Рт русскому языку 2 этап

Часть А

В каждом задании части А только один из предложенных вариантов ответов является правильным.
A1 . Автомобиль проходит по проселочной дороге 150 км за 4 ч , а оставшиеся 100 км − по шоссе за 1 ч . Cредняя скорость автомобиля в км/ч равна ... .
20 30 40 50 нет правильного ответа

A2 . При движении по оси x координата тела меняется по закону x = (2 + 3t) м, где t − время в секундах. Путь, пройденный телом за 3 с , равен ... м .
9 3 6 11 7

A3 . Если под действием силы 10 Н тело движется прямолинейно так, что зависимость координаты тела от времени x(t) дается уравнением x = A + Bt + Ct 2 , где A = 5 м ; B = 2 м/с ; С = 1 м/с 2 ; t − время в секундах, то масса тела равна ... кг .
3 8 5 11 нет правильного ответа

А4 . Шофер машины начинает тормозить в 25 м от препятствия. Коэффициент трения шин об асфальт 0,8 . При какой максимальной скорости (в км/ч) машина успеет остановиться перед препятствием?
20 10 54 36 72

А5 . Тело массой 2 кг свободно падает без начальной скорости с высоты 5 м на горизонтальную поверхность и отскакивает от нее со скоростью 5 м/с . Абсолютная величина изменения импульса тела при ударе равна (в кг.м/с).
20 30 40 15 25

А6 . Блин от штанги массой 10 кг лежит на полу. В центре блина укреплена пружина от эспандера жесткостью 500 Н/м . Если массой пружины пренебречь,а блин все время расположен горизонтально, то работа, совершенная для поднятия этого блина на высоту 1 м , равна ... Дж .
100 110 120 90 80

А7 . Если брусок массой 1 кг оказывает на горизонтальную подставку давление 200 Па , то площадь соприкосновения бруска с подставкой равна ... м 2 .
0,01 0,02 0,03 0,04 0,05

А8 . Вычислить в меганьютонах силу гидростатического давления на дно бассейна, если его площадь 120 м 2 , а глубина 1 м .
4,8 3,6 2,4 1,2 нет правильного ответа

А9 . Чтобы объем газа увеличился вдвое по сравнению с объемом при 0 °С , при постоянном давлении, его надо нагреть на ... K ?
273 К 300 К 373 К 330 К нет правильного ответа

А10 . Если в ходе изотермического расширения к одному молю идеального одноатомного газа подведено 43 Дж теплоты, то работа, совершенную газом равна ... Дж .
0 −43 43 34 нет правильного ответа

А11 . КПД кипятильника мощностью 0,5 кВт , нагревающего 250 г воды за 200 с от 20 °С до кипения, равен ... % .
48 56 22 42 84

А12 . Два одинаковых металлических шарика, заряд одного из которых первоначально равен −5 мкКл , соприкасаются и затем снова разводятся. Заряд одного из шариков после разведения равен 3 мкКл . Заряд второго шарика, до соприкосновения, равен ... мкКл .
2 −8 −2 8 11

А13 . Плоский воздушный конденсатор зарядили и отключили от источника, а затем погрузили в керосин, диэлектрическая проницаемость которого равна 2 . Отношение энергии, первоначально запасенной в конденсаторе, к конечной энергии равно ... .
1/4 4 1/2 2 нет правильного ответа

А14 . За первую секунду сила тока в проводнике равномерно увеличивается от нуля до 7 A , затем 1 c остается постоянной, а затем равномерно уменьшается до нуля за 1 c . Определите заряд (в Кл), прошедший через проводник за 3 c ?
14 7 21 11 нет правильного ответа

А15 . Амперметр с внутренним сопротивлением 2 Ом , подключенный к зажимам батареи, показывает силу тока 5 A . Вольтметр с внутренним сопротивлением 150 Ом , подключенный к зажимам такой же батареи, показывает 12 B . Сила тока короткого замыкания батареи (в мА) равна ... .
32000 27300 23700 26900 29600

А16 . Заряженная частица, пройдя ускоряющую разность потенциалов 15 В , влетела в магнитное поле с индукцией 0,5 Тл перпендикулярно силовым линиям поля. Отношение заряда частицы к ее массе, если она движется по окружности радиусом 10 см , равно ... .
10000 Кл/кг 11000 Кл/кг 12000 Кл/кг 13000 Кл/кг 14000 Кл/кг

А17 . Лодка качается на волнах, движущихся со скоростью 2,5 м/с . Период колебаний лодки, если расстояние между ближайшими гребнями волн равно 8 м , равно ... с .
1,6 3,2 1,8 3,6 нет правильного ответа

А18 . Котенок бежит по направлению к плоскому зеркалу со скоростью 1 м/с . Чему будет равно расстояние между котенком и его изображением в зеркале через 3 с , если вначале котенок находился на расстоянии 5 м от зеркала?
6 м 8 м 2 м 4 м нет правильного ответа

Часть Б

Если в результате вычислений получается не целое число, округлите его до целого, пользуясь правилами приближенных вычислений, в поле для ответа запишите округленное число. Единицы величин не пишите.
В1 . Конькобежец проходит 450 м с постоянной скоростью v , а затем тормозит до остановки с ускорением 0,5 м/с 2 . При некотором значении скорости v общее время движения конькобежца будет минимально? Это время равно... c.

В2 . Ледяная горка составляет с горизонтом угол α = 10° . По ней пускают вверх камень, который, поднявшись на некоторую высоту, соскальзывает по тому же пути вниз. Каков коэффициент трения μ , если время спуска в n = 2 раза больше времени подъема? Ответ приведите в виде 10 × μ .

B3 . В шар массой 440 г , висящий на легком стержне длиной 40 см , попадает и застревает в нем горизонтально летящая пуля массой 10 г . При какой минимальной скорости пули (в м/с), шар после этого совершит полный оборот в вертикальной плоскости?

В4 . В цилиндрическом сосуде площадью сечения 100 см 2 плавает в воде кусок льда, в который вморожен грузик из цинка массой 35 г . Определите на сколько миллиметров понизится уровень воды, когда лед растает? Плотность цинка 7000 кг/м 3 .

В5 . В ванну налили 50 л воды при температуре 80 °С и 120 л воды при температуре 20 °С . Если потери на нагревание окружающей среды составили 20 % отданной горячей водой теплоты, то конечная температура воды в ванне равна ... °С .

В6 . По тонкому кольцу радиусом 4 см равномерно распределен заряд 50 нКл . На оси кольца на расстоянии 3 см от его центра помещают частицу с зарядом −18 нКл и массой 1 мг и отпускают. Скорость частицы в тот момент, когда она будет пролетать через центр кольца, равна ... м/с .

В7 . Деталь нужно покрыть слоем хрома толщиной 500 мкм . Сколько времени (в мин) потребуется для покрытия, если норма плотности тока при хромировании 2 кА/м 2 ? Плотность хрома 7200 кг/м 3 .

B8 . Квадрат сделан из четырех проводников длиной 8 см и сопротивлением 4 Ом каждый. На расстоянии 1/4 длины проводника от одной из сторон, проводник замкнут перемычкой сопротивлением 1 Ом . Плоскость квадрата перпендикулярна однородному магнитному полю, изменяющемуся со скоростью 200 мТл/с . Определить силу тока (в мкА) текущего по перемычке.

В9 . Колебательный контур состоит из катушки индуктивностью 80 мкГн , конденсатора емкостью 100 пФ и резистора сопротивлением 0,5 Ом . Какую мощность (в мкВт) должен потреблять контур, чтобы в нем поддерживались незатухающие колебания, при которых максимальное напряжение на конденсаторе равно 4 B ?

B10 . На нижней поверхности плоскопараллельной пластинки с показателем преломления 1,5 нанесена царапина. Найти (в сантиметрах) толщину пластинки, если кажущееся положение царапины при рассмотрении по вертикали находится на 2 см ниже верхней поверхности. Для малых углов значения синусов и тангенсов считать равными.

B11 . При распаде нейтральной частицы образовались два фотона, движущиеся под углами 30 и 60° к направлению, в котором двигалась частица. Отношение частоты первого фотона к частоте второго равно ... .

В12 . Отношение скорости α -частицы, вылетающей при α -распаде из покоящегося ядра урана с массовым числом 232 , к скорости получившегося ядра равно ... .

Оставляйте вопросы и комментарии внизу под статьей

Вариант 1

Часть В

Задача В1. В момент начала отсчета времени два тела начали двигаться из одной точки вдоль оси . Если зависимости проекций скоростей движения тел от времени имеют вид , где , и , где , то тела встретятся через промежуток времени , равный … с..

Решение.

Для решения данной задачи необходимо определить зависимость от времени не проекций скоростей тел, а их координат и . Тогда для определения момента встречи нужно будет решить уравнение , ведь в момент встречи координаты тел совпадут.

Для нахождения зависимости координат тел от времени заметим, что зависимость проекций скоростей тел от времени является линейной функцией. Как должно быть известно из школьного курса физики, такой вид зависимости скорости от времени возникает при равноускоренном движении.

Таким образом, A и C ― это проекции начальных скоростей движения тел на ось Ox , а B и D ― это проекции ускорений движения тел.

Выберем начало координат там, где тела находятся в начальный момент времени (по условию задачи тела начинают двигаться из одной точки). Тогда уравнения движения тел имеют вид:

Найдем момент встречи тел, решив уравнение

Первый корень – это начальный момент времени, в который тела находились в одной точки по условию. Второй корень t = 30 c как раз и определяет тот момент времени, когда тела встретятся снова.

Ответ: 30.

Задача В2. Дирижабль летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены сила Архимеда и сила сопротивления воздуха , действующая на дирижабль. Если сила тяги двигателей дирижабля направлена горизонтально, а модуль этой силы , то масса m дирижабля равна … т.

Решение.

Изобразим на чертеже силу тяги и силу тяжести . Пока что мы не знаем модули этих сил, поэтому масштаб при их изображении не соблюдаем.


Запишем для дирижабля уравнение второго закона Ньютона:

Так как по условию задачи дирижабль летит с постоянной скоростью и в одном направлении, то движение дирижабля является равномерным и прямолинейным, а значит, .

Тогда уравнение второго закона Ньютона принимает вид:

.

Запишем это уравнение в проекциях на оси координат:

Из записанных уравнений следует, что

В то же время, из рисунка видно, что , так как занимает пять клеточек, а ― одну.

Ответ: 5

Задача В3. На гидроэлектростанции с высоты ежесекундно падает воды. Если полезная мощность электростанции , то коэффициент полезного действия электростанции равен … %.

Решение.

Рассмотрим работу станции в течение некоторого промежутка времени t .

Электростанция получает энергию за счет падающей воды. Вода совершает работу за счет того, что ее потенциальная энергия под действием силы тяжести преобразуется в кинетическую. Это затраченная работа, то есть та работа, которую совершила сила тяжести для приведения турбин электростанции в движение. Она равна потенциальной энергии воды, находящейся на высоте h :

Где M ― это масса всей воды, упавшей на лопасти турбин электростанции за время t . Так как в единицу времени на станцию падает вода массы m , то M = mt.

Затраченная мощность:

Тогда КПД станции по определению:

Во ответ записываем округленное до целого числа значение, то есть 63.

Ответ: 63.

Задача В4. Два тела массами и , модули скоростей которых одинаковы , двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой , то количество теплоты , выделившееся при столкновении, равно … Дж .

Решение.

Столкновения, после которых тела движутся как единое целое называются абсолютно неупругими. При таких столкновениях механическая энергия системы не сохраняется, так как часть энергии при ударе переходит в тепло. Однако полная энергия сохраняется всегда, поэтому для абсолютно неупругого столкновения двух тел закон сохранения полной энергии может быть записан следующим образом:

, где ― кинетические энергии тел перед столкновением, ― кинетическая энергия единого тела, которое образуется в результате упругого удара, ― количество теплоты, выделившееся в результате столкновения.

Из записанного уравнения закона сохранения энергии можно найти выделившееся количество теплоты:

.

Так как после столкновения масса образовавшегося тела равна , а скорость известна, то кинетическая энергия единого тела после столкновения равна:

.

Скорости же тел до столкновения нам неизвестны. Для их нахождения воспользуемся законом сохранения импульса, который выполняется даже при неупругих столкновениях!

Запишем закон сохранения импульса для нашего случая:

Не смотря на то, что модули скоростей двух тел равны до столкновения , как векторные величины эти скорости различны, так как направлены перпендикулярно друг другу. Рисунок ниже поясняет, как составляется уравнение закона сохранения импульса в векторной форме.


Векторной записи закона сохранения импульса соответствует графическое сложение векторов, которое изображено на рисунке. На основании теоремы Пифагора можем записать:

Здесь уже можно учесть, что :

.

Теперь у нас есть все необходимое, чтобы найти выделившееся при ударе количество теплоты:


Ответ: 336.

Задача В5. В баллоне находился идеальный газ массой . После того как из баллона выпустили некоторую массу газа и понизили абсолютную температуру оставшегося газа так, что она стала на меньше первоначальной, давление газа в баллоне уменьшилось на . Масса газа в конечном состоянии равна … г.

Решение.

Запишем уравнение Менделеева-Клапейрона для газа в баллоне до выпускания и после.

До выпускания газа имеем:

После выпускания:

При записи уравнений мы учли, что молярная масса газа остается неизменной, так как газ тот же, объем газа также остается неизменным, так как баллон не меняют, а вот давление и температура газа изменяются до некоторых новых значений и .

Так как абсолютную температуру газа понизили на , то

При этом новое давление газа:

В последних двух выражениях , то есть мы от процентов перешли к долям.

Тогда для двух состояний газа получаем:

.

Разделим второе уравнение на первое:

Подставляем численные значения:

.

Ответ: 525.

Задача В6. Воздух при прохождении через электрический фен нагревается от температуры до . Если мощность, потребляемая феном, , то масса m воздуха, проходящего через фен за промежуток времени , равна … кг.

Решение.

Будем считать, что вся мощность, потребляемая феном, идет на нагрев воздуха (часть мощности расходуется на вращение вентилятора, излучение, трение в подшипнике вентилятора и др.). Тогда за время фен сообщает воздуху количество теплоты .

Если m ― масса воздуха, прошедшая через фен за время , то

.

Переводим единицы измерения:

Подставляем значения в формулу:

Ответ: 15.

Задача В7. .При изотермическом расширении идеального одноатомного газа, количество вещества которого постоянно, сила давления газа совершила работу . Если при последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении, то работа , совершенная силой давления газа при изобарном нагревании равна … Дж.

Решение.

Рассмотрим процесс изотермического расширения газа. Так как температура при изотермическом процессе остается постоянной, то изменения внутренней энергии газа не происходит.

Запишем для газа уравнение первого начала термодинамики при изотермическом расширении:

Для изобарного нагревания уравнение первого начала термодинамики имеет вид:

Где ― количество теплоты, сообщенное газу при изобарном нагревании, ― изменение внутренней энергии газа при изобарном нагревании, ― работа, совершенная газом.

Пусть при изобарном нагревании объем газа увеличивается от до , а температура увеличивается от до , давление газа при этом остается постоянным и равным .

Тогда изменение внутренней энергии газа (газ одноатомный):

Работа, совершаемая газом, равна:

Для двух состояний газа с температурами и запишем уравнения Менделеева-Клапейрона:

Тогда уравнение первого начала термодинамики принимает вид:

Отсюда находим :

Ответ: 800.

Задача В8. Абсолютный показатель преломления рубина . Если длина световой волны в рубине , то частота v этой волны равна … ТГц.

Решение.

Пусть ― скорость света в рубине, тогда частота световой волны:

Скорость световой волны в веществе меньше скорости света в вакууме в n раз, где n ― показатель преломления вещества.

В нашем случае .

Тогда частота световой волны:

Ответ: 467.

Задача В9. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R , а внутреннее сопротивление источника тока пренебрежимо мало. Если до замыкания ключа К идеальный амперметр показывал силу тока , то после замыкания ключа К амперметр покажет силу тока , равную … мА.

Решение.

Данная задача является типичным примером задачи на расчет разветвленных электрических цепей постоянного тока. Как показывает практика, школьники зачастую испытывают определенные трудности при расчете таких цепей, хотя ничего сложного в таких задачах нет: главное четко знать свойства последовательного и параллельного соединений резисторов и уметь применять метод свертывания электрических цепей . Рассмотрим подробнее, что такое метод свертывания и как он работает на примере данной задачи.

1) Изобразим цепь до замыкания ключа, при этом на схеме уберем все лишнее: сам ключ и амперметр.

Обозначим на схеме искомый ток . Это как раз тот ток, который показывал бы амперметр.


Метод свертывания электрических цепей состоит в том, чтобы шаг за шагом сворачивать цепь, заменяя последовательные или параллельные соединения нескольких резисторов одним общим резистором

Итак, сначала заменим три последовательно соединенных резистора сопротивлением R каждый на один общий резистор сопротивлением 3R .

Обратите внимание, что данное преобразование никак не влияет на искомый ток .

Изобразим проведенные преобразования:


Полученная схема содержит два резистора, соединенных последовательно. Их общее сопротивление:

Изобразим соответствующее преобразование:


В итоге мы получили простейшую электрическую цепь, содержащую один резистор и один источник. Ток в этой цепи находим с помощью закона Ома для полной цепи (внутренним сопротивление источника пренебрегаем на основании условия задачи):

2) Теперь замкнем ключ. После замыкания ключа резистор R , находящийся левее ключа, можно исключить из схемы, так как ток через этот резистор не потечет.

После исключение этого резистора процесс свертывания можно повторить, как в пункте 1) и прийти к простейшей электрической цепи с сопротивлением .

Ток в цепи равен:

.

Найдем отношение токов, рассчитанных в п. 1) и 2):

Ответ: 35.

Замечания.

1. Научитесь четко выделять последовательно и параллельно соединенные резисторы. Очень часто школьники делают ошибки при выделении этих типов соединений (см. рис.).



2. Параллельное и последовательное соединения не исчерпывают всех возможных видов соединений, встречающихся в электрических цепях. Некоторые типы соединений («звезда» и «треугольник») сворачиваются с использованием специальных приемов и не могут быть сведены к последовательному или параллельному соединениям. Однако данные задачи в школьном курсе физики не изучаются.

Задача В10. Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого . Если радиус окружности , то кинетическая энергия электрона равна … эВ .

Решение.

Для расчета кинетической энергии электрона нам необходимо знать его скорость V , тогда

Где ― масса электрона.

Для дальнейшего решения задачи разберемся, при каких условиях возможно равномерное движение электрона по окружности в магнитном поле. Как известно из кинематики, равномерное движение по окружности – это движение с центростремительным ускорением. Это ускорение сообщается силой Лоренца, действующей на электрон со стороны магнитного поля. Сила Лоренца всегда перпендикулярна плоскости, в которой лежат векторы и . Так как электрон движется по окружности, то вектор постоянно меняет свое направление. Вместе с ним меняет направление и сила Лоренца , однако, оба этих вектора всегда лежат в плоскости окружности, по которой происходит движение. Такое возможно только в том случае, если плоскость всегда перпендикулярна плоскости окружности. Отсюда следует, что вектор индукции магнитного поля также перпендикулярен плоскости окружности. Значит угол между векторами и равен . Тогда модуль силы Лоренца:

Запишем для электрона уравнение второго закона Ньютона в проекциях на радиус окружности, проведенный в точку, где в данный момент находится электрон:

Где ― центростремительное ускорение электрона.

Кинетическая энергия электрона:

.

Подставив численные значения в данную формулу получим значение кинетической энергии в Джоулях. Нам же нужно получить значение в электрон-вольтах. Для этого нужно разделить значение энергии в Джоулях на заряд электрона e :

.

Подставляем численные значения:

(округляем до целого числа).

Ответ: 24.

Задача В11. В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе , а амплитудное значение силы тока в контуре . Если электроемкость конденсатора , то период T колебаний в контуре равен … мс.

Решение.

Период электромагнитных колебаний в колебательном контуре определяется с помощью формулы Томсона:

Таким образом, для нахождения периода нам не хватает значения индуктивности катушки.

Для определения индуктивности используем данные задачи об амплитудных значениях тока и напряжения в колебательном контуре. В процессе электромагнитных колебаний в контуре энергия этих колебаний складывается из энергии заряженного конденсатора и энергии магнитного поля катушки . Сумма этих энергий в каждый момент времени дает полную энергию колебательного контура.

В тот момент времени, когда напряжение на конденсаторе достигает амплитудного значения, ток в катушке равен 0, поэтому вся энергия контура сосредотачивается в конденсаторе и равна . Когда же ток в катушке достигает амплитудного значения, напряжение на конденсаторе равно нулю и вся энергия контура сосредотачивается в катушке и равна . Так как контур идеальный, то полная энергия в нем сохраняется, а значит

5 дек 2016 ... Решение заданий репетиционного тестирования: Физика, 2015-2016 ... Физика, 2014-2015 учебный год, 1-й этап, вариант №1 · Физика...

рт по физике 1 этап 2014 2015 решение - Предлагаю вашему вниманию ссылки на условия, ответы и текстовые решения тестов РТ 2015/2016 по всем предметам! Физика:на беларускай мове: Варыянт 1

До конца февраля 2015 года будет проходить второй этап РТ по следующим предметам: . Физика, 2014-2015 учебный год, решение теста на повторение · Физика...

Решение задания В11, РТ 1 этап 2014/2015 · ЦТ по МАТЕМАТИКЕ. В этом учебном году на первом этапе РТ по физике мне показались спорными две задачи.

Минска Галины Гуринович, они не менялись с декабря 2014 года. рт по физике 2015 1 этап решения

решение рт 2014 2015 2 этап по физике - В среднем по республике доля... Математика, 2014-2015 учебный год, 2-й этап, вариант №1 · Математика, 2014-2015 .....

Я помогу Вам устранить пробелы в знаниях (дляФизика, демо-тест от РИКЗ, 2015-2016 учебный год, решение Физика, демо-... рт по математике 1 этап 2014 -2015...

в РТ по физике (1 этап... Всероссийская олимпиада школьников по физике 1 этап школьный 2013 2014 уч года 9 класс ответы

РТ 2013-2014 по математике и физике. 1-й этап. Есть вопрос по решению заданий РТ? Сами решения пока не дам.

В случае если вы не смогли ознакомиться с результатом РТ на нашем сайте, вам необходимо обратиться в то учреждение... Выберите этап тестирования: 1-й...

Более 1000 преподавателей он-лайн! решение по физике!

Могилевские олимпиады 1. Заочная школа юного физика 2014/15 г. 2. Заочная школа юного физика 2013 ...

Условия и решения заданий олимпиады школьников по физике в 2014 - 2015 учебном году

2 этап «Физика» Вариант 19 с решениями. Вариант 21 с решениями. 8 класс с решениями. 9 класс с...

Министерство образования и науки Республики Татарстан... Уважаемые ученые, научные...

Республиканский Институт Контроля Знаний, проверить результаты РТ, проверить результаты...

Задачи для подготовки к экспериментальному туру. Задачи с решениями. Механика.

v Дубининские чтения, 28 февраля 2017 года, 11:00, Москва, ИФХЭ РАН 2 февраля, 2017. Российская...