2 чему равен центральный и вписанный угол. Окружность и вписанный угол

В этой статье я расскажу как решать задачи, в которых используются .

Сначала, как обычно, вспомним определения и теоремы, которые нужно знать, чтобы успешно решать задачи на .

1. Вписанный угол - это угол, вершина которого лежит на окружности, а его стороны пересекают окружность:

2. Центральный угол - это угол, вершина которого совпадает с центром окружности:

Градусная величина дуги окружности измеряется величиной центрального угла, который на нее опирается.

В данном случае градусная величина дуги АС равна величине угла АОС.

3. Если вписанный и центральный угол опираются на одну дугу, то величина вписанного угла в два раза меньше центрального :

4. Все вписанные углы, которые опираются на одну дугу, равны между собой:

5. Вписанный угол, опирающийся на диаметр, равен 90°:

Решим несколько задач.

1 . Задание B7 (№ 27887)

Найдем величину центрального угла, который опирается на ту же дугу:

Очевидно, что величина угла АОС равна 90°, следовательно, угол АВС равен 45°

Ответ: 45°

2 .Задание B7 (№ 27888)

Найдите величину угла ABC. Ответ дайте в градусах.

Очевидно, что угол АОС равен 270°, тогда угол АВС равен 135°.

Ответ: 135°

3 . Задание B7 (№ 27890)

Найдите градусную величину дуги AC окружности, на которую опирается угол ABC. Ответ дайте в градусах.

Найдем величину центрального угла, который опирается на дугу АС:

Величина угла АОС равна 45°, следовательно, градусная мера дуги АС равна 45°.

Ответ: 45°.

4 . Задание B7 (№ 27885)

Найдите угол ACB, если вписанные углы ADB и DAE опираются на дуги окружности, градусные величины которых равны соответственно и . Ответ дайте в градусах.

Угол ADB опирается на дугу АВ, следовательно, величина центрального угла АОВ равна 118°, следовательно, угол BDA равен 59°, и смежный ему угол ADC равен 180°-59°=121°

Аналогично, угол DOE равен 38° и соответствующий вписанный угол DAE равен 19°.

Рассмотрим треугольник ADC:

Сумма углов треугольника равна 180°.

Величина угла АСВ равна 180°- (121°+19°)=40°

Ответ: 40°

5 . Задание B7 (№ 27872)

Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно , , и . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

Угол В опирается на дугу АDC, величина которой равна сумме величин дуг AD и CD, то есть 71°+145°=216°

Вписанный угол В равен половине величины дуги ADC, то есть 108°

Ответ: 108°

6 . Задание B7 (№ 27873)

Точки A, B, C, D, расположенные на окружности, делят эту окружность на четыре дуги AB, BC, CD и AD, градусные величины которых относятся соответственно как 4:2:3:6 . Найдите угол A четырехугольника ABCD. Ответ дайте в градусах.

(см. чертеж предыдущей задачи)

Так как у нас дано отношение величин дуг, введем единичный элемент х. Тогда величины каждой дуги будут выражаться таким соотношением:

АВ=4х, ВС=2х, СD=3х, AD=6x. Все дуги образуют окружность, то есть их сумма равна 360°.

4х+2х+3х+6х=360°, отсюда х=24°.

Угол А опирается на дуги ВС и CD, которые в сумме имеют величину 5х=120°.

Следовательно, угол А равен 60°

Ответ: 60°

7 . Задание B7 (№ 27874)

Четырехугольник ABCD вписан в окружность. Угол ABC равен , угол CAD

Это угол, сформированный двумя хордами , берущими начало в одной точки окружности. О вписанном угле говорят, что он опирается на дугу, заключенную между его сторонами.

Вписанный угол равен половине дуги, на которую он опирается.

Говоря другими словами, вписанный угол включает в себе столько угловых градусов, минут и секунд, сколько дуговых градусов , минут и секунд заключено в половине дуги, на которую он опирается. Для обоснования проанализируем три случая:

Первый случай:

Центр O расположен на стороне вписанного угла ABС. Прочертив радиус AO, мы получим ΔABO, в нем OA = OB (как радиусы) и, соответственно, ∠ABO = ∠BAO. По отношению к этому треугольнику , угол AOС - внешний. И значит, он равен сумме углов ABO и BAO, или равен двойному углу ABO. Значит ∠ABO равен половине центрального угла AOС. Но этот угол измеряется дугой AC. То есть, вписанный угол ABС измеряется половиной дуги AC.

Второй случай:

Центр O расположен между сторонами вписанного угла ABС.Начертив диаметр BD, мы поделим угол ABС на два угла, из которых, по установленному в первом случае, один измеряется половиной дуги AD, а другой половиной дуги СD. И соответственно угол ABС измеряется (AD+DС) /2, т.е. 1 / 2 AC.

Третий случай:

Центр O расположен вне вписанного угла ABС. Начертив диаметр BD, мы будем иметь:∠ABС = ∠ABD - ∠CBD. Но углы ABD и CBD измеряются, на основании обоснованного ранее половинами дуг AD и СD. И так как ∠ABС измеряется (AD-СD)/2, то есть половиной дуги AC.

Следствие 1. Любые , опирающиеся на одну и ту же дугу одинаковы, то есть равны между собой. Поскольку каждый из них измеряется половиной одной и той же дуги .

Следствие 2. Вписанный угол , опирающийся на диаметр - прямой угол . Поскольку каждый такой угол измеряется половиной полуокружности и, соответственно, содержит 90°.

Чаще всего процесс подготовки к ЕГЭ по математике начинается с повторения основных определений, формул и теорем, в том числе и по теме «Центральный и вписанный в окружность угол». Как правило, данный раздел планиметрии изучается еще в средней школе. Неудивительно, что многие учащиеся сталкиваются с необходимостью повторения базовых понятий и теорем по теме «Центральный угол окружности». Разобравшись с алгоритмом решения подобных задач, школьники смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена.

Как легко и эффективно подготовиться к прохождению аттестационного испытания?

Занимаясь перед сдачей единого государственного экзамена, многие старшеклассники сталкиваются с проблемой поиска нужной информации по теме «Центральный и вписанный углы в окружности». Далеко не всегда школьный учебник имеется под рукой. А поиск формул в Интернете порой отнимает очень много времени.

«Прокачать» навыки и улучшить знания в таком непростом разделе геометрии, как планиметрия, вам поможет наш образовательный портал. «Школково» предлагает старшеклассникам и их преподавателям по-новому выстроить процесс подготовки к сдаче единого госэкзамена. Весь базовый материал представлен нашими специалистами в максимально доступной форме. Ознакомившись с информацией в разделе «Теоретическая справка», учащиеся узнают, какими свойствами обладает центральный угол окружности, как найти его величину и т. д.

Затем для закрепления полученных знаний и отработки навыков мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий на нахождение величины угла, вписанного в окружность, и других параметров представлена в разделе «Каталог». Для каждого упражнения наши специалисты прописали подробный ход решения и указали правильный ответ. Перечень задач на сайте постоянно дополняется и обновляется.

Готовиться к ЕГЭ, практикуясь в выполнении упражнений, к примеру, на нахождение величины центрального угла и длины дуги окружности, старшеклассники могут в онлайн-режиме, находясь в любом российском регионе.

При необходимости выполненное задание можно сохранить в разделе «Избранное», чтобы в дальнейшем вернуться к нему и еще раз разобрать принцип его решения.

Инструкция

Если известны радиус (R) круга и длина дуги (L), соответствующая искомому центральному углу (θ), рассчитать его можно как в градусах, так и в радианах. Полная определяется формулой 2*π*R и соответствует центральному углу в 360° или двум числам Пи, если вместо градусов использовать радианы. Поэтому исходите из пропорции 2*π*R/L = 360°/θ = 2*π/θ. Выразите из нее центральный угол в радианах θ = 2*π/(2*π*R/L) = L/R или градусах θ = 360°/(2*π*R/L) = 180*L/(π*R) и рассчитайте по полученной формуле.

По длине хорды (m), соединяющей точки , которые определяет центральный угол (θ), его величину тоже можно рассчитать, если известен радиус (R) круга. Для этого рассмотрите треугольник, образованный двумя радиусами и . Это равнобедренный треугольник, все известны, а найти нужно угол, лежащий напротив основания. Синус его половины равен отношению длины основания - хорды - к удвоенной длине боковой стороны - радиуса. Поэтому используйте для вычислений обратную синусу функцию - арксинус: θ = 2*arcsin(½*m/R).

Центральный угол может быть задан и в долях оборота или от развернутого угла. Например, если нужно найти центральный угол, соответствующей четверти полного оборота, разделите 360° на четверку: θ = 360°/4 = 90°. Эта же величина в радианах должна быть 2*π/4 ≈ 3,14/2 ≈ 1,57. Развернутый угол равен половине полного оборота, поэтому, например, центральный угол, соответствующий четверти от него будет вдвое меньше рассчитанных выше значений как в градусах, так и в радианах.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

Одной из распространенных геометрических задач является вычисление площади кругового сегмента - части круга, ограниченной хордой и соответствующей хорде дугой окружности.

Площадь кругового сегмента равна разности площади соответствующего кругового сектора и площади треугольника, образованного радиусами соответствующего сегменту сектора и хордой, ограничивающей сегмент.

Пример 1

Длина хорды, стягивающей окружность равна величине а. Градусная мера дуги, соответствующей хорде, равна 60°. Найти площадь кругового сегмента.

Решение

Треугольник, образованный двумя радиусами и хордой, является равнобедренным, поэтому высота, проведенная из вершины центрального угла на сторону треугольника, образованную хордой, будет также являться биссектрисой центрального угла, поделив его пополам и медианой, поделив пополам хорду. Зная, что синус угла в равен отношению противолежащего катета к гипотенузе, можно вычислить величину радиуса:

Sin 30°= a/2:R = 1/2;

Sc = πR²/360°*60° = πa²/6

Площадь соответствующего сектору треугольника вычисляется следующим образом:

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(R²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

Площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a²

Подставив числовое значение вместо величины a, можно с легкостью вычислить числовое значение площади сегмента.

Пример 2

Радиус окружности равен величине а. Градусная мера дуги, соответствующей сегменту, равна 60°. Найти площадь кругового сегмента.

Решение:

Площадь сектора, соответствующего заданному углу можно вычислить по следующей формуле:

Угол ABC - вписанный угол. Он опирается на дугу АС, заключённую между его сторонами (рис. 330).

Теорема . Вписанный угол измеряется половиной дуги, на которую он опирается.

Это надо понимать так: вписанный угол содержит столько угловых градусов, минут и секунд, сколько дуговых градусов, минут и секунд содержится в половине дуги, на которую он опирается.

При доказательстве этой теоремы надо рассмотреть три случая.

Первый случай. Центр круга лежит на стороне вписанного угла (рис. 331).

Пусть ∠ABC - вписанный угол и центр круга О лежит на стороне BC. Требуется доказать, что он измеряется половиной дуги AC.

Соединим точку A с центром круга. Получим равнобедренный \(\Delta\)AOB, в котором АО = OB, как радиусы одного и того же круга. Следовательно, ∠A = ∠B.

∠AOC является внешним по отношению к треугольнику AOB, поэтому ∠AOC = ∠А + ∠В, а так как углы А и В равны, то ∠В составляет 1 / 2 ∠AOC.

Но ∠AOC измеряется дугой АС, следовательно, ∠В измеряется половиной дуги АС.

Например, если \(\breve{AC}\) содержит 60°18’, то ∠В содержит 30°9’.

Второй случай. Центр круга лежит между сторонами вписанного угла (рис. 332).

Пусть ∠ABD - вписанный угол. Центр круга О лежит между его сторонами. Требуется доказать, что ∠ABD измеряется половиной дуги АD.

Для доказательства проведём диаметр BC. Угол ABD разбился на два угла: ∠1 и ∠2.

∠1 измеряется половиной дуги АС, а ∠2 измеряется половиной дуги СD, следовательно, весь ∠АВD измеряется 1 / 2 \(\breve{AC}\) + 1 / 2 \(\breve{CD}\), т. е. половиной дуги АD.

Например, если \(\breve{AD}\) содержит 124°, то ∠В содержит 62°.

Третий случай. Центр круга лежит вне вписанного угла (рис. 333).

Пусть ∠MAD - вписанный угол. Центр круга О находится вне угла. Требуется доказать, что ∠MAD измеряется половиной дуги MD.

Для доказательства проведём диаметр AB. ∠MAD = ∠MAB - ∠DAB. Но ∠MAB измеряется 1 / 2 \(\breve{MB}\), а ∠DAB измеряется 1 / 2 \(\breve{DB}\).

Следовательно, ∠MAD измеряется 1 / 2 (\(\breve{MB} - \breve{DB})\), т. е. 1 / 2 \(\breve{MD}\).

Например, если \(\breve{MD}\) содержит 48° 38", то ∠MAD содержит 24° 19’ 8".

Следствия
1. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой, так как они измеряются половиной одной и той же дуги (рис. 334, а).

2. Вписанный угол, опирающийся на диаметр, - прямой, так как он опирается на половину окружности. Половина окружности содержит 180 дуговых градусов, значит, угол, опирающийся на диаметр, содержит 90 угловых градусов (рис. 334, б).