen nicht mehr geschrieben und die Vorzeichen aller absoluten Zahlen in den Klammern werden scharf umgekehrt.
Zum Beispiel: (13+8)+(9-8)=13+8+9-8=22; (13+8)-(9-8)=13+8-9+8=20. Machen wir unsere Beispiele etwas komplizierter: (13+8)+2(9-8)=13+8+2*9-2*8=21+18-16=23. Sie haben bemerkt, dass wir beim Öffnen der zweiten Klammern mit 2 multipliziert haben, aber die Zeichen blieben gleich wie sie waren. Und hier ist ein Beispiel: (3+8)-2*(9-8)=3+8-2*9+2*8=11-18+16=9, in diesem Beispiel ist die Zahl zwei negativ, it steht vor den Klammern mit einem Minuszeichen, deshalb haben wir beim Öffnen die Vorzeichen der Zahlen in die entgegengesetzten geändert (Neun war mit einem Plus, es wurde zu einem Minus, Acht war mit einem Minus, es wurde zu einem Plus ).

Im fünften Jahrhundert v. Chr. formulierte der antike griechische Philosoph Zenon von Elea seine berühmten Aporien, von denen die berühmteste die Aporie „Achilles und die Schildkröte“ ist. So klingt es:

Nehmen wir an, Achilles läuft zehnmal schneller als die Schildkröte und ist ihr tausend Schritte hinterher. In der Zeit, in der Achilles diese Strecke läuft, kriecht die Schildkröte hundert Schritte in die gleiche Richtung. Wenn Achilles hundert Schritte gelaufen ist, kriecht die Schildkröte weitere zehn Schritte und so weiter. Der Prozess wird auf unbestimmte Zeit fortgesetzt, Achilles wird die Schildkröte niemals einholen.

Diese Argumentation wurde zu einem logischen Schock für alle nachfolgenden Generationen. Aristoteles, Diogenes, Kant, Hegel, Gilbert... Alle betrachteten sie auf die eine oder andere Weise als Zenons Aporien. Der Schock war so stark, dass " ... die Diskussionen werden derzeit fortgesetzt, die wissenschaftliche Gemeinschaft hat es noch nicht geschafft, zu einer gemeinsamen Meinung über das Wesen von Paradoxien zu gelangen ... mathematische Analyse, Mengenlehre, neue physikalische und philosophische Ansätze waren an der Untersuchung des Problems beteiligt ; keiner von ihnen wurde zu einer allgemein akzeptierten Lösung des Problems ..."[Wikipedia," Zenos Aporien "]. Jeder versteht, dass er getäuscht wird, aber niemand versteht, was die Täuschung ist.

Aus mathematischer Sicht hat Zeno in seiner Aporie den Übergang vom Wert zu deutlich demonstriert. Dieser Übergang impliziert die Anwendung anstelle von Konstanten. Soweit ich weiß, ist der mathematische Apparat zur Anwendung variabler Maßeinheiten entweder noch nicht entwickelt oder auf Zenos Aporie nicht angewendet worden. Die Anwendung unserer üblichen Logik führt uns in eine Falle. Durch die Trägheit des Denkens wenden wir konstante Zeiteinheiten auf den Kehrwert an. Aus physikalischer Sicht sieht es so aus, als ob die Zeit in dem Moment, in dem Achilles die Schildkröte einholt, verlangsamt und vollständig angehalten wird. Wenn die Zeit stehen bleibt, kann Achilles die Schildkröte nicht mehr überholen.

Wenn wir die gewohnte Logik umdrehen, ergibt sich alles. Achilles läuft mit konstanter Geschwindigkeit. Jedes nachfolgende Segment seines Weges ist zehnmal kürzer als das vorherige. Dementsprechend ist die Zeit, die für die Überwindung aufgewendet wird, zehnmal kürzer als die vorherige. Wenn wir in dieser Situation den Begriff „Unendlichkeit“ anwenden, dann wäre es richtig zu sagen „Achilles wird die Schildkröte unendlich schnell überholen“.

Wie vermeidet man diese logische Falle? Bleiben Sie in konstanten Zeiteinheiten und wechseln Sie nicht zu reziproken Werten. In Zenos Sprache sieht das so aus:

In der Zeit, die Achilles braucht, um tausend Schritte zu laufen, kriecht die Schildkröte hundert Schritte in die gleiche Richtung. Während des nächsten Zeitintervalls, gleich dem ersten, wird Achilles weitere tausend Schritte laufen und die Schildkröte wird hundert Schritte kriechen. Jetzt ist Achilles der Schildkröte achthundert Schritte voraus.

Dieser Ansatz beschreibt die Realität angemessen ohne logische Paradoxien. Dies ist jedoch keine vollständige Lösung des Problems. Einsteins Aussage über die Unüberwindbarkeit der Lichtgeschwindigkeit ist Zenos Aporie „Achilles und die Schildkröte“ sehr ähnlich. Wir müssen dieses Problem noch untersuchen, überdenken und lösen. Und die Lösung muss nicht in unendlich großen Zahlen, sondern in Maßeinheiten gesucht werden.

Eine weitere interessante Aporie von Zeno erzählt von einem fliegenden Pfeil:

Ein fliegender Pfeil ist bewegungslos, da er zu jedem Zeitpunkt ruht, und da er zu jedem Zeitpunkt ruht, ruht er immer.

In dieser Aporie wird das logische Paradoxon sehr einfach überwunden – es genügt zu verdeutlichen, dass der fliegende Pfeil zu jedem Zeitpunkt an verschiedenen Punkten im Raum ruht, was tatsächlich Bewegung ist. Hier ist noch ein weiterer Punkt zu beachten. Aus einem Foto eines Autos auf der Straße kann weder die Tatsache seiner Bewegung noch die Entfernung zu ihm bestimmt werden. Um die Tatsache der Bewegung des Autos zu bestimmen, werden zwei Fotos benötigt, die vom selben Punkt zu unterschiedlichen Zeitpunkten aufgenommen wurden, aber sie können nicht zur Bestimmung der Entfernung verwendet werden. Um die Entfernung zum Auto zu bestimmen, benötigen Sie zwei Fotos, die gleichzeitig von verschiedenen Punkten im Raum aufgenommen wurden, aber Sie können daraus nicht die Tatsache der Bewegung bestimmen (natürlich benötigen Sie noch zusätzliche Daten für Berechnungen, die Trigonometrie hilft Ihnen). Was ich besonders hervorheben möchte, ist, dass zwei Zeitpunkte und zwei Punkte im Raum zwei verschiedene Dinge sind, die nicht verwechselt werden sollten, da sie unterschiedliche Möglichkeiten der Erforschung bieten.

Mittwoch, 4. Juli 2018

Sehr gut sind die Unterschiede zwischen Menge und Multimenge in Wikipedia beschrieben. Wir schauen.

Wie Sie sehen können, „kann die Menge nicht zwei identische Elemente haben“, aber wenn es identische Elemente in der Menge gibt, wird eine solche Menge als „Multimenge“ bezeichnet. Vernünftige Wesen werden niemals eine solche Logik der Absurdität verstehen. Dies ist die Ebene sprechender Papageien und abgerichteter Affen, auf der der Verstand dem Wort „vollständig“ abwesend ist. Mathematiker agieren als gewöhnliche Trainer und predigen uns ihre absurden Ideen.

Es war einmal, dass die Ingenieure, die die Brücke gebaut haben, während der Tests der Brücke in einem Boot unter der Brücke waren. Wenn die Brücke einstürzte, starb der mittelmäßige Ingenieur unter den Trümmern seiner Schöpfung. Wenn die Brücke der Belastung standhalten konnte, baute der begabte Ingenieur weitere Brücken.

So sehr sich Mathematiker auch hinter dem Satz „wohlgemerkt, ich bin im Haus“ oder vielmehr „Mathematik studiert abstrakte Konzepte“ verstecken, es gibt eine Nabelschnur, die sie untrennbar mit der Realität verbindet. Diese Nabelschnur ist Geld. Wenden wir die mathematische Mengenlehre auf Mathematiker selbst an.

Wir haben sehr gut Mathematik studiert und jetzt sitzen wir an der Kasse und zahlen Gehälter aus. Hier kommt ein Mathematiker auf sein Geld zu uns. Wir zählen ihm den ganzen Betrag vor und legen ihn auf unserem Tisch in verschiedene Stapel, in die wir Scheine gleichen Werts legen. Dann nehmen wir von jedem Stapel einen Schein und geben dem Mathematiker seinen „mathematischen Gehaltssatz“. Wir erklären die Mathematik, dass er die restlichen Rechnungen nur erhält, wenn er beweist, dass die Menge ohne identische Elemente nicht gleich der Menge mit identischen Elementen ist. Hier beginnt der Spaß.

Zunächst einmal wird die Logik der Abgeordneten funktionieren: "Sie können es auf andere anwenden, aber nicht auf mich!" Außerdem wird zugesichert, dass auf Banknoten derselben Stückelung unterschiedliche Banknotennummern vorhanden sind, was bedeutet, dass sie nicht als identische Elemente angesehen werden können. Nun, wir zählen das Gehalt in Münzen - es gibt keine Zahlen auf den Münzen. Hier erinnert sich der Mathematiker hektisch an die Physik: Verschiedene Münzen haben unterschiedlich viel Schmutz, die Kristallstruktur und Anordnung der Atome für jede Münze ist einzigartig ...

Und jetzt habe ich die interessanteste Frage: Wo ist die Grenze, ab der Elemente einer Multimenge zu Elementen einer Menge werden und umgekehrt? Eine solche Linie gibt es nicht - alles wird von Schamanen entschieden, die Wissenschaft ist hier nicht einmal annähernd.

Schau hier. Wir wählen Fußballstadien mit gleicher Spielfeldfläche aus. Die Fläche der Felder ist gleich, was bedeutet, dass wir eine Multimenge haben. Aber wenn wir die Namen der gleichen Stadien betrachten, bekommen wir viel, weil die Namen unterschiedlich sind. Wie Sie sehen können, ist dieselbe Menge von Elementen gleichzeitig eine Menge und eine Multimenge. Wie richtig? Und hier holt der Mathematiker-Schamane-Schüler ein Trumpf-Ass aus seinem Ärmel und beginnt uns entweder von einem Set oder einem Multiset zu erzählen. Auf jeden Fall wird er uns davon überzeugen, dass er Recht hat.

Um zu verstehen, wie moderne Schamanen mit der Mengentheorie arbeiten und sie mit der Realität verknüpfen, genügt es, eine Frage zu beantworten: Wie unterscheiden sich die Elemente einer Menge von den Elementen einer anderen Menge? Ich werde es Ihnen zeigen, ohne „als nicht ein Ganzes denkbar“ oder „nicht als ein Ganzes denkbar“.

Sonntag, 18. März 2018

Die Quersumme einer Zahl ist ein Schamanentanz mit Tamburin, der nichts mit Mathematik zu tun hat. Ja, im Mathematikunterricht wird uns beigebracht, die Summe der Ziffern einer Zahl zu finden und zu verwenden, aber dafür sind sie Schamanen, um ihren Nachkommen ihre Fähigkeiten und Weisheit beizubringen, sonst sterben Schamanen einfach aus.

Benötigen Sie einen Nachweis? Öffnen Sie Wikipedia und versuchen Sie, die Seite „Summe der Ziffern einer Zahl“ zu finden. Sie existiert nicht. In der Mathematik gibt es keine Formel, mit der man die Quersumme einer beliebigen Zahl ermitteln kann. Schließlich sind Zahlen grafische Symbole, mit denen wir Zahlen schreiben, und in der Sprache der Mathematik klingt die Aufgabe so: „Finde die Summe von grafischen Symbolen, die eine beliebige Zahl darstellen.“ Mathematiker können dieses Problem nicht lösen, aber Schamanen können es elementar.

Lassen Sie uns herausfinden, was und wie wir tun, um die Summe der Ziffern einer bestimmten Zahl zu finden. Nehmen wir also an, wir haben die Zahl 12345. Was muss getan werden, um die Quersumme dieser Zahl zu finden? Betrachten wir alle Schritte der Reihe nach.

1. Notieren Sie die Nummer auf einem Blatt Papier. Was haben wir getan? Wir haben die Zahl in ein grafisches Zahlensymbol umgewandelt. Dies ist keine mathematische Operation.

2. Wir schneiden ein empfangenes Bild in mehrere Bilder mit separaten Nummern. Das Schneiden eines Bildes ist keine mathematische Operation.

3. Wandeln Sie einzelne Grafikzeichen in Zahlen um. Dies ist keine mathematische Operation.

4. Addieren Sie die resultierenden Zahlen. Das ist jetzt Mathematik.

Die Quersumme der Zahl 12345 ist 15. Dies sind die „Schneide- und Nähkurse“ von Schamanen, die von Mathematikern verwendet werden. Aber das ist noch nicht alles.

Aus mathematischer Sicht spielt es keine Rolle, in welchem ​​Zahlensystem wir die Zahl schreiben. In verschiedenen Zahlensystemen ist die Summe der Ziffern derselben Zahl also unterschiedlich. In der Mathematik wird das Zahlensystem als Index rechts neben der Zahl angegeben. Bei einer großen Zahl von 12345 möchte ich mir nicht den Kopf verdrehen, betrachten Sie die Zahl 26 aus dem Artikel darüber. Lassen Sie uns diese Zahl in binären, oktalen, dezimalen und hexadezimalen Zahlensystemen schreiben. Wir werden nicht jeden Schritt unter die Lupe nehmen, das haben wir bereits getan. Schauen wir uns das Ergebnis an.

Wie Sie sehen können, ist in verschiedenen Zahlensystemen die Summe der Ziffern derselben Zahl unterschiedlich. Dieses Ergebnis hat nichts mit Mathematik zu tun. Es ist, als würde man die Fläche eines Rechtecks ​​in Metern und Zentimetern zu ganz anderen Ergebnissen bringen.

Die Null sieht in allen Zahlensystemen gleich aus und hat keine Quersumme. Dies ist ein weiteres Argument dafür, dass . Eine Frage an die Mathematiker: Wie bezeichnet man in der Mathematik das, was keine Zahl ist? Was existiert für Mathematiker nur aus Zahlen? Für Schamanen kann ich das zulassen, aber für Wissenschaftler nicht. Realität besteht nicht nur aus Zahlen.

Das erhaltene Ergebnis sollte als Beweis dafür angesehen werden, dass Zahlensysteme Maßeinheiten für Zahlen sind. Schließlich können wir Zahlen mit unterschiedlichen Maßeinheiten nicht vergleichen. Wenn gleiche Handlungen mit unterschiedlichen Maßeinheiten derselben Größe nach dem Vergleich zu unterschiedlichen Ergebnissen führen, dann hat das nichts mit Mathematik zu tun.

Was ist echte Mathematik? Dies ist der Fall, wenn das Ergebnis einer mathematischen Aktion nicht vom Wert der Zahl, der verwendeten Maßeinheit und davon abhängt, wer diese Aktion ausführt.

Schild an der Tür Öffnet die Tür und sagt:

Autsch! Ist das nicht die Damentoilette?
- Junge Frau! Dies ist ein Labor zum Studium der unbestimmten Heiligkeit der Seelen beim Aufstieg in den Himmel! Nimbus oben und Pfeil nach oben. Welche andere Toilette?

Weiblich ... Ein Heiligenschein oben und ein Pfeil nach unten sind männlich.

Wenn Sie ein solches Designkunstwerk mehrmals täglich vor Augen haben,

Dann ist es nicht verwunderlich, dass Sie plötzlich ein seltsames Symbol in Ihrem Auto finden:

Ich persönlich gebe mir Mühe, bei einer kackenden Person (ein Bild) minus vier Grad zu sehen (Zusammensetzung mehrerer Bilder: Minuszeichen, Zahl vier, Gradbezeichnung). Und ich halte dieses Mädchen nicht für einen Narren, der keine Physik versteht. Sie hat nur ein Bogenstereotyp der Wahrnehmung von grafischen Bildern. Und Mathematiker lehren uns das ständig. Hier ist ein Beispiel.

1A ist nicht "minus vier Grad" oder "ein a". Das ist „pooping man“ oder die Zahl „sechsundzwanzig“ im hexadezimalen Zahlensystem. Wer ständig in diesem Zahlensystem arbeitet, nimmt Zahl und Buchstabe automatisch als ein grafisches Symbol wahr.

Klammern werden verwendet, um die Reihenfolge anzugeben, in der Aktionen in numerischen und alphabetischen Ausdrücken sowie in Ausdrücken mit Variablen ausgeführt werden. Es ist praktisch, von einem Ausdruck mit Klammern zu einem identisch gleichen Ausdruck ohne Klammern überzugehen. Diese Technik wird Klammeröffnung genannt.

Klammern zu erweitern bedeutet, den Ausdruck von diesen Klammern zu befreien.

Besondere Aufmerksamkeit verdient ein weiterer Punkt, der die Besonderheiten von Schreiblösungen beim Öffnen von Klammern betrifft. Wir können den Anfangsausdruck mit Klammern schreiben und das Ergebnis nach dem Öffnen der Klammern als Gleichheit. Beispielsweise nach dem Öffnen der Klammern anstelle des Ausdrucks
3−(5−7) erhalten wir den Ausdruck 3−5+7. Wir können diese beiden Ausdrücke als die Gleichheit 3−(5−7)=3−5+7 schreiben.

Und noch ein wichtiger Punkt. In der Mathematik ist es zur Reduzierung von Einträgen üblich, kein Pluszeichen zu schreiben, wenn es das erste in einem Ausdruck oder in Klammern ist. Wenn wir zum Beispiel zwei positive Zahlen addieren, zum Beispiel sieben und drei, dann schreiben wir nicht +7 + 3, sondern einfach 7 + 3, obwohl sieben auch eine positive Zahl ist. Wenn Sie beispielsweise den Ausdruck (5 + x) sehen, wissen Sie, dass vor der nicht geschriebenen Klammer ein Plus und vor dem ein Plus + (+5 + x) steht fünf.

Klammererweiterungsregel für die Addition

Wenn beim Öffnen von Klammern ein Plus vor den Klammern steht, wird dieses Plus zusammen mit den Klammern weggelassen.

Beispiel. Öffnen Sie die Klammern im Ausdruck 2 + (7 + 3) Vor den Klammern plus, dann ändern sich die Zeichen vor den Zahlen in den Klammern nicht.

2 + (7 + 3) = 2 + 7 + 3

Die Regel zum Erweitern von Klammern beim Subtrahieren

Wenn vor den Klammern ein Minus steht, wird dieses Minus mit den Klammern weggelassen, aber die Begriffe, die in den Klammern standen, ändern ihr Vorzeichen in das Gegenteil. Das Fehlen eines Zeichens vor dem ersten Begriff in Klammern impliziert ein +-Zeichen.

Beispiel. Öffnende Klammern in Ausdruck 2 − (7 + 3)

Vor den Klammern steht ein Minus, daher müssen Sie die Zeichen vor den Zahlen aus den Klammern ändern. Vor der Zahl 7 steht kein Zeichen in Klammern, was bedeutet, dass die Sieben positiv ist, es wird davon ausgegangen, dass das +-Zeichen davor steht.

2 − (7 + 3) = 2 − (+ 7 + 3)

Beim Öffnen der Klammern entfernen wir das Minus aus dem Beispiel, das vor den Klammern stand, und die Klammern selbst 2 − (+ 7 + 3) und ändern die Zeichen in den Klammern in die entgegengesetzten.

2 − (+ 7 + 3) = 2 − 7 − 3

Erweiternde Klammern beim Multiplizieren

Wenn vor den Klammern ein Multiplikationszeichen steht, wird jede Zahl innerhalb der Klammern mit dem Faktor vor der Klammer multipliziert. Gleichzeitig ergibt die Multiplikation eines Minus mit einem Minus ein Plus, und die Multiplikation eines Minus mit einem Plus, wie die Multiplikation eines Plus mit einem Minus, ergibt ein Minus.

Daher werden Klammern in Produkten gemäß dem Verteilungsgesetz der Multiplikation erweitert.

Beispiel. 2 (9 - 7) = 2 9 - 2 7

Beim Multiplizieren von Klammer mit Klammer wird jeder Term der ersten Klammer mit jedem Term der zweiten Klammer multipliziert.

(2 + 3) (4 + 5) = 2 4 + 2 5 + 3 4 + 3 5

Tatsächlich ist es nicht nötig, sich alle Regeln zu merken, es reicht aus, sich nur eine zu merken, diese hier: c(a−b)=ca−cb. Wieso den? Denn wenn wir statt c eins einsetzen, erhalten wir die Regel (a−b)=a−b. Und wenn wir minus eins einsetzen, erhalten wir die Regel −(a−b)=−a+b. Nun, wenn Sie anstelle von c eine andere Klammer einsetzen, erhalten Sie die letzte Regel.

Erweitern Sie Klammern beim Teilen

Wenn nach den Klammern ein Divisionszeichen steht, dann ist jede Zahl innerhalb der Klammern durch den Divisor nach der Klammer teilbar und umgekehrt.

Beispiel. (9 + 6) : 3=9: 3 + 6: 3

So erweitern Sie verschachtelte Klammern

Wenn der Ausdruck verschachtelte Klammern enthält, werden sie der Reihe nach erweitert, beginnend mit extern oder intern.

Gleichzeitig ist es beim Öffnen einer der Klammern wichtig, die anderen Klammern nicht zu berühren, sondern sie einfach so umzuschreiben, wie sie sind.

Beispiel. 12 - (a + (6 - b) - 3) = 12 - a - (6 - b) + 3 = 12 - a - 6 + b + 3 = 9 - a + b