Что такое выборка в статистике. Задачи о генеральной доле

Суммарная численность объектов наблюдения (люди, домохозяйства, предприятия, населенные пункты и т.д.), обладающих определенным набором признаков (пол, возраст, доход, численность, оборот и т.д.), ограниченная в пространстве и времени. Примеры генеральных совокупностей

  • Все жители Москвы (10,6 млн. человек по данным переписи 2002 года)
  • Мужчины-Москвичи (4,9 млн. человек по данным переписи 2002 года)
  • Юридические лица России (2,2 млн. на начало 2005 года)
  • Розничные торговые точки, осуществляющие продажу продуктов питания (20 тысяч на начало 2008 года) и т.д.

Выборка (Выборочная совокупность)

Часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение обо всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.

Репрезентативность выборки

Свойство выборки корректно отражать генеральную совокупность. Одна и та же выборка может быть репрезентативной и нерепрезентативной для разных генеральных совокупностей.
Пример:

  • Выборка, целиком состоящая из москвичей, владеющих автомобилем, не репрезентирует все население Москвы.
  • Выборка из российских предприятий численностью до 100 человек не репрезентирует все предприятия России.
  • Выборка из москвичей, совершающих покупки на рынке, не репрезентирует покупательское поведение всех москвичей.

В то же время, указанные выборки (при соблюдении прочих условий) могут отлично репрезентировать москвичей-автовладельцев, небольшие и средние российские предприятия и покупателей, совершающих покупки на рынках соответственно.
Важно понимать, что репрезентативность выборки и ошибка выборки – разные явления. Репрезентативность, в отличие от ошибки никак не зависит от размера выборки.
Пример:
Как бы мы не увеличивали количество опрошенных москвичей-автовладельцев, мы не сможем репрезентировать этой выборкой всех москвичей.

Ошибка выборки (доверительный интервал)

Отклонение результатов, полученных с помощью выборочного наблюдения от истинных данных генеральной совокупности.
Ошибка выборки бывает двух видов – статистическая и систематическая. Статистическая ошибка зависит от размера выборки. Чем больше размер выборки, тем она ниже.
Пример:
Для простой случайной выборки размером 400 единиц максимальная статистическая ошибка (с 95% доверительной вероятностью) составляет 5%, для выборки в 600 единиц – 4%, для выборки в 1100 единиц – 3% Обычно, когда говорят об ошибке выборки, подразумевают именно статистическую ошибку.
Систематическая ошибка зависит от различных факторов, оказывающих постоянное воздействие на исследование и смещающих результаты исследования в определенную сторону.
Пример:

  • Использование любых вероятностных выборок занижает долю людей с высоким доходом, ведущих активный образ жизни. Происходит это в силу того, что таких людей гораздо сложней застать в каком-либо определенном месте (например, дома).
  • Проблема респондентов, отказывающихся отвечать на вопросы (доля «отказников» в Москве, для разных опросов, колеблется от 50% до 80%)

В некоторых случаях, когда известны истинные распределения, систематическую ошибку можно нивелировать введением квот или перевзвешиванием данных, но в большинстве реальных исследований даже оценить ее бывает достаточно проблематично.

Типы выборок

Выборки делятся на два типа:

  • вероятностные
  • невероятностные

1. Вероятностные выборки
1.1 Случайная выборка (простой случайный отбор)
Такая выборка предполагает однородность генеральной совокупности, одинаковую вероятность доступности всех элементов, наличие полного списка всех элементов. При отборе элементов, как правило, используется таблица случайных чисел.
1.2 Механическая (систематическая) выборка
Разновидность случайной выборки, упорядоченная по какому-либо признаку (алфавитный порядок, номер телефона, дата рождения и т.д.). Первый элемент отбирается случайно, затем, с шагом ‘n’ отбирается каждый ‘k’-ый элемент. Размер генеральной совокупности, при этом – N=n*k
1.3 Стратифицированная (районированная)
Применяется в случае неоднородности генеральной совокупности. Генеральная совокупность разбивается на группы (страты). В каждой страте отбор осуществляется случайным или механическим образом.
1.4 Серийная (гнездовая или кластерная) выборка
При серийной выборке единицами отбора выступают не сами объекты, а группы (кластеры или гнёзда). Группы отбираются случайным образом. Объекты внутри групп обследуются сплошняком.

2.Невероятностные выборки
Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д..
2.1. Квотная выборка
Изначально выделяется некоторое количество групп объектов (например, мужчины в возрасте 20-30 лет, 31-45 лет и 46-60 лет; лица с доходом до 30 тысяч рублей, с доходом от 30 до 60 тысяч рублей и с доходом свыше 60 тысяч рублей) Для каждой группы задается количество объектов, которые должны быть обследованы. Количество объектов, которые должны попасть в каждую из групп, задается, чаще всего, либо пропорционально заранее известной доле группы в генеральной совокупности, либо одинаковым для каждой группы. Внутри групп объекты отбираются произвольно. Квотные выборки используются в достаточно часто.
2.2. Метод снежного кома
Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)
2.3 Стихийная выборка
Опрашиваются наиболее доступные респонденты. Типичные примеры стихийных выборок – в газетах/журналах, отданные респондентам на самозаполнение, большинство интернет-опросов. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов.
2.4 Выборка типичных случаев
Отбираются единицы генеральной совокупности, обладающие средним (типичным) значением признака. При этом возникает проблема выбора признака и определения его типичного значения.

Курс лекций по теории статистики

Более подробную информацию по выборочным наблюдениям можно получить просмотрев .

Выборочное исследование.

Понятие о выборочном методе.

Выборочное наблюдение – это такое несплошное наблюдение, при котором отбор подлежащих исследованию единиц совокупности осуществляется случайно, отобранная часть подвергается исследованию, после чего результаты распространяются на всю совокупность.

К использованию выборочного метода прибегают в тех случаях,

1 когда само наблюдение связано с порчей или уничтожением наблюдаемых единиц (пряжа на пряность, электрическая лампочка на продукт горения)

2 большой объем совокупности

3 большие затраты (финансовые и трудовые).

Обычно выборочному обследованию подвергается 5-10% всей совокупности, реже 15-25%.

Целью выборочного наблюдения является определение характеристик генеральной средней и генеральной доли (P). Характеристики выборочной совокупности –выборочная средняя и выборочная доля (w) отличаются от генеральных характеристик на величину ошибки выборки (). Потому необходимо вычислять ошибку выборки или ошибку репрезентативности, которая определяется по формулам, разработанным в теории вероятности для каждого вида выборки и способа отбора.

Существуют следующие способы отбора единиц:

1 отбор по схеме возвращенного шара, обычно называемый повторной выборкой .

При повторном отборе вероятность попадания каждой отдельной единицы в выборку остается постоянной, т.к. после отбора какой- то единицы, она снова возвращается в совокупность и снова может быть выбранной.

2 отбор по схеме невозвращенного шара, называемый бесповторной выборкой. В этом случае каждая отобранная единица не возвращается обратно, и вероятность попадания отдельных единиц в выборку все время изменяется (для оставшихся единиц она возрастет) (жеребьевка), таблицы случайных чисел например 75 из 780.

Виды выборок.

1 Собственно – случайная.

Это такая, при которой отбор единиц в выборочную совокупность производится непосредственно из всей массы единиц генеральной совокупности.

При этом количество отобранных единиц обычно определяется исходя из принятой доли выборки.

Для выборки есть отношение числа единиц выборочной совокупности и к численности единиц генеральной совокупности N.

Так при 5% выборке из партии товара в 2000 единиц численность выборки n составляет 100 ед. (
), а при 20% выборке она составит 400 ед.

(
)

Важное условие собственно случайной выборки в том, что каждой единице генеральной совокупности предоставляется равная возможность попасть в выборочную совокупность.

При случайном отборе предельная ошибка выборки для средней равна

- дисперсия выборочной совокупности

n- численность выборки

t- коэффициент доверия, который определяется по таблице значений интегральной функции Лапласа при заданной вероятности P.

При бесповторном отборе предельная ошибка выборки определяется по формуле для средней

где N –численность генеральной совокупности доли

Для определения зольности угля в порядке случайной выборке было обследовано 100 проб угля. В результате обследования установлено, что средняя зольность угля в выборке 16%, = 5%. В 10-ти пробах зольность угля составила >20% с вероятностью 0,954 определить пределы, в которых будет находиться средняя зольность угля в месторождении и доля угля с зольность >20%

Средняя зольность

определяем предельную ошибку выборки


2*0.5=1%

при p=0.954 t=2

доля угля с зольностью >20%

выборочная доля определяется

где m- доля единиц, обладающих признаком

ошибку выборки для доли

С вероятностью 0,954 можно утверждать, что доля угля с зольностью более 20% в месторождении будет находиться в пределах

P= 10%+(-)6% или

Механическая выборка.

Это разновидность собственно – случайной. В этом случае вся генеральная совокупность делится на n равных частей и затем из каждой части отбирается одна единица.

Все единицы генеральной совокупности должны располагаться в определенном порядке. При этом по отношению к изучаемому показателю единицы генеральной совокупности могут быть упорядочены по существенному, второстепенному или нейтральному признаку. При этом из каждой группы должна отбираться та единица, которая находится в середине каждой группы. Это позволяет избежать систематической ошибки выборки.

Применяют: при обследовании покупателей в магазинах, посетителей в поликлиниках, каждый 5,4,3 и т.д

Пример механическая выборка

Для определения среднего срока пользования краткосрочным кредитом в банке будет произведена 5% механическая выборка, в которую попало 100 счетов. В результате обследования установлено, что средний срок пользования краткосрочным кредитом 30 дней при
9дней в 5-ти счетах срок пользования кредитом > 60 дней.

Ошибка выборки

т.е. с вероятность 0,954 можно утверждать, что срок пользования кредитом колеблется

1 в пределах 30дн.+(-)2дня, т.е.

2 доли кредитов со сроком > 60дней.

выборочная доля составит

ошибку доли определим

с вероятностью 0,954 можно утверждать, что доля кредитов в банке со сроком пользования >60дней будет находиться в пределах

Типическая выборка.

Генеральная совокупность разделяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность

Например: пр. тр. работников, состоящих из отдельных групп по квалификации.

Важная особенность – дает более точные результаты по сравнению с другими, т.к. в выборке участвует типологическая единица.

Отбор единиц наблюдения в выборочную совокупность производится различными методами. Рассмотрим типическую выборку с пропорциональным отбором внутри типических групп.

Объем выборки из типической группы при отборе пропорциональном численности типических групп, определяется по формуле

где =V выборки из типической группы

= V типической группы.

Предельная ошибка выборочной средней и доли при бесповторном случайном и механическом способе отбора внутри типических групп рассчитывается по формулам


где =дисперсия выборочной совокупности

Пример: типическая выборка

Для определения среднего возраста мужчин, вступающих в брак, в районе была произведена 5% выборка с отбором единиц пропорционально численности типических групп

Внутри групп применялся механический отбор

С вероятностью 0,954 определить пределы в которых будут находиться средний возраст мужчин, вступивших в брак, и долю мужчин, вступивших в брак вторично.

средний возраст вступают в брак мужчины в выборочной совокупности

предельная ошибка выборки

с вероятностью 0,954 можно утверждать, что средний возраст мужчин, вступающих в брак, будет находиться в пределах

для мужчин, вступающих во второй брак находиться в пределах

выборочная доля определяется

выборочная дисперсия альтернативного признака равна

с вероятностью 0,954 можно утверждать, что доля вступающих в брак во второй раз находится в пределах

Серийная выборка.

При серийной выборке совокупность делят на одинаковые по объему группы – серии. Выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию.

При бесповторном отборе иопределяют по формуле

где
- межсерийная дисперсия

где
выборочная средняя серии

выборочная средняя серийной выборки

R- число серий генеральной совокупности

r- число отобранных серий

Пример: в цехе 10 бригад с целью изучения их производительности труда будет осуществлена 20% серийная выборка, в которую попали 2 бригады. В результате обследования установлено, что

с вероятностью 0,997 определить пределы, в которых будет находиться средняя выработка рабочих цеха.

выборочная средняя серийной выборки определяется по формуле

с вероятностью 0,997 можно утверждать, что средняя выработка рабочих цеха находится в пределах

На складе готовой продукции цеха находятся 200 ящиков деталей по 40 штук в каждом ящике. Для проверки качества готовой продукции будет произведена 10% серийная выборка. В результате выборки установлено, что для бракованных деталей составляет 15%. Дисперсия серийной выборки равна 0,0049.

С вероятностью 0,997 определить пределы, в которых находится доля бракованной продукции в партии ящиков

Доля бракованных деталей будет находиться в пределах

определим предельную ошибку выборки для доли по формуле

с вероятностью 0,997 можно утверждать, что доля бракованных деталей

в партии находится в пределах

В практике проектирования выборочного наблюдения возникает потребность нахождении численности выборки, которая необходима для обеспечения определенной точности расчета генеральных характеристик - средней и доли.

Предельная ошибка выборки, вероятность ее появления и вариация признака предварительно известны.

При случайном повторном отборе численность выборки определяется по формуле

при случайном бесповторном и механическом отборе численность выборки

для типической выборки

для серийной выборки

Пример в районе проживает 2000 семей.

Предполагается провести их выборочное обследование методом случайного бесповторного отбора для нахождения среднего размера семьи.

Определить необходимую численность выборки при условии, что с вероятностью 0,954 ошибка выборки не превысит 1 человека при среднем квадратическом отклонении 3 человека.

В городе проживает 10тыс. семей. С помощью механической выборки предлагается определить долю семей с тремя детьми и более. Какова должна быть численность выборки, чтобы с вероятностью Р=0,954 ошибка выборки не превышала 0,02, если на основе предыдущих обследований известно, что дисперсия равна 0,02?

План:

1. Задачи математической статистики.

2. Виды выборок.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика - это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

2. Виды выборок

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Пример:

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

Присоставлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку , при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку , при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Пример:

В американском журнале «Литературное обозрение» с помощью статистическихметодов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

3. Способы отбора

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный ; б) простой случайный повторный ).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор ; б) механический отбор ; в) серийный отбор ).

Простым случайным называют такой отбор , при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор , при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор , при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор , при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x 1 –наблюдалось раз, x 2 -n 2 раз,… x k - n k раз. n = n 1 +n 2 +...+n k – объем выборки. Наблюдаемые значения называются вариантами , а последовательность вариант, записанных в возрастающем порядке- вариационным рядом . Числа наблюдений называются частотами (абсолютными частотами) , а их отношения к объему выборки - относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

x i
x 1
x 2

x k
n i
n 1
n 2

n k

Аналогично можно представить точечный вариационный ряд относительных частот.

Причем:

Пример:

Число букв в некотором тексте Х оказалось равным 1000. Первой встретиласьбуква «я», второй- буква «и», третьей- буква «а», четвертой- «ю». Затем шли буквы«о», «е», «у», «э», «ы».

Выпишем места, которые они занимают в алфавите, соответственно имеем: 33, 10, 1, 32, 16, 6, 21, 31, 29.

После упорядочения этих чисел по возрастанию получаем вариационный ряд: 1, 6, 10, 16, 21, 29, 31, 32, 33.

Частоты появления букв в тексте: «а» - 75, «е» -87, «и»- 75, «о»- 110, «у»- 25, «ы»- 8, «э»- 3, «ю»- 7, «я»- 22.

Составим точечный вариационный ряд частот:

Пример:

Задано распределение частот выборки объема n = 20.

Составьте точечный вариационный ряд относительных частот.

x i

2

6

12

n i

3

10

7

Решение:

Найдем относительные частоты:


x i

2

6

12

w i

0,15

0,5

0,35

При построении интервального распределения существуют правилавыбора числа интервалов или величины каждого интервала. Критерием здесь служит оптимальное соотношение: при увеличении числа интервалов улучшается репрезентативность, но увеличивается объем данных и время на их обработку. Разность x max - x min между наибольшим и наименьшим значениями вариант называют размахом выборки.

Для подсчета числа интервалов k обычно применяют эмпирическую формулу Стреджесса (подразумевая округление до ближайшего удобного целого): k = 1 + 3.322 lg n .

Соответственно, величину каждого интервала h можно вычислить по формуле :

5. Эмпирическая функция распределения

Рассмотрим некоторую выборку из генеральной совокупности. Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: n x – число наблюдений, при которых наблюдалось значение признака, меньшее х; n общее число наблюдений (объем выборки). Относительная частота события Х<х равна n x /n . Если х изменяется, то изменяется и относительная частота, т.е. относительная частота n x /n - есть функция от х. Т.к. она находится эмпирическим путем, то она называется эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию , определяющую для каждого х относительную частоту события Х<х.


где число вариант, меньших х,

n - объем выборки.

В отличие от эмпирической функции распределения выборки, функцию распределения F (x ) генеральной совокупности называют теоретической функцией распределения .

Различие между эмпирической и теоретической функциями распределения состоит в том, что теоретическая функция F (x ) определяет вероятность события ХF*(x) стремится по вероятности к вероятности F (x ) этого события. Т.е.при большом n F*(x) и F (x ) мало отличаются друг от друга.

Т.о. целесообразно использовать эмпирическую функцию распределения выборки для приближенного представления теоретической (интегральной) функции распределения генеральной совокупности.

F*(x) обладает всеми свойствами F (x ).

1. ЗначенияF*(x) принадлежат интервалу .

2. F*(x) - неубывающая функция.

3. Если – наименьшая варианта, тоF*(x) = 0, при х< x 1 ; если x k – наибольшая варианта, то F*(x) = 1, при х > x k .

Т.е. F*(x) служит для оценки F (x ).

Если выборка задана вариационным рядом, то эмпирическая функция имеет вид:

График эмпирической функции называется кумулятой.

Пример:

Постройте эмпирическую функцию по данному распределению выборки.


Решение:

Объем выборки n = 12 + 18 +30 = 60. Наименьшая варианта 2, т.е. при х < 2. Событие X <6, (x 1 = 2) наблюдалось 12 раз, т.е. F*(x)=12/60=0,2 при 2 < x < 6. Событие Х<10, (x 1 =2, x 2 = 6) наблюдалось 12 + 18 = 30 раз, т.е.F*(x)=30/60=0,5 при 6 < x < 10. Т.к. х=10 наибольшая варианта, тоF*(x) = 1 при х>10. Искомая эмпирическая функция имеет вид:

Кумулята:


Кумулята дает возможность понимать графически представленную информацию, например, ответить на вопросы: «Определите число наблюдений, при которых значение признака было меньше 6 или не меньше 6. F*(6) =0,2 » Тогда число наблюдений, при которых значение наблюдаемого признака было меньше 6 равно 0,2* n = 0,2*60 = 12. Число наблюдений, при которых значение наблюдаемого признака было не меньше 6 равно (1-0,2)* n = 0,8*60 = 48.

Если задан интервальный вариационный ряд, то для составления эмпирической функции распределения находят середины интервалов и по ним получают эмпирическую функцию распределения аналогично точечному вариационному ряду.

6. Полигон и гистограмма

Для наглядности строят различные графики статистического распределения: полином и гистограммы

Полигон частот- это ломаная, отрезки которой соединяют точки ( x 1 ;n 1 ), ( x 2 ;n 2 ),…, ( x k ; n k ), где – варианты, – соответствующие им частоты.

Полигон относительных частот- это ломаная, отрезки которой соединяют точки ( x 1 ;w 1 ), (x 2 ;w 2 ),…, ( x k ;w k ), гдеx i –варианты, w i – соответствующие им относительные частоты.

Пример:

Постройте полином относительных частот по данному распределению выборки:

Решение:

В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для кажд ого частичного интервала n i – сумму частот вариант, попавших в i -ый интервал. (Например, при измерении роста человека или веса, мы имеем дело с непрерывным признаком).

Гистограмма частот- это ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиною h , а высоты равны отношению (плотность частот).

Площадь i -го частичного прямоугольника равна- сумме частот вариант i - го интервала, т.е. площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

Пример:

Даны результаты изменения напряжения (в вольтах) в электросети. Составьте вариационный ряд, постройте полигон и гистограмму частот, если значения напряжения следующие: 227, 215, 230, 232, 223, 220, 228, 222, 221, 226, 226, 215, 218, 220, 216, 220, 225, 212, 217, 220.

Решение:

Составим вариационный ряд. Имеем n = 20, x min =212, x max =232 .

Применим формулу Стреджесса для подсчета числа интервалов.

Интервальный вариационный ряд частот имеет вид:


Плотность частот

212-21 6

0,75

21 6-22 0

0,75

220-224

1,75

224-228

228-232

0,75

Построим гистограмму частот:

Построим полигон частот, найдя предварительно середины интервалов:


Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которыхслужат частичные интервалы длиною h , а высоты равны отношению w i /h (плотность относительной частоты).

Площадь i -го частичного прямоугольника равна- относительной частоте вариант, попавших в i - ый интервал. Т.е. площадь гистограммы относительных частот равна сумме всех относительных частот, т.е. единице.

7. Числовые характеристики вариационного ряда

Рассмотрим основные характеристики генеральной и выборочной совокупностей.

Генеральным средним называется среднее арифметическое значений признака генеральной совокупности.

Для различных значений x 1 , x 2 , x 3 , …, x n . признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то


Выборочным средним называется среднее арифметическое значений признака выборочной совокупности.

Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Пример:

Вычислите выборочное среднее для выборки: x 1 = 51,12; x 2 = 51,07;x 3 = 52,95; x 4 =52,93;x 5 = 51,1;x 6 = 52,98; x 7 = 52,29; x 8 = 51,23; x 9 = 51,07; x 10 = 51,04.

Решение:

Генеральной дисперсией называется среднее арифметическое квадратов отклонений значений признака Х генеральной совокупности от генерального среднего.

Для различных значений x 1 , x 2 , x 3 , …, x N признака генеральной совокупности объема N имеем:

Если значения признака имеют соответствующие частоты N 1 +N 2 +…+N k =N , то

Генеральным среднеквадратическим отклонением (стандартом) называют квадратный корень из генеральной дисперсии

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений признака от среднего значения.

Для различных значений x 1 , x 2 , x 3 , …, x n признака выборочной совокупности объема n имеем:


Если значения признака имеют соответствующие частоты n 1 +n 2 +…+n k = n , то


Выборочным среднеквадратическим отклонением (стандартом) называется квадратный корень из выборочной дисперсии.


Пример:

Выборочная совокупность задана таблицей распределения. Найдите выборочную дисперсию.


Решение:

Теорема: Дисперсия равна разности среднего квадратов значений признака и квадрата общего среднего.

Пример:

Найдите дисперсию по данному распределению.



Решение:

8. Статистические оценки параметров распределения

Пусть генеральная совокупность исследуется по некоторой выборке. При этом можно получить лишь приближенное значение неизвестного параметра Q , который служит его оценкой. Очевидно, что оценки могут изменяться от одной выборки к другой.

Статистической оценкой Q * неизвестного параметра теоретического распределения называется функция f , зависящая от наблюдаемых значений выборки. Задачей статистического оценивания неизвестных параметров по выборке заключается в построении такой функции от имеющихся данных статистических наблюдений, которая давала бы наиболее точные приближенные значения реальных, не известных исследователю, значений этих параметров.

Статистические оценки делятся на точечные и интервальные, в зависимости от способа их предоставления (числом или интервалом).

Точечной называют статистическую оценку параметра Q теоретического распределения определяемую одним значением параметра Q *=f (x 1 , x 2 , ..., x n), где x 1 , x 2 , ..., x n - результаты эмпирических наблюдений над количественным признаком Х некоторой выборки.

Такие оценки параметров, полученные по разным выборкам, чаще всего отличаются друг от друга. Абсолютная разность /Q *-Q / называют ошибкой выборки (оценивания).

Для того, чтобы статистические оценки давали достоверные результаты об оцениваемых параметрах, необходимо, чтобы они были несмещенными, эффективными и состоятельными.

Точечная оценка , математическое ожидание которой равно (не равно) оцениваемому параметру, называется несмещенной (смещенной) . М(Q *)=Q .

Разность М(Q *)-Q называют смещением или систематической ошибкой . Для несмещенных оценок систематическая ошибка равна 0.

Эффективной оценку Q *, которая при заданном объеме выборки n имеет наименьшую возможную дисперсию: D min (n = const ). Эффективная оценка имеет наименьший разброс по сравнению с другими несмещенными и состоятельными оценками.

Состоятельной называют такую статистическую оценку Q *, которая при n стремится по вероятности к оцениваемому параметру Q , т.е. при увеличении объема выборки n оценка стремится по вероятности к истинному значению параметра Q .

Требование состоятельности согласуется с законом больших числе: чем больше исходной информации об исследуемом объекте, тем точнее результат. Если объем выборки мал, то точечная оценка параметра может привести к серьезным ошибкам.

Любую выборку (объема n ) можно рассматривать как упорядоченный набор x 1 , x 2 , ..., x n независимых одинаково распределенных случайных величин.

Выборочные средние для различных выборок объема n из одной и той же генеральной совокупности будут различны. Т. е. выборочное среднее можно рассматривать как случайную величину, а значит, можно говорить о распределении выборочного среднего и его числовых характеристиках.

Выборочное среднее удовлетворяет всем накладываемым к статистическим оценкам требованиям, т.е. дает несмещенную, эффективную и состоятельную оценку генерального среднего.

Можно доказать, что . Таким образом, выборочная дисперсия является смещенной оценкой генеральной дисперсии, давая ее заниженное значение. Т. е. при небольшом объеме выборки она будет давать систематическую ошибку. Для несмещенной, состоятельной оценки достаточно взять величину , которую называют исправленной дисперсией. Т. е.

На практике для оценки генеральной дисперсии применяют исправленную дисперсию при n < 30. В остальных случаях (n >30) отклонение от малозаметно. Поэтому при больших значениях n ошибкой смещения можно пренебречь.

Можно так же доказать,что относительная частота n i / n является несмещенной и состоятельной оценкой вероятности P (X =x i ). Эмпирическая функция распределения F *(x ) является несмещенной и состоятельной оценкой теоретической функции распределения F (x )= P (X < x ).

Пример:

Найдите несмещенные оценки математического ожиданияи дисперсии по таблице выборки.

x i
n i

Решение:

Объем выборки n =20.

Несмещенной оценкой математического ожидания является выборочное среднее.


Для вычисления несмещенной оценки дисперсии сначала найдем выборочную дисперсию:

Теперь найдем несмещенную оценку:

9. Интервальные оценки параметров распределения

Интервальной называется статистическая оценка, определяемая двумя числовыми значениями- концами исследуемого интервала.

Число > 0, при котором | Q - Q *|< , характеризует точность интервальной оценки.

Доверительным называется интервал , который с заданной вероятностью покрывает неизвестное значение параметра Q . Дополнение доверительного интервала до множества всех возможных значений параметра Q называется критической областью . Если критическая область расположена только с одной стороны от доверительного интервала, то доверительный интервал называется односторонним: левосторонним , если критическая область существует только слева, и правосторонним- если только справа. В противном случае, доверительный интервал называется двусторонним .

Надежностью, или доверительной вероятностью, оценки Q (с помощью Q *) называют вероятность, с которой выполняется следующее неравенство: | Q - Q *|< .

Чаще всего доверительную вероятность задают заранее (0,95; 0,99; 0,999) и на нее накладывают требование быть близкой к единице.

Вероятность называют вероятностью ошибки, или уровнем значимости.

Пусть | Q - Q *|< , тогда . Это означает, что с вероятностью можно утверждать, что истинное значение параметра Q принадлежит интервалу . Чем меньше величина отклонения , тем точнее оценка.

Границы (концы) доверительного интервала называют доверительными границами, или критическими границами.

Значения границ доверительного интервала зависят от закона распределения параметра Q *.

Величину отклонения равную половине ширины доверительного интервала, называют точностью оценки.

Методы построения доверительных интервалов впервые были разработаны американским статистом Ю. Нейманом. Точность оценки , доверительная вероятность и объем выборки n связаны между собой. Поэтому, зная конкретные значения двух величин, всегда можно вычислить третью.

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если известно среднеквадратическое отклонение.

Пусть произведена выборка из генеральной совокупности, подчиненной закону нормального распределения. Пусть известно генеральное среднеквадратическое отклонение , но неизвестно математическое ожидание теоретического распределения a ( ).

Справедлива следующая формула:

Т.е. по заданному значению отклонения можно найти, с какой вероятностью неизвестное генеральное среднее принадлежит интервалу . И наоборот. Из формулы видно, что при возрастании объема выборки и фиксированной величине доверительной вероятности величина - уменьшается, т.е. точность оценки увеличивается. С увеличением надежности (доверительной вероятности), величина -увеличивается, т.е. точность оценки уменьшается.

Пример:

В результате испытаний были получены следующие значения -25, 34, -20, 10, 21. Известно, что они подчиняются закону нормального распределения с среднеквадратическим отклонением 2. Найдите оценку а* для математического ожидания а. Постройте для него 90%-ый доверительный интервал.

Решение:

Найдем несмещенную оценку

Тогда


Доверительный интервал для а имеет вид: 4 – 1,47< a < 4+ 1,47 или 2,53 < a < 5, 47

Нахождение доверительного интервала для оценки математического ожидания нормального распределения, если неизвестно среднеквадратическое отклонение.

Пусть известно, что генеральная совокупность подчинена закону нормального распределения, где неизвестны а и . Точность доверительного интервала, покрывающего с надежностью истинное значение параметра а, в данном случае вычисляется по формуле:

, где n - объем выборки, , - коэффициент Стьюдента (его следует находить по заданным значениям n и из таблицы «Критические точки распределения Стьюдента»).

Пример:

В результате испытаний были получены следующие значения -35, -32, -26, -35, -30, -17. Известно, что они подчиняются закону нормального распределения. Найдите доверительный интервал для математического ожидания а генеральной совокупности с доверительной вероятностью 0,9.

Решение:

Найдем несмещенную оценку .

Найдем .

Тогда

Доверительный интервал примет вида (-29,2 - 5,62; -29,2 + 5,62) или (-34,82; -23,58).

Нахождение доверительного интерла для дисперсии и среднеквадратического отклонения нормального распределения

Пусть из некоторой генеральной совокупности значений, распределенной по нормальному закону, взята случайная выборка объема n < 30, для которой вычислены выборочные дисперсии: смещенная и исправленная s 2 . Тогда для нахождения интервальных оценок с заданной надежностью для генеральной дисперсии D генерального среднеквадратического отклонения используются следующие формулы.


или ,

Значения - находят с помощью таблицы значений критических точек распределения Пирсона.

Доверительный интервал для дисперсии находится из этих неравенств путем возведения всех частей неравенства в квадрат.

Пример:

Было проверено качество 15 болтов. Предполагая, что ошибка при их изготовлении подчинена нормальному закону распределения, причем выборочное среднеквадратическое отклонение равно 5 мм, определить с надежностью доверительный интервал для неизвестного параметра

Границы интервала представим в виде двойного неравенства:

Концы двустороннего доверительного интервала для дисперсии можно определить и без выполнения арифметических действий по заданному уровню доверия и объему выборки с помощью соответствующей таблицы (Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности). Для этого полученные из таблицы концы интервала умножают на исправленную дисперсию s 2 .

Пример:

Решим предыдущую задачу другим способом.

Решение:

Найдем исправленную дисперсию:

По таблице «Границы доверительных интервалов для дисперсии в зависимости от числа степеней свободы и надежности» найдем границы доверительного интервала для дисперсии при k =14 и : нижняя граница 0,513 и верхняя 2,354.

Умножим полученные границы на s 2 и извлечем корень (т.к. нам нужен доверительный интервал не для дисперсии, а для среднеквадратического отклонения).

Как видно из примеров, величина доверительного интервала зависит от способа его построения и дает близкие между собой, но неодинаковые результаты.

При выборках достаточно большого объема (n >30) границы доверительного интервала для генерального среднеквадратического отклонения можно определить по формуле: - некоторое число, которое табулировано и приводится в соответствующей справочной таблице.

Если 1- q <1, то формула имеет вид:

Пример:

Решим предыдущую задачу третьим способом.

Решение:

Ранее было найдено s = 5,17. q (0,95; 15) = 0,46 – находим по таблице.

Тогда:

Статистическая совокупность - множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 9.2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 9.5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 9.5 Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.

Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно . Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением, например, дегустация, испытание кирпичей на прочность и т.п.

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку , а весь их массив - генеральную совокупность (ГС). При этом число единиц в выборке обозначают n , а во всей ГС - N . Отношение n/N называется относительный размер или доля выборки .

Качество результатов выборочного наблюдения зависит от репрезентативности выборки , то есть от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц , который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая.

Существует 4 способа случайного отбора в выборку:

  1. Собственно случайный отбор или «метод лото», когда статистическим величинам присваиваются порядковые номера, заносимые на определенные предметы (например, бочонки), которые затем перемешиваются в некоторой емкости (например, в мешке) и выбираются наугад. На практике этот способ осуществляют с помощью генератора случайных чисел или математических таблиц случайных чисел.
  2. Механический отбор, согласно которому отбирается каждая (N/n )-я величина генеральной совокупности. Например, если она содержит 100 000 величин, а требуется выбрать 1 000, то в выборку попадет каждая 100 000 / 1000 = 100-я величина. Причем, если они не ранжированы, то первая выбирается наугад из первой сотни, а номера других будут на сотню больше. Например, если первой оказалась единица № 19, то следующей должна быть № 119, затем № 219, затем № 319 и т.д. Если единицы генеральной совокупности ранжированы, то первой выбирается № 50, затем № 150, затем № 250 и так далее.
  3. Отбор величин из неоднородного массива данных ведется стратифицированным (расслоенным) способом, когда генеральная совокупность предварительно разбивается на однородные группы, к которым применяется случайный или механический отбор.
  4. Особый способ составления выборки представляет собой серийный отбор, при котором случайно или механически выбирают не отдельные величины, а их серии (последовательности с какого-то номера по какой-то подряд), внутри которых ведут сплошное наблюдение.

Качество выборочных наблюдений зависит и от типа выборки : повторная или бесповторная.
При повторном отборе попавшие в выборку статистические величины или их серии после использования возвращаются в генеральную совокупность, имея шанс попасть в новую выборку. При этом у всех величин генеральной совокупности одинаковая вероятность включения в выборку.
Бесповторный отбор означает, что попавшие в выборку статистические величины или их серии после использования не возвращаются в генеральную совокупность, а потому для остальных величин последней повышается вероятность попадания в следующую выборку.

Бесповторный отбор дает более точные результаты, поэтому применяется чаще. Но есть ситуации, когда его применить нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

Ошибки выборки

Выборочную совокупность можно сформировать по количественному признаку статистических величин, а также по альтернативному или атрибутивному. В первом случае обобщающей характеристикой выборки служит величина, обозначаемая , а во втором — выборочная доля величин, обозначаемая w . В генеральной совокупности соответственно: генеральная средняя и генеральная доля р .

Разности — и W р называются ошибкой выборки , которая делится на ошибку регистрации и ошибку репрезентативности . Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

Величина ошибки выборки может быть разной для разных выборок из одной генеральной совокупности, поэтому в статистике определяется средняя ошибка повторной и бесповторной выборки по формулам:

Повторная;

- бесповторная;

Где Дв - выборочная дисперсия .

Например, на заводе с численностью работников 1000 чел. проведена 5%-ая случайная бесповторная выборка с целью определения среднего стажа работников. Результаты выборочного наблюдения приведены в первых двух столбцах следующей таблицы:

X , лет
(стаж работы)

f , чел.
(число работников в выборке)

X и

X иf

В 3-м столбце определены середины интервалов X (как полусумма нижней и верхней границ интервала), а в 4-м столбце - произведения X И f для нахождения выборочной средней по формуле средней арифметической взвешенной :

143,0/50 = 2,86 (года).

Рассчитаем выборочную дисперсию взвешенную:
= 105,520/50 = 2,110.

Теперь найдем среднюю ошибку бесповторной выборки:
= 0,200 (лет).

Из формул средних ошибок выборки видно, что ошибка меньше при бесповторной выборке, и, как доказано в теории вероятностей, она возникает с вероятностью 0,683 (то есть если провести 1000 выборок из одной генеральной совокупности, то в 683 из них ошибка не превзойдет средней ошибки выборки). Такая вероятность (0,683) является невысокой, поэтому она мало пригодна для практических расчетов, где нужна более высокая вероятность. Чтобы определить ошибку выборки с более высокой, чем 0,683 вероятностью, рассчитывают предельную ошибку выборки :

Где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Значения коэффициента доверия t рассчитаны для разных вероятностей и имеются в специальных таблицах (интеграл Лапласа), из которых в статистике широко применяются следующие сочетания:

Вероятность 0,683 0,866 0,950 0,954 0,988 0,990 0,997 0,999
t 1 1,5 1,96 2 2,5 2,58 3 3,5

Задавшись конкретным уровнем вероятности, выбирают из таблицы соответствующую ей величину t и определяют предельную ошибку выборки по формуле.
При этом чаще всего применяют = 0,95 и t = 1,96, то есть считают, что с вероятностью 95% предельная ошибка выборки в 1,96 раза больше средней. Такая вероятность (0,95) считается стандартной и применяется по умолчанию в расчетах.

В нашем , определим предельную ошибку выборки при стандартной 95%-ой вероятности (из берем t = 1,96 для 95%-ой вероятности): = 1,96*0,200 = 0,392 (года).

После расчета предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности . Такой интервал для генеральной средней величины имеет вид
То есть средний стаж работников на всем заводе лежит в интервале от 2,468 года до 3,252 года.

Определение численности выборки

Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя и в и, решая ее относительно численности выборки, получим следующие формулы:
для повторной выборки n =
для бесповторной выборки n = .

Кроме того, при статистических величинах с количественными признаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из следующих способов (в приоритетном порядке):

При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0,5, что по формуле дисперсии доли соответствует выборочной дисперсии в максимальном размере Дв = 0,5*(1-0,5) = 0,25.