Действительные числа. Раздел I

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 46 Сложение действительных чисел

Пока что мы умеем складывать друг с другом лишь рациональные числа. Как мы знаем,

А вот какой смысл вкладывается в сумму двух чисел, из которых хотя бы одно иррационально, этого мы еще не знаем. Нам предстоит сейчас дать определение того, что понимается под суммой α + β двух произвольных действительных чисел α и β .

Для примера рассмотрим числа 1 / 3 и √2 . Представим их в виде бесконечных десятичных дробей

1 / 3 = 0,33333...;

√2 =1,41421... .

Сначала сложим соответственные десятичные приближения данных чисел с недостатком. Эти приближения, как отмечалось в конце предыдущего параграфа, представляют собой рациональные числа. А складывать такие числа мы уже умеем:

0+1 = 1
0,3+1,4= 1,7
0,33+1,41 = 1,74
0,333 + 1,414 = 1,747
0,3333 + 1,4142= 1,7475
0,33333 + 1,41421 = 1,74754
.................................................................

Затем сложим соответственные десятичные приближения данных чисел с избытком:

1 +2 = 3
0,4+ 1,5 = 1,9
0,34+ 1,42= 1,76
0,334 + 1,415 = 1,749
0,3334 + 1,4143=1,7477
0,33334+ 1,41422= 1,74756
..........................................................

Можно доказать*, что существует и притом единственное действительное число γ , которое больше всех сумм десятичных приближений чисел 1 / 3 и √2 с недостатком, но меньше всех сумм десятичных приближений этих чисел с избытком:

* Строгое доказательство этого факта выходит за пределы нашей программы и потому здесь не приводится.

1 < γ < 3

1,7 < γ < 1,9

1,74 < γ < 1,76

1,747 < γ < 1,749

1,7475 < γ < 1,7477

1,74754 < γ < 1,74756

По определению это число γ и принимается за сумму чисел 1 / 3 и √2 :

γ = 1 / 3 + √2

Очевидно, что γ = 1,7475....

Аналогично может быть определена и сумма любых других положительных действительных чисел, из которых хотя бы одно иррационально. Суть дела не изменится и в том случае, если одно из слагаемых, а может быть, и оба будут отрицательными.

Итак, если числа α и β рациональны, то сумма их находится по правилу сложения рациональных чисел (см. § 36).

Если же хотя бы одно из них иррационально, то суммой α + β называется такое действительное число, которое больше всех сумм соответственных десятичных приближений этих чисел с недостатком, но меньше всех сумм соответственных десятичных приближений этих чисел с избытком .

Определенное таким образом действие сложения подчиняется следующим двум законам:

1) коммутативному закону:

α + β = β + α

2) ассоциативному закону:

(α + β ) + γ = α + (β + γ ).

Доказывать этого мы не будем. Учащиеся могут сделать это самостоятельно. Отметим лишь, что при доказательстве придется использовать уже известный нам факт: сложение рациональных чисел подчинено коммутативному и ассоциативному законам (см. § 36).

Упражнения

327. Данные суммы представить в виде десятичных дробей, указав не менее трех верных знаков после занятой:

а) √2 +√3 ; г) √2 + (- √3 ) ж) 3 / 4 + (-√5 );

б) √2 + 5 / 8 ; д) (- 1 / 3) + √5 з) 1 / 3 + √2 + √3 .

в) (-√2 ) + √3 ; е) 11 / 9 + (- √5 );

328. Найти несколько первых десятичных приближении (с недостатком и с избытком) для действительных чисел:

а) 1 / 2 + √7 б) √3 + √7 в) √3 + (-√7 )

329. Исходя из определения суммы действительных чисел, доказать, что для любого числа α

α + (- α ) = 0.

330. Всегда ли сумма двух бесконечных непериодических дробей есть дробь непериодическая? Ответ пояснить примерами.

Определение

Множество действительных чисел является объединением множеств рациональных и иррациональных чисел. Буква R является обозначением рассматриваемого множества. Множество R представляется промежутком вида (- ∞ ; + ∞).

Замечание

Стоит заметить, что любое рациональное число всегда может принимать вид бесконечной десятичной периодической дроби, любое иррациональное число бесконечной десятичной непериодической дроби, исходя из вышесказанного следует вывод, что множество, включающее в себя конечные и бесконечные периодические и непериодические десятичные дроби принадлежит множеству R .

Yandex.RTB R-A-339285-1

Геометрическая модель действительных чисел

Координатная прямая непосредственно представляет собой геометрическую модель множества R . Следовательно, каждой точке на координатной прямой всегда можно поставить в соответствие некоторое действительное число.

Сравнение действительных чисел

Сравнение действительных чисел можно производить воспользовавшись либо геометрической моделью, либо их можно сравнивать аналитически. Рассмотрим оба способа сравнения. На координатной прямой расположено в произвольном порядке два числа. Определить, какое из них больше достаточно просто. Большее число всегда находится правее другого.

Аналитически определись какое число является большим или меньшим какого либо числа тоже возможно, для этого достаточно найти разность этих чисел и затем сравнить ее с нулем. Если полученная разность будет иметь положительный знак, то первое число (уменьшаемое разности) будет больше чем второе число (вычитаемое разности); если же разность будет иметь отрицательный знак, то первое число (уменьшаемое разности) будет меньше, чем второе число (вычитаемое разности).

Ниже рассмотрим примеры, демонстрирующие оба способа сравнения:

Пример 1

Сравнить числа f r a c 185 и 4 .

Решение

Для сравнения данных чисел найдем разность этих чисел.

f r a c 185 - 4 = f r a c 185 - f r a c 205 = - f r a c 25 чтобы вычислить данную разность, надо привести данные числа к общему знаменателю, воспользовавшись правилом приведения к общему знаменателю. Проделав данную операцию, видим, что знаменатель в данном примере равен 5. После этого опираясь на правило вычитания дробей с одинаковым знаменателем, вычтем из числителя первой дроби числитель второй дроби, а знаменатель оставим прежним. Обратим внимание, что разность приведенных чисел является отрицательной, значит первое число (уменьшаемое) меньше второго (вычитаемого), т. е. f r a c 185 < 4 .

Пример 2

Сравнить числа f r a c 185 и 4 с помощью координатной прямой.

Решение

Чтобы сравнить данные числа, следует определить геометрическое место точек этих чисел на координатной прямой. Т.е. сравниваемые действительные числа будут соответствовать определенным координатам на координатной прямой, а именно числам f r a c 185 и 4 . Для начала преобразуем неправильную дробь frac185 в смешанное число т.е. выделим целую часть, следовательно, получим 3 f r a c 35 .

Далее на координатной прямой отметим точки, координаты которых будут равны 3 f r a c 35 и 4 . f r a c 185 содержит в себе 3 целых, значит данное число расположено левее 4. Как уже известно, меньшее число лежит левее, исходя из этого напрашивается вывод, что f r a c 185 < 4 .

Можно сделать вывод, что вне зависимости от внешнего вида сравнения действительных чисел можно реализовать все арифметические операции, а именно сложение, вычитание, умножение и деление. Однако перед выполнением действий с действительными числами следует учитывать исходные знаки данных чисел т.е. определить является каждое число положительными или отрицательными.

Сложение действительных чисел

Чтобы сложить два действительных числа с одинаковыми знаками следует сначала сложить их модули и затем перед суммой поставить их общий знак. Например:

(+ 8) + (+ 2) = + 10 ; (- 5) + (- 4) = - 9 .

Чтобы сложить два действительных числа с разными знаками следует для начала обратить внимание на знак числа, если знак одного из чисел отрицательный, тогда это число следует вычитать из другого, если положительный – сложить с другим. Далее нужно сложить либо вычесть данные числа и поставить знак большего модуля. Например

(+ 2) + (- 7) = - 5 ; (+ 10) + (- 4) = + 6 .

Вычитание действительных чисел

Вычитание действительных чисел можно представить в виде сложения: a - b = a + (- b) , то есть, чтобы вычесть из числа а число b, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.

Например: (+ 5) - (- 7) = (+ 3) + (+ 7) = 12 ; (+ 6) - (+ 4) = (+ 6) + (- 4) = + 2 .

Умножение действительных чисел

Чтобы умножить (разделить) два действительных числа необходимо умножить (разделить) их модули. И затем перед результатом поставить знак по приведенному в таблице правилу знаков ниже.

При умножении и делении действительных чисел желательно помнить пословицу: «Друг моего друга - мой друг, враг моего врага - мой друг, друг моего врага - мой враг, враг моего друга - мой враг».

Например:

(+ 2) (+ 7) = + 14 ; (- 2) (+ 6) = - 12 ; (- 2) (- 8) = 16 ;

Свойства арифметических действий над действительными числами (основные законы алгебры)

В алгебре существуют так называемые основные законы алгебры. Они практически всегда принимаются за истину (случаи ложности данных законов не рассматриваем) и сформулированы в виде следующих свойств-тождеств:

  1. a + b = b + a ;
  2. (a + b) + c = a + (b + c) ;
  3. a + 0 = a ;
  4. a + (- a) = 0 ;
  5. a b = b a ;
  6. (a b) c = a (b c) ;
  7. a (b + c) = a b + a c ;
  8. a · 1 = a ;
  9. a · 0 = 0 ;
  10. a · 1 a = 1 , (a ≠ 0) .

Свойства 1 и 5 выражают переместительный закон (коммутативность) сложения и умножения соответственно;

Cвойства 2 и 6 выражают сочетательный закон (ассоциативность);

Cвойство 7 - распределительный закон (дистрибутивность) умножения относительно сложения;

Cвойства 3 и 8 указывают на наличие нейтрального элемента для сложения и умножения соответственно;

Cвойства 4 и 10 – на наличие нейтрализующего элемента соответственно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Если число α нельзя представить в виде несократимой дроби $$\frac{p}{q}$$, то его называют иррациональным.
Иррациональное число записывается в виде бесконечной непериодической десятичной дроби.

Факт существования иррациональных чисел продемонстрируем на примере.
Пример 1.4.1. Докажите, что не существует рационального числа, квадрат которого равен 2.
Решение. Предположим, что существует несократимая дробь $$\frac{p}{q}$$ такая, что $$(\frac{p}{q})^{2}=2$$
или $$p^{2}=2q^{2}$$. Отсюда следует, что $$p^{2}$$ кратно 2, а значит, и p кратно 2. В противном случае, если p не делится на 2, т.е. $$p=2k-1$$, то $$p^{2}=(2k-1)^{2}=4k^{2}-4k+1$$ также не делится на 2. Следовательно, $$p=2k$$ $$\Rightarrow$$ $$p^{2}=4k^{2}$$ $$\Rightarrow$$ $$4k^{2}=2q^{2}$$ $$\Rightarrow$$ $$q^{2}=2k^{2}$$.
Поскольку $$q^{2}$$ кратно 2, то и q кратно 2, т.е. $$q=2m$$.
Итак, числа p и q имеют общий множитель – число 2, а значит, дробь $$\frac{p}{q}$$ сократимая.
Это противоречие означает, что сделанное предположение неверно, тем самым утверждение доказано.
Множество рациональных и иррациональных чисел называется множеством действительных чисел.
В множестве действительных чисел аксиоматически вводятся операции сложения и умножения: любым двум действительным числам a и b ставится в соответствие число $$a+b$$ и произведение $$a\cdot b$$.
Кроме того, в этом множестве вводятся отношения "больше", "меньше" и равенства:
$$a>b$$ тогда и только тогда, когда a - b – положительное число;
$$a a = b тогда и только тогда, когда a - b = 0.
Перечислим основные свойства числовых неравенств.
1. Если $$a>b$$ и $$b>c$$ $$\Rightarrow$$ $$a>c$$.
2. Если $$a>b$$ и $$c>0$$ $$\Rightarrow$$ $$ac>bc$$.
3. Если $$a>b$$ и $$c<0$$ $$\Rightarrow$$ $$ac 4. Если $$a>b$$ и c – любое число $$\Rightarrow$$ $$a+c>b+c$$.
5. Если a, b, c, d – положительные числа такие, что $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$ac>bd$$.
Следствие. Если a и b – положительные числа и $$a>b$$ $$\Rightarrow$$ $$a^{2}>b^{2}$$.
6. Если $$a>b$$ и $$c>d$$ $$\Rightarrow$$ $$a+c>b+d$$.
7. Если $$a>0$$, $$b>0$$ и $$a>b$$ $$\Rightarrow$$ $$\frac{1}{a}<\frac{1}{b}$$.

Геометрическая интерпретация действительных чисел.
Возьмем прямую l , см. рис. 1.4.1, и зафиксируем на ней точку O – начало отсчета.
Точка O разбивает прямую на две части – лучи. Луч, направленный вправо, назовем положительным лучом, а луч, направленный влево – отрицательным. На прямой отметим отрезок, принятый за единицу длины, т.е. вводим масштаб.

Рис. 1.4.1. Геометрическая интерпретация действительных чисел.

Прямая с выбранным началом отсчета, положительным направлением и масштабом называется числовой прямой.
Каждой точке числовой прямой можно поставить в соответствие действительное число по следующему правилу:

– точке О поставим в соответствие нуль;
– каждой точке N на положительном луче поставим в соответствие положительное число a, где a – длина отрезка ON ;
– каждой точке M на отрицательном луче поставим в соответствие отрицательное число b, где $$b=-\left | OM \right |$$ (длина отрезка OM, взятая со знаком минус).
Таким образом, между множеством всех точек числовой прямой и множеством действительных чисел устанавливается взаимно–однозначное соответствие, т.е. :
1) каждой точке на числовой прямой поставлено в соответствие одно и только одно действительное число;
2) разным точкам поставлены в соответствие разные числа;
3) нет ни одного действительного числа, которое не соответствовало бы какой–либо точке числовой прямой.

Пример 1.4.2. На числовой прямой отметьте точки, соответствующие числам:
1) $$1\frac{5}{7}$$ 2) $$\sqrt{2}$$ 3) $$\sqrt{3}$$
Решение. 1) Для того, чтобы отметить дробное число $$\frac{12}{7}$$, надо построить точку, соответствующую $$\frac{12}{7}$$.
Для этого надо отрезок длины 1 разделить на 7 равных частей. Эту задачу решаем так.
Проводим произвольный луч из т.О и на этом луче отложим 7 равных отрезков. Получим
отрезок ОА, и из т. А проведем прямую до пересечения с 1.

Рис. 1.4.2. Деление единичного отрезка на 7 равных частей.

Прямые, проведенные параллельно прямой А1 через концы отложенных отрезков, делят отрезок единичной длины на 7 равных частей (рис.1.4.2). Это дает возможность построить точку, изображающую число $$1\frac{5}{7}$$ (рис.1.4.3).

Рис. 1.4.3. Точка числовой оси, соответствующая числу $$1\frac{5}{7}$$.

2) Число $$\sqrt{2}$$ можно получить так. Построим прямоугольный треугольник с единичными катетами. Тогда длина гипотенузы равна $$\sqrt{2}$$; этот отрезок откладываем от О на числовой прямой (рис.1.4.4).
3) Для построения точки, удаленной от т.О на расстояние $$\sqrt{3}$$ (вправо) надо построить прямоугольный треугольник с катетами длиной 1 и $$\sqrt{2}$$. Тогда его гипотенуза имеет длину $$\sqrt{2}$$, что позволяет указать искомую точку на числовой оси.
Для действительных чисел определено понятие модуля (или абсолютной величины).

Рис. 1.4.4. Точка числовой оси, соответствующая числу $$\sqrt{2}$$.

Модулем действительного числа a называется:
– само это число, если a – положительное число;
– нуль, если a – нуль;
-a , если a – отрицательное число.
Модуль числа a обозначается $$\left | a \right |$$.
Определение модуля (или абсолютной величины) можно записать в виде

$$\left | a \right |=\left\{\begin{matrix}a, a\geq0\\-a, a<0\end{matrix}\right.$$ (1.4.1)

Геометрически модуль числа a означает расстояние на числовой прямой от начала отсчета О до точки, соответствующей числу a .
Отметим некоторые свойства модуля.
1. Для любого числа a справедливо равенство $$\left | a \right |=\left | -a \right |$$.
2. Для любых чисел a и b справедливы равенства

$$\left | ab \right |=\left | a \right |\cdot \left | b \right |$$; $$\left | \frac{a}{b} \right |=\frac{\left | a \right |}{\left | b \right |}$$ $$(b\neq 0)$$; $$\left | a \right |^{2}=a^{2}$$.

3. Для любого числа a справедливо неравенство $$\left | a \right |\geq 0$$.
4. Для любого числа a справедливо неравенство $$-\left | a \right |\leq a\leq \left | a \right |$$.
5. Для любых чисел a и b справедливо неравенство

$$\left | a+b \right |\leq \left | a \right |+\left | b \right |$$

Рассмотрим следующие числовые множества.
Если $$a 1) отрезком называется множество всех действительных чисел α для каждого из которых справедливо: $$a\leq \alpha \leq b$$;
2) интервалом (a; b) называется множество всех действительных чисел α , для каждого из которых справедливо: $$a<\alpha 3) полуинтервалом (a; b] называется множество всех действительных чисел α для каждого из которых справедливо: $$a<\alpha \leq b$$.
Аналогично можно ввести полуинтервал .
В некоторых случаях говорят о "промежутках", понимая под этим либо луч, либо отрезок, либо интервал, либо полуинтервал.

Множество R всех действительных чисел обозначают так: $$(-\infty; \infty)$$.
Для любого действительного числа a вводится понятие степени с натуральным показателем n , а именно

$$a^{n}=\underbrace {a\cdot a\cdot a\cdot a...a}$$, $$n\geq 2$$ и $$a^{1}=a$$.

Пусть a – любое отличное от нуля число, тогда по определению $$a^{0}=1$$.
Нулевая степень нуля не определена.
Пусть a – любое отличное от нуля число, m – любое целое число. Тогда число $$a^{m}$$ определяется по правилу:

$$a^{m}=\left\{\begin{matrix}a, m=1;\\\underbrace{a\cdot a\cdot a\cdot a...a}, m\in N, m\geq2;\\1, m=0;\\\frac{1}{a^{n}}, m=-n, n\in N\end{matrix}\right.$$

при этом a m называется степенью с целым показателем.

Прежде, чем определить понятие степени с рациональным показателем, введем понятие арифметического корня.
Арифметическим корнем степени n (n ∈ N , n > 2 ) неотрицательного числа a называется неотрицательное число b такое, что b n = a . Число b обозначается как $$b\sqrt[n]{a}$$.
Свойства арифметических корней (a > 0 , b > 0 , n, m, k натуральные числа.)

1. $$\sqrt[n]{ab}=\sqrt[n]{a}\cdot \sqrt[n]{b}$$ 5. $$\sqrt[n]{\sqrt[k]{a}}=\sqrt{a}$$
2. $$(a)^{\frac{k}{n}}=\sqrt[n]{a^{k}}$$ 6. $$\sqrt[n]{a^{m}}=\sqrt{a^{mk}}$$
3. $$(\sqrt[n]{a})^{k}=\sqrt[n]{a^{k}}$$ 7. $$\sqrt{a^{2}}=\left | a \right |$$
4. $$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}} (b\neq 0)$$ 8. $$\sqrt{a^{2n}}=\left | a \right |$$

Пусть a < 0 , а n – натуральное число, большее 1. Если n – четное число, то равенство b n = a не выполняется ни при каком действительном значении b . Это значит, что в области действительных чисел нельзя определить корень четной степени из отрицательного числа. Если же n – нечетное число, то существует единственное действительное число b такое, что b n = a . Это число обозначают √n a и называют корнем нечетной степени из отрицательного числа.
Используя определение возведения в целую степень и определение арифметического корня, дадим определение степени с рациональным показателем.
Пусть a – положительное число и $$r=\frac{p}{q}$$ – рациональное число, причем q – натуральное число.

Положительное число

$$b=\sqrt[q]{a^{p}}$$

называется степенью числа a с показателем r и обозначается как

$$b=a^{r}$$, или $$a^{\frac{p}{q}}=\sqrt[q]{a^{r}}$$, здесь $$q\in N$$, $$q\geq2$$.

Рассмотрим основные свойства степени с рациональным показателем.

Пусть a и b – любые положительные числа, r 1 и r 2 – любые рациональные числа. Тогда справедливы следующие свойства:

1. $$(ab)^{r_{1}}=a^{r_{1}}\cdot b^{r_{1}}$$
2. $$(\frac{a}{b})^{r_{1}}=\frac{a^{r_{1}}}{b^{r_{1}}}$$
3. $$a^{r_{1}}\cdot a^{r_{2}}=a^{r_{1}+r_{2}}$$
4. $$\frac{a^{r_{1}}}{a^{r_{2}}}=a^{r_{1}-r_{2}}$$
5. $$(a^{r_{1}})^{r_{2}}=a^{r_{1}r_{2}}$$ (1.4.2)
6. $$a^{0}=1$$
7. Если $$a>1$$ и $$r_{1}>0\Rightarrow a^{r_{1}}> 1$$
8. Если $$0< a< 1$$ и $$r_{1}>0\Rightarrow 0< a^{r_{1}}< 1$$
9. Если $$a>1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$
10. Если $$0< a< 1$$ и $$r_{1}>r_{2}\Rightarrow a^{r_{1}}> a^{r_{2}}$$

Понятие степени положительного числа обобщается для любого действительного показателя α .
Определение степени положительного числа a с действительными показателями α .

1. Если $$\alpha > 0$$ и

1) $$\alpha=m$$, $$m\in N \Rightarrow a^{\alpha}=\left\{\begin{matrix}a, m=1\\\underbrace{a\cdot a\cdot a\cdot a....a}, m\geq 2\end{matrix}\right.$$

2) $$\alpha=\frac{p}{q}$$, где p и q - натуральные числа $$\Rightarrow a^{\alpha}=\sqrt[q]{a^{p}}$$

3) α - иррациональное число, тогда

а) если a > 1, то a α - число большее, чем a r i и меньшее, чем a r k , где r i α с недостатком, r k - любое рациональное приближение числа α с избытком;
b) если 0 < a < 1, то a α - число большее, чем a r k и меньшее, чем a r i ;
c) если a = 1, то a α = 1.

2. Если $$\alpha=0$$, то a α = 1.

3. Если $$\alpha<0$$, то $$a^{\alpha}=\frac{1}{a^{\left | \alpha \right |}}$$.

Число a α называется степенью, число a – основание степени, число α – показатель степени.
Степень положительного числа с действительным показателем обладает теми же свойствами, что и степень с рациональным показателем.

Пример 1.4.3. Вычислите $$\sqrt{81}\cdot\sqrt{\frac{16}{6}}$$.

Решение. Воспользуемся свойством корней:

$$\sqrt{81}\cdot\sqrt{\frac{16}{6}}=\sqrt{\frac{81\cdot16}{6}}=\sqrt{\frac{3^{4}\cdot2^{4}}{3\cdot2}}=\sqrt{3^{3}\cdot2^{3}}=6$$

Ответ. 6.

Пример 1.4.4. Вычислите $$6,25^{1,5}-2,25^{1,5}$$

1) 4 2) 8 3) 8,25 4) 12,25

1. Понятие иррационального числа. Бесконечные десятичные непериодические дроби. Множество действительных чисел.

2. Арифметические действия над действительными числами. Законы сложения и умножения.

3. Расширение действительных положительных чисел до множества действительных чисел. Свойства множества действительных чисел.

4. Приближенные числа.Правила округления действительных чисел и действия с приближенными числами. Вычисления с помощью микрокалькулятора.

5. Основные выводы

Действительные числа

Одним из источников появления десятичных дробей является деле­ние натуральных чисел, другим - измерение величин. Выясним, на­пример, как могут получиться десятичные дроби при измерении дли­ны отрезка.

Пусть х - отрезок, длину которого надо измерить, е - единичный отрезок. Длину отрезка х обозначим буквой X , а длину отрезка е - буквой Е . Пусть отрезок х состоит из n отрезков, равных е ₁ и отрезка х ₁, который короче отрезка е (рис. 130), т.е. n Е < X < (n + 1) ∙Е . Числа n и n + 1 есть приближенные значения длины от­резка х при единице длины Е с недос­татком и с избытком с точностью до 1.


Чтобы получить ответ с большей точностью, возьмем отрезок е ₁ - деся­тую часть отрезка е и будем уклады­вать его в отрезке х ₁. При этом возможны два случая.

1) Отрезок е₁ уложился в отрезке х ₁ точно n раз. Тогда длина n от­резка х выражается конечной десятичной дробью: X = (n + n ₁\10) ∙Е= n, n ₁∙Е. Например, X = 3,4∙Е.

2) Отрезок х ₁ оказывается состоящим из n отрезков, равных е ₁, и отрезка х ₂, который короче отрезка е ₁. Тогда n , n ₁∙Е < X < n , n n ₁′∙Е , где n , n ₁ и n , n n ₁′ - приближенные значения длины отрезка х с не­достатком и с избытком с точностью до 0,1.

Ясно, что во втором случае процесс измерения длины отрезка х можно продолжать, взяв новый единичный отрезок е ₂ - сотую часть отрезка е .

На практике этот процесс измерения длины отрезка на каком-то этапе закончится. И тогда результатом измерения длины отрезка бу­дет либо натуральное число, либо конечная десятичная дробь. Если же представить этот процесс измерения длины отрезка в идеале (как и делают в математике), то возможны два исхода:

1)На k-том шагу процесс измерения окончится. Тогда длина от­резках выразится конечной десятичной дробью вида n , n ₁… n k.

2) Описанный процесс измерения длины отрезка х продолжается бесконечно. Тогда отчет о нем можно представить символом n , n ₁… n k..., который называют бесконечной десятичной дробью.

Как убедиться в возможности второго исхода? Для этого доста­точно произвести измерение длины такого отрезка, для которого известно, что его длина выражена, например, рациональным числом 5 . Если бы оказалось, что в результате измерения длины такого отрезка получается конечная десятичная дробь, то это означало бы, что число 5 можно представить в виде конечной десятичной дро­би, что невозможно: 5 = 5,666....

Итак, при измерении длин отрезков могут получаться бесконеч­ные десятичные дроби. Но всегда ли эти дроби периодические? От­вет на этот вопрос отрицателен: существуют отрезки, длины кото­рых нельзя выразить бесконечной периодической дробью (т.е. по­ложительным рациональным числом) при выбранной единице дли­ны. Это было важнейшим открытием в математике, из которого следовало, что рациональных чисел недостаточно для измерения длин отрезков.

Теорема . Если единицей длины является длина стороны квадра­та, то длина диагонали этого квадрата не может быть выражена по­ложительным рациональным числом.

Доказательство . Пусть длина стороны квадрата выражается числом 1. Предположим противное тому, что надо доказать, т.е., что длина диагонали АС квадрата АВСВ выражается несократимой дро­бью . Тогда по теореме Пифагора, выполнялось бы равенство

1²+ 1² = . Из него следует, что m² = 2n². Значит, m² - четное число, тогда и число m - четно (квадрат нечетного числа не может быть чет­ным). Итак, m = 2р. Заменив в равенстве m² = 2n² число m на 2р, получаем, что 4р² = 2n², т.е. 2р² = n². Отсюда следует, что n² четно, сле­довательно, n - четное число. Таким образом, числа m и n четны, значит, дробь можно сократить на 2, что противоречит предположению о ее несократимости. Установленное противоречие доказывает, что если единицей длины является длина стороны квадрата, то длину диагонали этого квадрата нельзя выразить рациональным числом.

Из доказанной теоремы следует, что существуют отрезки, длины которых нельзя выразить положительным числом (при выбранной едини­це длины), или, другими словами, записать в виде бесконечной периодической дроби. И значит, получаемые при измерении длин отрезков бесконечные десятичные дроби могут быть непериодическими.

Считают, что бесконечные непериодические десятичные дроби являются записью новых чисел - положительных иррациональных чисел. Так как часто понятия числа и его записи отождествляют, то говорят, что бесконечные непериодические десятичные дроби - это и есть положительные иррациональные числа.

Мы пришли к понятию положительного иррационального числа че­рез процесс измерения длин отрезков. Но иррациональные числа можно получить и при извлечении корней из некоторых рациональных чисел. Так √2 , √7, √24 - это иррациональное числа. Иррациональными являются также lg 5, sin 31, числа π =3,14..., е = 2,7828... и другие.

Множество положительных иррациональных чисел обозначают символом J+.

Объединение двух множеств чисел: положительных рациональных и положительных иррациональных называют множеством положительных действительных чисел и обозначают символом R+. Таким обра­зом, Q+ ∪ J + = R+. При помощи кругов Эйлера эти множества изображены на рисунке 131.

Любое положительное действительное чис­ло может быть представлено бесконечной деся­тичной дробью - периодической (если оно является рациональным), либо непериодической (если оно является иррациональным).

Действия над положительными действительными числами сво­дятся к действиям над положительными рациональными числами.

Сложение и умножение положительных действительных чисел обладает свойствами коммутативности и ассоциативности, а умно­жения дистрибутивно относительно сложения и вычитания.

С помощью положительных действительных чисел можно выра­зить результат измерения любой скалярной величины: длины, пло­щади, массы и т.д. Но на практике часто нужно выразить числом не результат измерения величины, а ее изменение. Причем ее изменение может происходить различно - она может увеличиваться, умень­шаться или оставаться неизменной. Поэтому, чтобы выразить изме­нение величины, кроме положительных действительных чисел нуж­ны иные числа, а для этого необходимо расширить множество R+, присоединив к нему число 0 (нуль) и отрицательные числа.

Объединение множества положительных действительных чисел с множеством отрицательных действительных чисел и нулем есть множество R всех действительных чисел.

Сравнение действительных чисел и действия над ними выполняют­ся по правилам, известным нам из школьного курса математики.

Упражнения

1. Опишите процесс измерения длины отрезка, если отчет о нем представляется дробью:

а) 3,46; б) 3,(7); в) 3,2(6).

2. Седьмая часть единичного отрезка укладывается в отрезке а 13 раз. Конечной или бесконечной дробью будет представлена длина этого отрезка? Периодической или непериодической?

3. Дано множество: {7; 8 ; √8; 35,91; -12,5; -√37; 0; 0,123; 4136}.

Можно ли разбить его на два класса: рациональные и иррациональные?

4. Известно, что любое число можно изобразить точкой на коорди­натной прямой. Исчерпывают ли точки с рациональными координатами всю координатную прямую? А точки с действительными координатами?

99. Основные выводы § 19

При изучении материала данного параграфа мы уточнили многие известные из школьного курса математики понятия, связав их с изме­рением длины отрезка. Это такие понятия, как:

дробь (правильная и неправильная);

равные дроби;

несократимая дробь;

положительное рациональное число;

равенство положительных рациональных чисел;

смешанная дробь;

бесконечная периодическая десятичная дробь;

бесконечная непериодическая десятичная дробь;

иррациональное число;

действительное число.

Мы выяснили, что отношение равенства дробей есть отношение эквивалентности и воспользовались этим, определяя понятие положи­тельного рационального числа. Выяснили также, как связано с изме­рением длин отрезков сложение и умножение положительных рацио­нальных чисел и получили формулы для нахождения их суммы и произведения.

Определение отношения «меньше» на множестве Q+ позволило назвать его основные свойства: оно упорядоченное, плотное, в нем нет наименьшего и наибольшего числа.

Мы доказали, что множество Q+ положительных рациональных чисел удовлетворяет всем тем условиям, которые позволяют его считать расширением множества N натуральных чисел.

Введя десятичные дроби, мы доказали, что любое положительное рациональное число представимо бесконечной периодической десятичной дробью.

Бесконечные непериодические дроби считают записями иррациональных чисел.

Если объединить множества положительных рациональных и иррациональных чисел, то получаем множество положительных действительных чисел: Q+ ∪ J + = R+.

Если к положительным действительным числам присоединить отрицательные действительные числа и нуль, то получаем множество R всех действительных чисел.

Повторение неполной средней школы

Интеграл

Производная

Объемы тел

Тела вращения

Метод координат в пространстве

Прямоугольная система координат. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Скалярное произведение векторов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса.

Площадь поверхности конуса. Сфера и шар. Площадь сферы. Взаимное расположение сферы и плоскости.

Понятие объема. Объем прямоугольного параллелœепипеда. Объем прямой призмы, цилиндра. Объем пирамиды и конуса. Объём шара.

Раздел III. Начала математического анализа

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Применение производной к исследованию функций Возрастание и убывание функции. Экстремумыфункции. Применение производной к построению графиков. Наибольшее, наименьшее значенияфункции.

Первообразная. Правила нахождения первообразных. Площадь криволинœейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Учебно-тренировочные задания к экзаменам

Раздел I. Алгебра

Число - абстракция, используемая для количественной характеристики объектов. Числа возникли еще в первобытном обществе в связи с потребностью людей считать предметы. С течением времени по мере развития науки число превратилось в важнейшее математическое понятие.

Для решения задач и доказательства различных теорем крайне важно понимать, какие бывают виды чисел. Основные виды чисел включают в себя: натуральные числа, целые числа, рациональные числа, действительные числа.

Натуральные числа - ϶ᴛᴏ числа, получаемые при естественном счёте предметов, а вернее при их нумерации («первый», «второй», «третий»...). Множество натуральных чисел обозначается латинской буквой N (можно запомнить, опираясь на английское слово natural). Можно сказать, что N ={1,2,3,....}

Дополнением натуральных чисел нулём и отрицательными числами (ᴛ.ᴇ. числами, противоположными натуральным) множество натуральных чисел расширяется до множества целых чисел.

Целые числа - ϶ᴛᴏ числа из множества {0, 1, -1, 2, -2, ....}. Это множество состоит из трех частей – натуральные числа, отрицательные целые числа (противоположные натуральным числам) и число 0 (нуль). Целые числа обозначаются латинской буквой Z. Можно сказать, что Z={1,2,3,....}. Рациональные числа - ϶ᴛᴏ числа, представимые в виде дроби , где m - целое число, а n - натуральное число.

Существуют рациональные числа, которые нельзя записать в виде конечной десятичной дроби, к примеру . В случае если, к примеру, попытаться записать число в виде десятичной дроби, используя известный алгоритм делœения уголком, то получится бесконечная десятичная дробь . Бесконечную десятичную дробь называют периодической, повторяющуюся цифру 3 – её периодом. Периодическую дробь коротко записывают так: 0,(3); читается: «Ноль целых и три в периоде».

Вообще, периодическая дробь - ϶ᴛᴏ бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр – период дроби.

К примеру, десятичная дробь периодическая с периодом 56; читается «23 целых, 14 сотых и 56 в периоде».

Итак, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.

Справедливо и обратное утверждение: каждая бесконечная периодическая десятичная дробь является рациональным числом, так как может быть представлена в виде дроби , где - целое число, - натуральное число.

Действительные (вещественные) числа - ϶ᴛᴏ числа, ĸᴏᴛᴏᴩᴏᴇ применяются для измерения непрерывных величин. Множество действительных чисел обозначается латинской буквой R. Действительные числа включают в себя рациональные числа и иррациональные числа. Иррациональные числа - ϶ᴛᴏ числа, которые получаются в результате выполнения различных операций с рациональными числами (к примеру, извлечение корня, вычисление логарифмов), но при этом не являются рациональными. Примеры иррациональных чисел - ϶ᴛᴏ .

Любое действительное число можно отобразить на числовой прямой:

Для перечисленных выше множеств чисел справедливо следующее высказывание: множество натуральных чисел входит во множество целых чисел, множество целых чисел входит во множество рациональных чисел, а множество рациональных чисел входит во множество действительных чисел. Это высказывание можно проиллюстрировать с помощью кругов Эйлера.

Упражнения для самостоятельного решения