बीजगणितीय प्रगति उदाहरण। बीजीय प्रगति

माध्यमिक विद्यालय (ग्रेड 9) में बीजगणित का अध्ययन करते समय, महत्वपूर्ण विषयों में से एक संख्यात्मक अनुक्रमों का अध्ययन है, जिसमें प्रगति शामिल है - ज्यामितीय और अंकगणित। इस लेख में, हम एक अंकगणितीय प्रगति और समाधान के साथ उदाहरणों पर विचार करेंगे।

एक अंकगणितीय प्रगति क्या है?

इसे समझने के लिए विचाराधीन प्रगति की परिभाषा देना आवश्यक है, साथ ही मूल सूत्र देना भी आवश्यक है जो आगे चलकर समस्याओं को हल करने में काम आएगा।

अंकगणित या क्रमित परिमेय संख्याओं का ऐसा समुच्चय है, जिसका प्रत्येक सदस्य पिछले एक से कुछ स्थिर मान से भिन्न होता है। इस मान को अंतर कहा जाता है। अर्थात्, संख्याओं की क्रमबद्ध श्रृंखला के किसी भी सदस्य और अंतर को जानकर, आप संपूर्ण अंकगणितीय प्रगति को पुनर्स्थापित कर सकते हैं।

आइए एक उदाहरण लेते हैं। संख्याओं का अगला क्रम एक अंकगणितीय प्रगति होगी: 4, 8, 12, 16, ..., क्योंकि इस मामले में अंतर 4 (8 - 4 = 12 - 8 = 16 - 12) है। लेकिन संख्या 3, 5, 8, 12, 17 के समुच्चय को अब प्रगति के माने जाने वाले प्रकार के लिए जिम्मेदार नहीं ठहराया जा सकता है, क्योंकि इसके लिए अंतर एक स्थिर मान नहीं है (5 - 3 8 - 5 12 - 8 17 - 12)।

महत्वपूर्ण सूत्र

अब हम मूल सूत्र देते हैं जो अंकगणितीय प्रगति का उपयोग करके समस्याओं को हल करने के लिए आवश्यक होंगे। मान लीजिए कि n अनुक्रम के nवें सदस्य को निरूपित करता है, जहाँ n एक पूर्णांक है। अंतर को लैटिन अक्षर d द्वारा दर्शाया गया है। तब निम्नलिखित अभिव्यक्तियाँ सत्य हैं:

  1. nवें पद का मान निर्धारित करने के लिए, सूत्र उपयुक्त है: a n \u003d (n-1) * d + a 1.
  2. पहले n पदों का योग ज्ञात करने के लिए: S n = (a n + a 1)*n/2.

कक्षा 9 में एक समाधान के साथ अंकगणितीय प्रगति के किसी भी उदाहरण को समझने के लिए, इन दो सूत्रों को याद रखना पर्याप्त है, क्योंकि प्रश्न के प्रकार की कोई भी समस्या उनके उपयोग पर निर्मित होती है। इसके अलावा, यह न भूलें कि प्रगति अंतर सूत्र द्वारा निर्धारित किया जाता है: d = a n - a n-1 ।

उदाहरण # 1: एक अज्ञात सदस्य ढूँढना

हम एक अंकगणितीय प्रगति और उन सूत्रों का एक सरल उदाहरण देते हैं जिनका उपयोग हल करने के लिए किया जाना चाहिए।

मान लीजिए कि अनुक्रम 10, 8, 6, 4, ... दिया गया है, इसमें पाँच पद ज्ञात करना आवश्यक है।

यह पहले से ही समस्या की शर्तों का अनुसरण करता है कि पहले 4 शब्द ज्ञात हैं। पांचवें को दो तरह से परिभाषित किया जा सकता है:

  1. आइए पहले अंतर की गणना करें। हमारे पास है: डी = 8 - 10 = -2। इसी तरह, कोई भी दो अन्य पदों को एक दूसरे के बगल में खड़ा कर सकता है। उदाहरण के लिए, डी = 4 - 6 = -2। चूँकि यह ज्ञात है कि d \u003d a n - a n-1, फिर d \u003d a 5 - a 4, जहाँ से हमें मिलता है: a 5 \u003d a 4 + d। हम ज्ञात मानों को प्रतिस्थापित करते हैं: a 5 = 4 + (-2) = 2।
  2. दूसरी विधि के लिए भी प्रश्न में प्रगति के अंतर के ज्ञान की आवश्यकता होती है, इसलिए आपको पहले इसे निर्धारित करने की आवश्यकता है, जैसा कि ऊपर दिखाया गया है (डी = -2)। यह जानते हुए कि पहला पद a 1 = 10, हम अनुक्रम की n संख्या के लिए सूत्र का उपयोग करते हैं। हमारे पास है: ए एन \u003d (एन - 1) * डी + ए 1 \u003d (एन - 1) * (-2) + 10 \u003d 12 - 2 * एन। n = 5 को अंतिम व्यंजक में प्रतिस्थापित करने पर, हमें प्राप्त होता है: a 5 = 12-2 * 5 = 2।

जैसा कि आप देख सकते हैं, दोनों समाधान एक ही परिणाम की ओर ले जाते हैं। ध्यान दें कि इस उदाहरण में प्रगति का अंतर d ऋणात्मक है। ऐसे अनुक्रमों को घटते हुए कहा जाता है क्योंकि प्रत्येक क्रमिक पद पिछले एक से कम होता है।

उदाहरण # 2: प्रगति अंतर

अब आइए कार्य को थोड़ा जटिल करें, एक उदाहरण दें कि अंकगणितीय प्रगति के अंतर को कैसे खोजा जाए।

यह ज्ञात है कि कुछ बीजीय प्रगति में पहला पद 6 के बराबर है, और 7 वां पद 18 के बराबर है। अंतर को खोजना और इस क्रम को 7 वें पद पर पुनर्स्थापित करना आवश्यक है।

आइए अज्ञात शब्द निर्धारित करने के लिए सूत्र का उपयोग करें: a n = (n - 1) * d + a 1 । हम स्थिति से ज्ञात डेटा को इसमें स्थानापन्न करते हैं, अर्थात संख्या 1 और 7, हमारे पास है: 18 \u003d 6 + 6 * d। इस व्यंजक से, आप आसानी से अंतर की गणना कर सकते हैं: d = (18 - 6) / 6 = 2। इस प्रकार, समस्या के पहले भाग का उत्तर दिया गया था।

7वें सदस्य के अनुक्रम को पुनर्स्थापित करने के लिए, आपको बीजगणितीय प्रगति की परिभाषा का उपयोग करना चाहिए, अर्थात्, 2 = a 1 + d, a 3 = a 2 + d, और इसी तरह। नतीजतन, हम पूरे अनुक्रम को पुनर्स्थापित करते हैं: एक 1 = 6, एक 2 = 6 + 2=8, एक 3 = 8 + 2 = 10, एक 4 = 10 + 2 = 12, एक 5 = 12 + 2 = 14 , एक 6 = 14 + 2 = 16 और 7 = 18।

उदाहरण #3: प्रगति करना

आइए समस्या की स्थिति को और भी जटिल करें। अब आपको इस प्रश्न का उत्तर देना है कि अंकगणितीय प्रगति कैसे ज्ञात की जाए। हम निम्नलिखित उदाहरण दे सकते हैं: दो संख्याएँ दी गई हैं, उदाहरण के लिए, 4 और 5। बीजगणितीय प्रगति करना आवश्यक है ताकि इनके बीच तीन और पद फिट हों।

इस समस्या को हल करने से पहले, यह समझना आवश्यक है कि भविष्य की प्रगति में दी गई संख्याएं किस स्थान पर होंगी। चूँकि उनके बीच तीन और शब्द होंगे, तो 1 \u003d -4 और 5 \u003d 5। इसे स्थापित करने के बाद, हम उस कार्य के लिए आगे बढ़ते हैं जो पिछले एक के समान है। फिर से, nवें पद के लिए, हम सूत्र का उपयोग करते हैं, हमें मिलता है: a 5 \u003d a 1 + 4 * d। प्रेषक: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25। यहाँ, अंतर एक पूर्णांक मान नहीं है, बल्कि यह एक परिमेय संख्या है, इसलिए बीजगणितीय प्रगति के सूत्र समान रहते हैं।

अब हम पाए गए अंतर को 1 में जोड़ते हैं और प्रगति के लापता सदस्यों को पुनर्स्थापित करते हैं। हमें मिलता है: ए 1 = - 4, ए 2 = - 4 + 2.25 = - 1.75, ए 3 = -1.75 + 2.25 = 0.5, ए 4 = 0.5 + 2.25 = 2.75, ए 5 \u003d 2.75 + 2.25 \u003d 5, जो समस्या की स्थिति से मेल खाता है।

उदाहरण #4: प्रगति का पहला सदस्य

हम हल के साथ अंकगणितीय प्रगति के उदाहरण देना जारी रखते हैं। पिछली सभी समस्याओं में, बीजीय प्रगति की पहली संख्या ज्ञात थी। अब एक अलग प्रकार की समस्या पर विचार करें: दो संख्याएँ दी गई हैं, जहाँ एक 15 = 50 और एक 43 = 37 है। यह पता लगाना आवश्यक है कि यह क्रम किस संख्या से शुरू होता है।

अब तक जो सूत्र प्रयोग किए गए हैं वे 1 और d का ज्ञान ग्रहण करते हैं। समस्या की स्थिति में इन नंबरों के बारे में कुछ पता नहीं है। फिर भी, आइए प्रत्येक पद के लिए व्यंजक लिखें जिसके बारे में हमें जानकारी है: a 15 = a 1 + 14 * d और a 43 = a 1 + 42 * d। हमें दो समीकरण मिले जिनमें 2 अज्ञात मात्राएँ (a 1 और d) हैं। इसका मतलब है कि समस्या रैखिक समीकरणों की एक प्रणाली को हल करने के लिए कम हो गई है।

निर्दिष्ट प्रणाली को हल करना सबसे आसान है यदि आप प्रत्येक समीकरण में 1 व्यक्त करते हैं, और फिर परिणामी अभिव्यक्तियों की तुलना करते हैं। पहला समीकरण: a 1 = a 15 - 14 * d = 50 - 14 * d; दूसरा समीकरण: ए 1 \u003d ए 43 - 42 * डी \u003d 37 - 42 * डी। इन भावों की बराबरी करते हुए, हमें मिलता है: 50 - 14 * डी \u003d 37 - 42 * डी, जहाँ से अंतर d \u003d (37 - 50) / (42 - 14) \u003d - 0.464 (केवल 3 दशमलव स्थान दिए गए हैं)।

d को जानने के बाद, आप 1 के लिए ऊपर दिए गए 2 भावों में से किसी का भी उपयोग कर सकते हैं। उदाहरण के लिए, पहला: ए 1 \u003d 50 - 14 * डी \u003d 50 - 14 * (- 0.464) \u003d 56.496।

यदि परिणाम के बारे में संदेह है, तो आप इसकी जांच कर सकते हैं, उदाहरण के लिए, प्रगति के 43 वें सदस्य को निर्धारित करें, जो कि स्थिति में निर्दिष्ट है। हमें मिलता है: एक 43 \u003d ए 1 + 42 * डी \u003d 56.496 + 42 * (- 0.464) \u003d 37.008। एक छोटी सी त्रुटि इस तथ्य के कारण है कि गणना में गोलाई से हजारवें हिस्से का उपयोग किया गया था।

उदाहरण #5: योग

आइए अब एक अंकगणितीय प्रगति के योग के समाधान के साथ कुछ उदाहरण देखें।

मान लीजिए कि निम्नलिखित रूप की संख्यात्मक प्रगति दी गई है: 1, 2, 3, 4, ...,। इन संख्याओं में से 100 के योग की गणना कैसे करें?

कंप्यूटर प्रौद्योगिकी के विकास के लिए धन्यवाद, इस समस्या को हल किया जा सकता है, अर्थात्, क्रमिक रूप से सभी नंबरों को जोड़ दें, जो कि जैसे ही कोई व्यक्ति एंटर कुंजी दबाता है, कंप्यूटर करेगा। हालाँकि, समस्या को मानसिक रूप से हल किया जा सकता है यदि आप ध्यान दें कि संख्याओं की प्रस्तुत श्रृंखला एक बीजगणितीय प्रगति है, और इसका अंतर 1 है। योग के सूत्र को लागू करने पर, हम प्राप्त करते हैं: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050।

यह ध्यान देने योग्य है कि इस समस्या को "गॉसियन" कहा जाता है, क्योंकि 18 वीं शताब्दी की शुरुआत में प्रसिद्ध जर्मन, अभी भी केवल 10 वर्ष की आयु में, कुछ ही सेकंड में इसे अपने दिमाग में हल करने में सक्षम था। लड़के को बीजगणितीय प्रगति के योग का सूत्र नहीं पता था, लेकिन उसने देखा कि यदि आप अनुक्रम के किनारों पर स्थित संख्याओं के जोड़े जोड़ते हैं, तो आपको हमेशा एक ही परिणाम मिलता है, अर्थात 1 + 100 = 2 + 99 = 3 + 98 = ..., और चूंकि ये योग ठीक 50 (100 / 2) होंगे, तो सही उत्तर प्राप्त करने के लिए, 50 को 101 से गुणा करना पर्याप्त है।

उदाहरण #6: n से m . तक के पदों का योग

अंकगणितीय प्रगति के योग का एक अन्य विशिष्ट उदाहरण निम्नलिखित है: संख्याओं की एक श्रृंखला दी गई है: 3, 7, 11, 15, ..., आपको यह पता लगाना होगा कि 8 से 14 तक के पदों का योग क्या होगा।

समस्या का समाधान दो तरह से होता है। उनमें से पहले में 8 से 14 तक अज्ञात शब्दों को खोजना और फिर उन्हें क्रमिक रूप से जोड़ना शामिल है। चूंकि कुछ शब्द हैं, इसलिए यह विधि पर्याप्त श्रमसाध्य नहीं है। फिर भी, इस समस्या को दूसरी विधि द्वारा हल करने का प्रस्ताव है, जो अधिक सार्वभौमिक है।

विचार m और n के बीच बीजीय प्रगति के योग के लिए एक सूत्र प्राप्त करना है, जहां n> m पूर्णांक हैं। दोनों स्थितियों के लिए, हम योग के लिए दो व्यंजक लिखते हैं:

  1. एस एम \u003d एम * (ए एम + ए 1) / 2।
  2. एस एन \u003d एन * (ए एन + ए 1) / 2।

चूंकि n > m, यह स्पष्ट है कि 2 योग में पहली राशि शामिल है। अंतिम निष्कर्ष का अर्थ है कि यदि हम इन योगों के बीच के अंतर को लेते हैं, और इसमें शब्द m जोड़ते हैं (अंतर लेने की स्थिति में, इसे योग S n से घटाया जाता है), तो हमें समस्या का आवश्यक उत्तर मिलता है। हमारे पास है: एस एमएन \u003d एस एन - एस एम + ए एम \u003d एन * (ए 1 + ए एन) / 2 - एम * (ए 1 + ए एम) / 2 + ए एम \u003d ए 1 * (एन - एम) / 2 + ए एन * एन / 2 + ए एम * (1- एम / 2)। इस व्यंजक में n और m के लिए सूत्रों को स्थानापन्न करना आवश्यक है। तब हम प्राप्त करते हैं: एस एमएन = ए 1 * (एन - एम) / 2 + एन * (ए 1 + (एन -1) * डी) / 2 + (ए 1 + (एम -1) * डी) * (1 - एम / 2) = ए 1 * (एन - एम + 1) + डी * एन * (एन -1) / 2 + डी * (3 * एम - एम 2 - 2) / 2।

परिणामी सूत्र कुछ बोझिल है, हालांकि, योग S mn केवल n, m, a 1 और d पर निर्भर करता है। हमारे मामले में, a 1 = 3, d = 4, n = 14, m = 8. इन संख्याओं को प्रतिस्थापित करने पर, हम प्राप्त करते हैं: S mn = 301।

जैसा कि उपरोक्त समाधानों से देखा जा सकता है, सभी समस्याएँ nवें पद के व्यंजक के ज्ञान और प्रथम पदों के समुच्चय के योग के सूत्र पर आधारित हैं। इससे पहले कि आप इनमें से किसी भी समस्या को हल करना शुरू करें, यह अनुशंसा की जाती है कि आप शर्त को ध्यान से पढ़ें, स्पष्ट रूप से समझें कि आप क्या खोजना चाहते हैं, और उसके बाद ही समाधान के साथ आगे बढ़ें।

एक और युक्ति सरलता के लिए प्रयास करना है, अर्थात, यदि आप जटिल गणितीय गणनाओं का उपयोग किए बिना प्रश्न का उत्तर दे सकते हैं, तो आपको बस यही करने की आवश्यकता है, क्योंकि इस मामले में गलती करने की संभावना कम है। उदाहरण के लिए, समाधान संख्या 6 के साथ एक अंकगणितीय प्रगति के उदाहरण में, कोई सूत्र S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m पर रुक सकता है, और सामान्य कार्य को अलग-अलग उप-कार्यों में विभाजित करें (इस मामले में, पहले n और m शब्द खोजें)।

यदि परिणाम के बारे में संदेह है, तो इसकी जांच करने की सिफारिश की जाती है, जैसा कि दिए गए कुछ उदाहरणों में किया गया था। एक अंकगणितीय प्रगति कैसे खोजें, पता चला। एक बार जब आप इसे समझ लेते हैं, तो यह इतना कठिन नहीं होता है।

पाठ प्रकार:नई सामग्री सीखना।

पाठ मकसद:

  • अंकगणितीय प्रगति का उपयोग करके हल किए गए कार्यों के बारे में छात्रों के विचारों का विस्तार और गहनता; अंकगणितीय प्रगति के पहले n सदस्यों के योग के लिए सूत्र प्राप्त करते समय छात्रों की खोज गतिविधि का संगठन;
  • नए ज्ञान को स्वतंत्र रूप से प्राप्त करने के लिए कौशल का विकास, कार्य को प्राप्त करने के लिए पहले से अर्जित ज्ञान का उपयोग करना;
  • प्राप्त तथ्यों को सामान्य बनाने की इच्छा और आवश्यकता का विकास, स्वतंत्रता का विकास।

कार्य:

  • "अंकगणित प्रगति" विषय पर मौजूदा ज्ञान का सामान्यीकरण और व्यवस्थितकरण;
  • अंकगणितीय प्रगति के पहले n सदस्यों के योग की गणना के लिए सूत्र प्राप्त करें;
  • विभिन्न समस्याओं को हल करने में प्राप्त सूत्रों को लागू करना सिखाएं;
  • संख्यात्मक व्यंजक का मान ज्ञात करने की प्रक्रिया की ओर विद्यार्थियों का ध्यान आकर्षित करें।

उपकरण:

  • समूहों और जोड़ियों में काम के लिए कार्यों के साथ कार्ड;
  • मूल्यांकन पत्र;
  • प्रस्तुतीकरण"अंकगणितीय प्रगति"।

I. बुनियादी ज्ञान की प्राप्ति।

1. जोड़े में स्वतंत्र कार्य।

पहला विकल्प:

एक अंकगणितीय प्रगति को परिभाषित करें। एक पुनरावर्ती सूत्र लिखिए जो अंकगणितीय प्रगति को परिभाषित करता है। समांतर श्रेणी का एक उदाहरण दीजिए और इसका अंतर बताइए।

दूसरा विकल्प:

समांतर श्रेणी के nवें पद का सूत्र लिखिए। समांतर श्रेणी का 100वाँ पद ज्ञात कीजिए ( एक}: 2, 5, 8 …
इस समय बोर्ड के पीछे दो छात्र एक ही प्रश्न के उत्तर तैयार कर रहे हैं।
छात्र बोर्ड के साथ तुलना करके पार्टनर के काम का मूल्यांकन करते हैं। (उत्तरों के साथ पत्रक सौंपे जाते हैं)।

2. खेल पल।

अभ्यास 1।

शिक्षक।मैंने कुछ अंकगणितीय प्रगति की कल्पना की। मुझसे केवल दो प्रश्न पूछें ताकि उत्तर के बाद आप जल्दी से इस प्रगति के 7वें सदस्य का नाम बता सकें। (1, 3, 5, 7, 9, 11, 13, 15…)

छात्रों से प्रश्न।

  1. प्रगति का छठा पद क्या है और क्या अंतर है?
  2. प्रगति का आठवां पद क्या है और क्या अंतर है?

यदि कोई और प्रश्न नहीं हैं, तो शिक्षक उन्हें उत्तेजित कर सकता है - d (अंतर) पर "प्रतिबंध", अर्थात यह पूछने की अनुमति नहीं है कि अंतर क्या है। आप प्रश्न पूछ सकते हैं: प्रगति का 6वाँ पद क्या है और प्रगति का 8वाँ पद क्या है?

कार्य 2.

बोर्ड पर 20 नंबर लिखे हैं: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

शिक्षक अपनी पीठ के साथ ब्लैकबोर्ड पर खड़ा है। छात्र नंबर की संख्या कहते हैं, और शिक्षक तुरंत नंबर पर ही कॉल करता है। समझाएं कि मैं इसे कैसे कर सकता हूं?

शिक्षक को nवें पद का सूत्र याद है ए एन \u003d 3n - 2और, n के दिए गए मानों को प्रतिस्थापित करते हुए, संबंधित मान पाता है एक ।

द्वितीय. शैक्षिक कार्य का विवरण।

मैं मिस्र के पपीरी में पाई जाने वाली दूसरी सहस्राब्दी ईसा पूर्व की एक पुरानी समस्या को हल करने का प्रस्ताव करता हूं।

काम:"आपको यह कहा जाए: जौ के 10 उपायों को 10 लोगों के बीच विभाजित करें, प्रत्येक व्यक्ति और उसके पड़ोसी के बीच का अंतर माप का 1/8 है।"

  • यह समस्या अंकगणितीय प्रगति के विषय से कैसे संबंधित है? (प्रत्येक अगले व्यक्ति को माप का 1/8 अधिक मिलता है, इसलिए अंतर d=1/8, 10 लोग, इसलिए n=10 है।)
  • आपको क्या लगता है संख्या 10 का क्या अर्थ है? (प्रगति के सभी सदस्यों का योग।)
  • समस्या की स्थिति के अनुसार जौ को विभाजित करना आसान और सरल बनाने के लिए आपको और क्या जानने की आवश्यकता है? (प्रगति का पहला कार्यकाल।)

पाठ उद्देश्य- उनकी संख्या, पहले पद और अंतर पर प्रगति की शर्तों के योग की निर्भरता प्राप्त करना और यह जांचना कि क्या प्राचीन काल में समस्या को सही ढंग से हल किया गया था।

सूत्र प्राप्त करने से पहले, आइए देखें कि प्राचीन मिस्रवासियों ने इस समस्या का समाधान कैसे किया।

और उन्होंने इसे इस तरह हल किया:

1) 10 उपाय: 10 = 1 उपाय - औसत हिस्सा;
2) 1 माप = 2 माप - दुगना औसतसाझा करना।
दोगुनी औसतशेयर पांचवें और छठे व्यक्ति के शेयरों का योग है।
3) 2 उपाय - 1/8 उपाय = 1 7/8 उपाय - पांचवें व्यक्ति के हिस्से का दोगुना।
4) 1 7/8: 2 = 5/16 - पाँचवे हिस्से का हिस्सा; और इसी तरह, आप प्रत्येक पिछले और बाद के व्यक्ति का हिस्सा पा सकते हैं।

हमें अनुक्रम मिलता है:

III. कार्य का समाधान।

1. समूहों में काम करें

पहला समूह: 20 क्रमागत प्राकृत संख्याओं का योग ज्ञात कीजिए : एस 20 \u003d (20 + 1) 10 \u003d 210।

सामान्य रूप में

द्वितीय समूह: 1 से 100 तक की प्राकृत संख्याओं का योग ज्ञात कीजिए (लीजेंड ऑफ लिटिल गॉस)।

एस 100 \u003d (1 + 100) 50 \u003d 5050

निष्कर्ष:

तृतीय समूह: 1 से 21 तक की प्राकृत संख्याओं का योग ज्ञात कीजिए।

हल: 1+21=2+20=3+19=4+18…

निष्कर्ष:

चतुर्थ समूह: 1 से 101 तक की प्राकृत संख्याओं का योग ज्ञात कीजिए।

निष्कर्ष:

मानी गई समस्याओं को हल करने की इस पद्धति को "गॉस विधि" कहा जाता है।

2. प्रत्येक समूह बोर्ड पर समस्या का समाधान प्रस्तुत करता है।

3. एक मनमानी अंकगणितीय प्रगति के लिए प्रस्तावित समाधानों का सामान्यीकरण:

ए 1, ए 2, ए 3,…, ए एन-2, ए एन-1, ए एन।
एस एन \u003d ए 1 + ए 2 + ए 3 + ए 4 + ... + ए एन -3 + ए एन -2 + ए एन -1 + ए एन।

हम इस राशि को इसी तरह तर्क देकर पाते हैं:

4. क्या हमने इस कार्य को हल कर लिया है?(हां।)

चतुर्थ। समस्याओं को हल करने में प्राप्त सूत्रों की प्राथमिक समझ और अनुप्रयोग।

1. सूत्र द्वारा किसी पुरानी समस्या के समाधान की जाँच करना।

2. विभिन्न समस्याओं को हल करने में सूत्र का अनुप्रयोग।

3. समस्याओं को हल करने में सूत्र को लागू करने की क्षमता के निर्माण के लिए व्यायाम।

ए) नंबर 613

दिया गया :( और n) -अंकगणितीय प्रगति;

(ए एन): 1, 2, 3, ..., 1500

ढूँढ़ने के लिए: एस 1500

फेसला: , और 1 = 1, और 1500 = 1500,

बी) दिया गया: ( और n) -अंकगणितीय प्रगति;
(और एन): 1, 2, 3, ...
एस एन = 210

ढूँढ़ने के लिए: एन
फेसला:

V. आपसी सत्यापन के साथ स्वतंत्र कार्य।

डेनिस एक कूरियर के रूप में काम करने गया था। पहले महीने में, उनका वेतन 200 रूबल था, बाद के प्रत्येक महीने में इसमें 30 रूबल की वृद्धि हुई। उसने एक साल में कितना कमाया?

दिया गया :( और n) -अंकगणितीय प्रगति;
ए 1 = 200, डी = 30, एन = 12
ढूँढ़ने के लिए: एस 12
फेसला:

उत्तर: डेनिस को वर्ष के लिए 4380 रूबल मिले।

VI. होमवर्क निर्देश।

  1. पृष्ठ 4.3 - सूत्र की व्युत्पत्ति सीखें।
  2. №№ 585, 623 .
  3. एक समस्या की रचना करें जिसे अंकगणितीय प्रगति के पहले n पदों के योग के सूत्र का उपयोग करके हल किया जाएगा।

सातवीं। पाठ को सारांशित करना।

1. स्कोर शीट

2. वाक्य जारी रखें

  • आज कक्षा में मैंने सीखा...
  • सीखे हुए फॉर्मूले...
  • मुझे लगता है कि …

3. क्या आप 1 से 500 तक की संख्याओं का योग ज्ञात कर सकते हैं? इस समस्या को हल करने के लिए आप किस विधि का प्रयोग करेंगे?

ग्रंथ सूची।

1. बीजगणित, 9वीं कक्षा। शिक्षण संस्थानों के लिए पाठ्यपुस्तक। ईडी। जी.वी. डोरोफीवा।मॉस्को: ज्ञानोदय, 2009।

एक अंकगणितीय प्रगति का योग।

एक अंकगणितीय प्रगति का योग एक साधारण बात है। अर्थ और सूत्र दोनों में। लेकिन इस विषय पर सभी प्रकार के कार्य हैं। प्राथमिक से लेकर काफी ठोस तक।

सबसे पहले, आइए योग के अर्थ और सूत्र से निपटें। और फिर हम फैसला करेंगे। अपनी खुशी के लिए।) योग का अर्थ कम करना जितना आसान है। एक अंकगणितीय प्रगति का योग ज्ञात करने के लिए, आपको बस इसके सभी सदस्यों को सावधानीपूर्वक जोड़ने की आवश्यकता है। यदि ये शब्द कम हैं, तो आप बिना किसी सूत्र के जोड़ सकते हैं। लेकिन अगर बहुत कुछ है, या बहुत कुछ है ... जोड़ कष्टप्रद है।) इस मामले में, सूत्र बचाता है।

योग सूत्र सरल है:

आइए जानें कि सूत्र में किस प्रकार के अक्षर शामिल हैं। इससे बहुत कुछ साफ हो जाएगा।

एस नहीं एक अंकगणितीय प्रगति का योग है। जोड़ परिणाम सबसदस्यों, साथ प्रथमपर अंतिम।क्या यह महत्वपूर्ण है। बिल्कुल जोड़ें सबएक पंक्ति में सदस्य, बिना अंतराल और छलांग के। और, बिल्कुल, से शुरू हो रहा है प्रथम।तीसरे और आठवें पदों का योग ज्ञात करने जैसी समस्याओं में, या पाँच से बीसवें पदों का योग ज्ञात करने पर, सूत्र का सीधा प्रयोग निराशाजनक होगा।)

एक 1 - प्रथमप्रगति के सदस्य। यहाँ सब कुछ स्पष्ट है, यह सरल है प्रथमपंक्ति नंबर।

एक- अंतिमप्रगति के सदस्य। पंक्ति की अंतिम संख्या। बहुत परिचित नाम नहीं है, लेकिन, जब राशि पर लागू किया जाता है, तो यह बहुत उपयुक्त होता है। तब आप खुद देख लेंगे।

एन अंतिम सदस्य की संख्या है। यह समझना महत्वपूर्ण है कि सूत्र में यह संख्या जोड़े गए सदस्यों की संख्या के साथ मेल खाता है।

आइए अवधारणा को परिभाषित करें अंतिमसदस्य एक. प्रश्न भरना: किस प्रकार का सदस्य होगा अंतिम,अगर दिया गया अनंतअंकगणितीय प्रगति?

एक आश्वस्त उत्तर के लिए, आपको अंकगणितीय प्रगति के प्रारंभिक अर्थ को समझने की आवश्यकता है और ... असाइनमेंट को ध्यान से पढ़ें!)

एक अंकगणितीय प्रगति का योग ज्ञात करने के कार्य में, अंतिम पद हमेशा प्रकट होता है (प्रत्यक्ष या परोक्ष रूप से), जो सीमित होना चाहिए।अन्यथा, एक सीमित, विशिष्ट राशि बस मौजूद नहीं है।समाधान के लिए, इससे कोई फर्क नहीं पड़ता कि किस प्रकार की प्रगति दी गई है: परिमित या अनंत। इससे कोई फर्क नहीं पड़ता कि यह कैसे दिया जाता है: संख्याओं की एक श्रृंखला द्वारा, या nवें सदस्य के सूत्र द्वारा।

सबसे महत्वपूर्ण बात यह समझना है कि सूत्र प्रगति के पहले पद से संख्या के साथ पद तक काम करता है एन।दरअसल, सूत्र का पूरा नाम इस तरह दिखता है: अंकगणितीय प्रगति के पहले n पदों का योग।इन सबसे पहले सदस्यों की संख्या, अर्थात्। एन, केवल कार्य द्वारा निर्धारित किया जाता है। कार्य में, यह सभी मूल्यवान जानकारी अक्सर एन्क्रिप्ट की जाती है, हाँ ... लेकिन कुछ भी नहीं, नीचे दिए गए उदाहरणों में हम इन रहस्यों को प्रकट करेंगे।)

अंकगणितीय प्रगति के योग के लिए कार्यों के उदाहरण।

सबसे पहले, उपयोगी जानकारी:

अंकगणितीय प्रगति के योग के लिए कार्यों में मुख्य कठिनाई सूत्र के तत्वों का सही निर्धारण है।

असाइनमेंट के लेखक इन तत्वों को असीमित कल्पना के साथ एन्क्रिप्ट करते हैं।) यहां मुख्य बात डरना नहीं है। तत्त्वों के सार को समझ लेना ही उन्हें समझने के लिए पर्याप्त है। आइए कुछ उदाहरणों को विस्तार से देखें। आइए एक वास्तविक GIA पर आधारित कार्य से शुरू करें।

1. अंकगणितीय प्रगति इस शर्त द्वारा दी गई है: a n = 2n-3.5। पहले 10 पदों का योग ज्ञात कीजिए।

अच्छी नौकरी। आसान।) सूत्र के अनुसार राशि निर्धारित करने के लिए, हमें क्या जानने की आवश्यकता है? प्रथम सदस्य एक 1, अंतिम अवधि एक, हाँ अंतिम पद की संख्या एन।

अंतिम सदस्य संख्या कहाँ से प्राप्त करें एन? हाँ, वहाँ, हालत में! यह कहता है कि योग खोजें पहले 10 सदस्य।अच्छा, यह कौन सा नंबर होगा अंतिम,दसवां सदस्य?) आपको विश्वास नहीं होगा, उसका नंबर दसवां है!) इसलिए, के बजाय एकहम सूत्र में स्थानापन्न करेंगे एक 10, लेकिन बदले एन- दस। फिर से, अंतिम सदस्य की संख्या सदस्यों की संख्या के समान होती है।

यह तय होना बाकी है एक 1और एक 10. यह nवें पद के सूत्र द्वारा आसानी से परिकलित किया जाता है, जो समस्या कथन में दिया गया है। पता नहीं कैसे करना है? पिछले पाठ पर जाएँ, इसके बिना - कुछ भी नहीं।

एक 1= 2 1 - 3.5 = -1.5

एक 10\u003d 2 10 - 3.5 \u003d 16.5

एस नहीं = एस 10.

हमने एक अंकगणितीय प्रगति के योग के लिए सूत्र के सभी तत्वों का अर्थ निकाला। यह उन्हें स्थानापन्न करने और गिनने के लिए बनी हुई है:

यही सब है इसके लिए। उत्तर : 75.

GIA पर आधारित एक अन्य कार्य। थोड़ा और जटिल:

2. एक समांतर श्रेणी (a n) दिया गया है, जिसका अंतर 3.7 है; ए 1 \u003d 2.3। पहले 15 पदों का योग ज्ञात कीजिए।

हम तुरंत योग सूत्र लिखते हैं:

यह सूत्र हमें किसी भी सदस्य का मूल्य उसकी संख्या से ज्ञात करने की अनुमति देता है। हम एक साधारण प्रतिस्थापन की तलाश में हैं:

ए 15 \u003d 2.3 + (15-1) 3.7 \u003d 54.1

यह एक अंकगणितीय प्रगति के योग के लिए सूत्र में सभी तत्वों को प्रतिस्थापित करने और उत्तर की गणना करने के लिए बनी हुई है:

उत्तर: 423.

वैसे, अगर योग सूत्र के बजाय एककेवल nवें पद के सूत्र को प्रतिस्थापित करें, हम प्राप्त करते हैं:

हम समान देते हैं, हमें अंकगणितीय प्रगति के सदस्यों के योग के लिए एक नया सूत्र मिलता है:

जैसा कि आप देख सकते हैं, यहां nवें पद की आवश्यकता नहीं है। एक. कुछ कार्यों में यह सूत्र बहुत मदद करता है, हाँ... आप इस सूत्र को याद रख सकते हैं। और आप इसे यहाँ की तरह सही समय पर आसानी से वापस ले सकते हैं। आखिरकार, योग का सूत्र और nवें पद का सूत्र हर तरह से याद रखना चाहिए।)

अब एक संक्षिप्त एन्क्रिप्शन के रूप में कार्य):

3. दो अंकों की सभी धनात्मक संख्याओं का योग ज्ञात कीजिए जो तीन के गुणज हैं।

कैसे! कोई पहला सदस्य नहीं, कोई अंतिम नहीं, कोई प्रगति नहीं ... कैसे जीना है!?

आपको अपने दिमाग से सोचना होगा और स्थिति से अंकगणितीय प्रगति के योग के सभी तत्वों को निकालना होगा। दो अंकों की संख्याएँ क्या हैं - हम जानते हैं। इनमें दो अंक होते हैं।) दो अंकों की संख्या क्या होगी प्रथम? 10, संभवतः।) आखिरी चीजदो अंकों की संख्या? 99, बिल्कुल! तीन अंकों वाले उसका अनुसरण करेंगे ...

तीन के गुणज... हम्म... ये वो संख्याएँ हैं जो तीन से समान रूप से विभाज्य हैं, यहाँ! दस तीन से विभाज्य नहीं है, 11 विभाज्य नहीं है... 12... विभाज्य है! तो कुछ सामने आ रहा है। आप समस्या की स्थिति के अनुसार पहले से ही एक श्रृंखला लिख ​​सकते हैं:

12, 15, 18, 21, ... 96, 99.

क्या यह श्रृंखला एक अंकगणितीय प्रगति होगी? निश्चित रूप से! प्रत्येक शब्द पिछले एक से सख्ती से तीन से भिन्न होता है। यदि पद में 2, या 4 जोड़ दिया जाए, मान लीजिए, परिणाम, अर्थात्। एक नई संख्या अब 3 से विभाजित नहीं होगी। आप ढेर में अंकगणितीय प्रगति के अंतर को तुरंत निर्धारित कर सकते हैं: डी = 3.उपयोगी!)

इसलिए, हम कुछ प्रगति मापदंडों को सुरक्षित रूप से लिख सकते हैं:

संख्या क्या होगी एनअंतिम सदस्य? जो कोई भी यह सोचता है कि 99 को घातक रूप से गलत माना जाता है ... संख्याएं - वे हमेशा एक पंक्ति में जाती हैं, और हमारे सदस्य शीर्ष तीन पर कूद जाते हैं। वे मेल नहीं खाते।

यहां दो समाधान हैं। सुपर मेहनती के लिए एक तरीका है। आप प्रगति, संख्याओं की पूरी श्रृंखला को चित्रित कर सकते हैं, और अपनी उंगली से शब्दों की संख्या गिन सकते हैं।) दूसरा तरीका विचारशील के लिए है। आपको nवें पद का सूत्र याद रखना होगा। यदि सूत्र को हमारी समस्या पर लागू किया जाता है, तो हम पाते हैं कि 99 प्रगति का तीसवां सदस्य है। वे। एन = 30।

हम एक अंकगणितीय प्रगति के योग के सूत्र को देखते हैं:

हम देखते हैं और आनन्दित होते हैं।) हमने समस्या की स्थिति से राशि की गणना के लिए आवश्यक सब कुछ निकाला:

एक 1= 12.

एक 30= 99.

एस नहीं = एस 30.

जो बचता है वह प्राथमिक अंकगणित है। सूत्र में संख्याओं को प्रतिस्थापित करें और गणना करें:

उत्तर: 1665

एक अन्य प्रकार की लोकप्रिय पहेलियाँ:

4. एक समांतर श्रेढ़ी दी गई है:

-21,5; -20; -18,5; -17; ...

बीसवें से चौंतीसवें तक पदों का योग ज्ञात कीजिए।

हम योग सूत्र को देखते हैं और ... हम परेशान हैं।) सूत्र, मैं आपको याद दिला दूं, योग की गणना करता है पहले सेसदस्य। और समस्या में आपको योग की गणना करने की आवश्यकता है बीसवीं के बाद से...फॉर्मूला काम नहीं करेगा।

आप निश्चित रूप से, पूरी प्रगति को एक पंक्ति में चित्रित कर सकते हैं, और शर्तों को 20 से 34 तक रख सकते हैं। लेकिन ... किसी तरह यह मूर्खतापूर्ण और लंबे समय के लिए निकलता है, है ना?)

एक और अधिक सुरुचिपूर्ण समाधान है। आइए अपनी श्रृंखला को दो भागों में विभाजित करें। पहला भाग होगा पहले कार्यकाल से उन्नीसवीं तक।दूसरा हिस्सा - बीस से चौंतीस।यह स्पष्ट है कि यदि हम पहले भाग के पदों के योग की गणना करें एस 1-19, चलिए इसे दूसरे भाग के सदस्यों के योग में जोड़ते हैं एस 20-34, हमें पहले पद से चौंतीस तक की प्रगति का योग मिलता है एस 1-34. ऐशे ही:

एस 1-19 + एस 20-34 = एस 1-34

इससे पता चलता है कि योग खोजने के लिए एस 20-34सरल घटाव द्वारा किया जा सकता है

एस 20-34 = एस 1-34 - एस 1-19

दाहिनी ओर दोनों राशियों को माना जाता है पहले सेसदस्य, यानी मानक योग सूत्र उन पर काफी लागू होता है। क्या हम शुरुआत कर रहे हैं?

हम कार्य स्थिति से प्रगति पैरामीटर निकालते हैं:

डी = 1.5।

एक 1= -21,5.

पहले 19 और पहले 34 पदों के योग की गणना करने के लिए, हमें 19वें और 34वें पदों की आवश्यकता होगी। हम उन्हें nवें पद के सूत्र के अनुसार गिनते हैं, जैसा कि समस्या 2 में है:

एक 19\u003d -21.5 + (19-1) 1.5 \u003d 5.5

एक 34\u003d -21.5 + (34-1) 1.5 \u003d 28

वहाँ कुछ नहीं बचा है। 34 पदों के योग में से 19 पदों का योग घटाएं:

एस 20-34 = एस 1-34 - एस 1-19 = 110.5 - (-152) = 262.5

उत्तर: 262.5

एक महत्वपूर्ण नोट! इस समस्या को हल करने में एक बहुत ही उपयोगी विशेषता है। प्रत्यक्ष गणना के बजाय आपको क्या चाहिए (एस 20-34),हमने गिना क्या, ऐसा प्रतीत होता है, इसकी आवश्यकता नहीं है - एस 1-19।और फिर उन्होंने तय किया एस 20-34, पूर्ण परिणाम से अनावश्यक को हटाना। इस तरह के "कान के साथ झगड़ा" अक्सर बुरी पहेलियों में बचाता है।)

इस पाठ में, हमने उन समस्याओं पर विचार किया जिनके समाधान के लिए एक अंकगणितीय प्रगति के योग का अर्थ समझना पर्याप्त है। ठीक है, आपको कुछ सूत्रों को जानने की जरूरत है।)

प्रायोगिक उपकरण:

अंकगणितीय प्रगति के योग के लिए किसी भी समस्या को हल करते समय, मैं इस विषय से दो मुख्य सूत्रों को तुरंत लिखने की सलाह देता हूं।

nवें पद का सूत्र:

ये सूत्र आपको तुरंत बताएंगे कि समस्या को हल करने के लिए क्या देखना है, किस दिशा में सोचना है। मदद करता है।

और अब स्वतंत्र समाधान के लिए कार्य।

5. उन सभी दो अंकों वाली संख्याओं का योग ज्ञात कीजिए जो तीन से विभाज्य नहीं हैं।

कूल?) समस्या 4 के नोट में संकेत छिपा है। खैर, समस्या 3 मदद करेगी।

6. अंकगणितीय प्रगति इस शर्त द्वारा दी गई है: a 1 =-5.5; एक एन+1 = एक एन +0.5। पहले 24 पदों का योग ज्ञात कीजिए।

असामान्य?) यह एक आवर्तक सूत्र है। आप इसके बारे में पिछले पाठ में पढ़ सकते हैं। लिंक को नज़रअंदाज़ न करें, ऐसी पहेलियां अक्सर जीआईए में पाई जाती हैं।

7. वास्या ने छुट्टी के लिए पैसे बचाए। 4550 रूबल जितना! और मैंने सबसे प्यारे व्यक्ति (खुद को) को कुछ दिन की खुशी देने का फैसला किया)। अपने आप को कुछ भी नकारे बिना खूबसूरती से जिएं। पहले दिन 500 रूबल खर्च करें, और पिछले एक की तुलना में प्रत्येक बाद के दिन में 50 रूबल अधिक खर्च करें! जब तक पैसा खत्म नहीं हो जाता। वास्या के पास कितने दिन की खुशी थी?

क्या यह मुश्किल है?) कार्य 2 से एक अतिरिक्त सूत्र मदद करेगा।

उत्तर (अव्यवस्था में): 7, 3240, 6.

अगर आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।

प्रथम स्तर

अंकगणितीय प्रगति। उदाहरणों के साथ विस्तृत सिद्धांत (2019)

संख्यात्मक अनुक्रम

तो चलिए बैठ जाते हैं और कुछ नंबर लिखना शुरू करते हैं। उदाहरण के लिए:
आप कोई भी संख्या लिख ​​सकते हैं, और जितने चाहें उतने हो सकते हैं (हमारे मामले में, उन्हें)। हम चाहे कितनी भी संख्याएँ लिख लें, हम हमेशा कह सकते हैं कि उनमें से कौन पहली है, कौन सी दूसरी है, और इसी तरह आखिरी तक, यानी हम उन्हें संख्या दे सकते हैं। यह एक संख्या अनुक्रम का एक उदाहरण है:

संख्यात्मक अनुक्रम
उदाहरण के लिए, हमारे अनुक्रम के लिए:

निर्दिष्ट संख्या केवल एक अनुक्रम संख्या के लिए विशिष्ट है। दूसरे शब्दों में, अनुक्रम में तीन सेकंड की संख्या नहीं है। दूसरी संख्या (जैसे -th संख्या) हमेशा समान होती है।
संख्या वाली संख्या को अनुक्रम का -वाँ सदस्य कहा जाता है।

हम आम तौर पर पूरे अनुक्रम को कुछ अक्षर कहते हैं (उदाहरण के लिए,), और इस अनुक्रम के प्रत्येक सदस्य - इस सदस्य की संख्या के बराबर एक सूचकांक के साथ एक ही अक्षर:।

हमारे मामले में:

मान लीजिए कि हमारे पास एक संख्यात्मक अनुक्रम है जिसमें आसन्न संख्याओं के बीच का अंतर समान और बराबर है।
उदाहरण के लिए:

आदि।
इस तरह के संख्यात्मक अनुक्रम को अंकगणितीय प्रगति कहा जाता है।
शब्द "प्रगति" रोमन लेखक बोथियस द्वारा 6 वीं शताब्दी की शुरुआत में पेश किया गया था और इसे व्यापक अर्थों में एक अंतहीन संख्यात्मक अनुक्रम के रूप में समझा गया था। "अंकगणित" नाम को निरंतर अनुपात के सिद्धांत से स्थानांतरित किया गया था, जिसमें प्राचीन यूनानी लगे हुए थे।

यह एक संख्यात्मक अनुक्रम है, जिसका प्रत्येक सदस्य पिछले एक के बराबर है, उसी संख्या के साथ जोड़ा जाता है। इस संख्या को अंकगणितीय प्रगति का अंतर कहा जाता है और इसे निरूपित किया जाता है।

यह निर्धारित करने का प्रयास करें कि कौन से संख्या क्रम एक अंकगणितीय प्रगति हैं और कौन से नहीं हैं:

ए)
बी)
सी)
डी)

समझ गया? हमारे उत्तरों की तुलना करें:
एकअंकगणितीय प्रगति - बी, सी।
क्या नहीं हैअंकगणितीय प्रगति - ए, डी।

आइए दी गई प्रगति () पर लौटते हैं और इसके वें सदस्य का मान ज्ञात करने का प्रयास करते हैं। अस्तित्व दोइसे खोजने का तरीका।

1. विधि

हम प्रगति संख्या के पिछले मान में तब तक जोड़ सकते हैं जब तक हम प्रगति के वें पद तक नहीं पहुंच जाते। यह अच्छा है कि हमारे पास संक्षेप में बताने के लिए बहुत कुछ नहीं है - केवल तीन मान:

तो, वर्णित अंकगणितीय प्रगति के -वें सदस्य के बराबर है।

2. विधि

क्या होगा यदि हमें प्रगति के वें पद का मूल्य ज्ञात करना है? योग करने में हमें एक घंटे से अधिक का समय लगता, और यह एक तथ्य नहीं है कि संख्याओं को जोड़ते समय हमने गलतियाँ नहीं की होंगी।
बेशक, गणितज्ञ एक ऐसा तरीका लेकर आए हैं जिसमें आपको अंकगणितीय प्रगति के अंतर को पिछले मान से जोड़ने की आवश्यकता नहीं है। खींचे गए चित्र को ध्यान से देखें ... निश्चित रूप से आपने पहले से ही एक निश्चित पैटर्न पर ध्यान दिया है, अर्थात्:

उदाहरण के लिए, आइए देखें कि इस अंकगणितीय प्रगति के -वें सदस्य का मूल्य क्या है:


दूसरे शब्दों में:

इस तरह से स्वतंत्र रूप से इस अंकगणितीय प्रगति के एक सदस्य के मूल्य को खोजने का प्रयास करें।

परिकलित? उत्तर के साथ अपनी प्रविष्टियों की तुलना करें:

ध्यान दें कि आपको पिछली विधि की तरह ही वही संख्या मिली है, जब हमने अंकगणितीय प्रगति के सदस्यों को पिछले मान में क्रमिक रूप से जोड़ा था।
आइए इस सूत्र को "प्रतिरूपित" करने का प्रयास करें - हम इसे एक सामान्य रूप में लाते हैं और प्राप्त करते हैं:

अंकगणितीय प्रगति समीकरण।

अंकगणितीय प्रगति या तो बढ़ रही है या घट रही है।

की बढ़ती- प्रगति जिसमें शर्तों के प्रत्येक बाद के मूल्य पिछले एक से अधिक है।
उदाहरण के लिए:

अवरोही- प्रगति जिसमें शर्तों के प्रत्येक बाद के मूल्य पिछले एक से कम है।
उदाहरण के लिए:

व्युत्पन्न सूत्र का उपयोग अंकगणितीय प्रगति के बढ़ते और घटते दोनों पदों की गणना में किया जाता है।
आइए इसे व्यवहार में देखें।
हमें निम्नलिखित संख्याओं से मिलकर एक अंकगणितीय प्रगति दी गई है:


तब से:

इस प्रकार, हम आश्वस्त थे कि यह सूत्र अंकगणितीय प्रगति को घटाने और बढ़ाने दोनों में काम करता है।
इस अंकगणितीय प्रगति के -वें और -वें सदस्यों को स्वयं खोजने का प्रयास करें।

आइए परिणामों की तुलना करें:

अंकगणितीय प्रगति संपत्ति

आइए कार्य को जटिल करें - हम एक अंकगणितीय प्रगति की संपत्ति प्राप्त करते हैं।
मान लीजिए कि हमें निम्नलिखित शर्त दी गई है:
- अंकगणितीय प्रगति, मान ज्ञात कीजिए।
यह आसान है, आप कहते हैं, और उस सूत्र के अनुसार गिनना शुरू करें जिसे आप पहले से जानते हैं:

चलो, ए, फिर:

बिल्कुल सही। यह पता चला है कि हम पहले पाते हैं, फिर इसे पहले नंबर में जोड़ते हैं और हम जो खोज रहे हैं उसे प्राप्त करते हैं। यदि प्रगति को छोटे मूल्यों द्वारा दर्शाया जाता है, तो इसमें कुछ भी जटिल नहीं है, लेकिन क्या होगा यदि हमें इस स्थिति में संख्याएं दी जाएं? सहमत हूं, गणना में गलती होने की संभावना है।
अब सोचो, क्या किसी सूत्र का प्रयोग करके इस समस्या को एक चरण में हल करना संभव है? बेशक, हाँ, और हम इसे अभी बाहर लाने का प्रयास करेंगे।

हम अंकगणितीय प्रगति के वांछित पद को निरूपित करते हैं, जैसा कि हम इसे खोजने के लिए सूत्र जानते हैं - यह वही सूत्र है जो हमने शुरुआत में प्राप्त किया था:
, तब:

  • प्रगति का पिछला सदस्य है:
  • प्रगति का अगला पद है:

आइए प्रगति के पिछले और अगले सदस्यों का योग करें:

यह पता चला है कि प्रगति के पिछले और बाद के सदस्यों का योग उनके बीच स्थित प्रगति के सदस्य के मूल्य से दोगुना है। दूसरे शब्दों में, ज्ञात पिछले और लगातार मूल्यों के साथ प्रगति सदस्य के मूल्य को खोजने के लिए, उन्हें जोड़ना और विभाजित करना आवश्यक है।

यह सही है, हमें वही नंबर मिला है। आइए सामग्री को ठीक करें। प्रगति के लिए मूल्य की गणना स्वयं करें, क्योंकि यह बिल्कुल भी कठिन नहीं है।

बहुत अच्छा! आप प्रगति के बारे में लगभग सब कुछ जानते हैं! यह केवल एक सूत्र का पता लगाना बाकी है, जो कि किंवदंती के अनुसार, सभी समय के महानतम गणितज्ञों में से एक, "गणितज्ञों के राजा" - कार्ल गॉस, आसानी से खुद के लिए निकाले गए ...

जब कार्ल गॉस 9 वर्ष का था, शिक्षक, अन्य कक्षाओं के छात्रों के काम की जाँच में व्यस्त, ने पाठ में निम्नलिखित कार्य पूछा: "सभी प्राकृतिक संख्याओं के योग की गणना करें (अन्य स्रोतों के अनुसार) समावेशी। " शिक्षक को क्या आश्चर्य हुआ जब उसके एक छात्र (वह कार्ल गॉस थे) ने एक मिनट के बाद कार्य का सही उत्तर दिया, जबकि डेयरडेविल के अधिकांश सहपाठियों ने लंबी गणना के बाद गलत परिणाम प्राप्त किया ...

यंग कार्ल गॉस ने एक पैटर्न देखा जिसे आप आसानी से देख सकते हैं।
मान लीजिए कि हमारे पास एक अंकगणितीय प्रगति है जिसमें -ti सदस्य शामिल हैं: हमें अंकगणितीय प्रगति के दिए गए सदस्यों का योग ज्ञात करना है। बेशक, हम मैन्युअल रूप से सभी मानों को जोड़ सकते हैं, लेकिन क्या होगा यदि हमें गॉस की तलाश में कार्य में इसकी शर्तों का योग खोजने की आवश्यकता है?

आइए हमें दी गई प्रगति को दर्शाते हैं। हाइलाइट की गई संख्याओं को ध्यान से देखें और उनके साथ विभिन्न गणितीय संक्रियाओं को करने का प्रयास करें।


कोशिश की? आपने क्या नोटिस किया? सही ढंग से! उनकी राशि बराबर है


अब उत्तर दीजिए, हमें दी गई प्रगति में ऐसे कितने जोड़े होंगे? बेशक, सभी संख्याओं का ठीक आधा, यानी।
इस तथ्य के आधार पर कि एक समान्तर श्रेणी के दो सदस्यों का योग बराबर है, और समान समान जोड़े हैं, हम पाते हैं कि कुल योग बराबर है:
.
इस प्रकार, किसी समांतर श्रेणी के प्रथम पदों के योग का सूत्र होगा:

कुछ समस्याओं में, हम वें पद को नहीं जानते हैं, लेकिन हम प्रगति के अंतर को जानते हैं। योग सूत्र, वें सदस्य के सूत्र में स्थानापन्न करने का प्रयास करें।
तुम्हें क्या मिला?

बहुत अच्छा! अब आइए उस समस्या पर लौटते हैं जो कार्ल गॉस को दी गई थी: अपने लिए गणना करें कि -वें से शुरू होने वाली संख्याओं का योग क्या है, और -वें से शुरू होने वाली संख्याओं का योग क्या है।

आपको कितना मिला?
गॉस ने पाया कि पदों का योग समान है, और पदों का योग है। क्या आपने ऐसा फैसला किया?

वास्तव में, अंकगणितीय प्रगति के सदस्यों के योग का सूत्र प्राचीन यूनानी वैज्ञानिक डायोफैंटस द्वारा तीसरी शताब्दी में सिद्ध किया गया था, और इस पूरे समय में, मजाकिया लोगों ने अंकगणितीय प्रगति के गुणों का उपयोग शक्ति और मुख्य के साथ किया।
उदाहरण के लिए, प्राचीन मिस्र और उस समय के सबसे बड़े निर्माण स्थल की कल्पना करें - एक पिरामिड का निर्माण ... आकृति इसका एक पक्ष दिखाती है।

आप कहते हैं कि यहां प्रगति कहां है? ध्यान से देखें और पिरामिड की दीवार की प्रत्येक पंक्ति में रेत के ब्लॉकों की संख्या में एक पैटर्न खोजें।


एक अंकगणितीय प्रगति क्यों नहीं? गिनें कि एक दीवार के निर्माण के लिए कितने ब्लॉकों की आवश्यकता है यदि ब्लॉक ईंटों को आधार में रखा जाए। मुझे आशा है कि आप मॉनिटर पर अपनी उंगली घुमाकर गिनती नहीं करेंगे, क्या आपको अंतिम सूत्र और अंकगणितीय प्रगति के बारे में हमने जो कुछ कहा है वह सब कुछ याद है?

इस मामले में, प्रगति इस तरह दिखती है:
अंकगणितीय प्रगति अंतर।
एक अंकगणितीय प्रगति के सदस्यों की संख्या।
आइए अपने डेटा को अंतिम फ़ार्मुलों में बदलें (हम 2 तरीकों से ब्लॉक की संख्या गिनते हैं)।

विधि 1।

विधि 2।

और अब आप मॉनिटर पर भी गणना कर सकते हैं: प्राप्त मूल्यों की तुलना हमारे पिरामिड में मौजूद ब्लॉकों की संख्या से करें। क्या यह सहमत था? अच्छा किया, आपने अंकगणितीय प्रगति के वें पदों के योग में महारत हासिल कर ली है।
बेशक, आप आधार पर ब्लॉक से पिरामिड नहीं बना सकते हैं, लेकिन कहां से? इस स्थिति के साथ दीवार बनाने के लिए कितनी रेत ईंटों की आवश्यकता है, इसकी गणना करने का प्रयास करें।
क्या आप संभाल पाओगे?
सही उत्तर ब्लॉक है:

कसरत करना

कार्य:

  1. माशा गर्मियों के लिए आकार में हो रही है। वह हर दिन स्क्वैट्स की संख्या में वृद्धि करती है। माशा हफ्तों में कितनी बार स्क्वाट करेगी अगर उसने पहली कसरत में स्क्वाट किया था।
  2. में निहित सभी विषम संख्याओं का योग क्या है?
  3. लॉग को स्टोर करते समय, लंबरजैक उन्हें इस तरह से स्टैक करते हैं कि प्रत्येक शीर्ष परत में पिछले वाले की तुलना में एक कम लॉग होता है। एक चिनाई में कितने लॉग होते हैं, यदि चिनाई का आधार लॉग है।

उत्तर:

  1. आइए हम अंकगणितीय प्रगति के मापदंडों को परिभाषित करें। इस मामले में
    (सप्ताह = दिन)।

    जवाब:दो सप्ताह में, माशा को दिन में एक बार बैठना चाहिए।

  2. पहली विषम संख्या, अंतिम संख्या।
    अंकगणितीय प्रगति अंतर।
    - आधे में विषम संख्याओं की संख्या, हालांकि, अंकगणितीय प्रगति के -वें सदस्य को खोजने के लिए सूत्र का उपयोग करके इस तथ्य की जांच करें:

    संख्याओं में विषम संख्याएँ होती हैं।
    हम उपलब्ध डेटा को सूत्र में प्रतिस्थापित करते हैं:

    जवाब:इसमें निहित सभी विषम संख्याओं का योग बराबर होता है।

  3. पिरामिड के बारे में समस्या को याद करें। हमारे मामले के लिए, चूंकि प्रत्येक शीर्ष परत एक लॉग से कम हो जाती है, केवल परतों का एक गुच्छा होता है, अर्थात।
    डेटा को सूत्र में बदलें:

    जवाब:चिनाई में लॉग हैं।

उपसंहार

  1. - एक संख्यात्मक अनुक्रम जिसमें आसन्न संख्याओं के बीच का अंतर समान और बराबर होता है। यह बढ़ रहा है और घट रहा है।
  2. सूत्र ढूँढनाअंकगणितीय प्रगति का वां सदस्य सूत्र द्वारा लिखा जाता है - , प्रगति में संख्याओं की संख्या कहां है।
  3. एक समान्तर श्रेणी के सदस्यों की संपत्ति- - कहाँ - प्रगति में संख्याओं की संख्या।
  4. एक समान्तर श्रेणी के सदस्यों का योगदो तरह से पाया जा सकता है:

    , जहां मूल्यों की संख्या है।

अंकगणितीय प्रगति। मध्य स्तर

संख्यात्मक अनुक्रम

आइए बैठें और कुछ संख्याएँ लिखना शुरू करें। उदाहरण के लिए:

आप कोई भी संख्या लिख ​​सकते हैं, और जितने चाहें उतने हो सकते हैं। लेकिन आप हमेशा बता सकते हैं कि उनमें से कौन पहला है, कौन सा दूसरा है, और इसी तरह, हम उन्हें नंबर दे सकते हैं। यह एक संख्या अनुक्रम का एक उदाहरण है।

संख्यात्मक अनुक्रमसंख्याओं का एक समूह है, जिनमें से प्रत्येक को एक अद्वितीय संख्या दी जा सकती है।

दूसरे शब्दों में, प्रत्येक संख्या को एक निश्चित प्राकृतिक संख्या से जोड़ा जा सकता है, और केवल एक। और हम इस नंबर को इस सेट से किसी अन्य नंबर को असाइन नहीं करेंगे।

संख्या वाली संख्या को अनुक्रम का -वाँ सदस्य कहा जाता है।

हम आम तौर पर पूरे अनुक्रम को कुछ अक्षर कहते हैं (उदाहरण के लिए,), और इस अनुक्रम के प्रत्येक सदस्य - इस सदस्य की संख्या के बराबर एक सूचकांक के साथ एक ही अक्षर:।

यह बहुत सुविधाजनक है यदि अनुक्रम का -वाँ सदस्य किसी सूत्र द्वारा दिया जा सकता है। उदाहरण के लिए, सूत्र

अनुक्रम सेट करता है:

और सूत्र निम्नलिखित अनुक्रम है:

उदाहरण के लिए, एक अंकगणितीय प्रगति एक अनुक्रम है (यहां पहला शब्द बराबर है, और अंतर)। या (, अंतर)।

nth टर्म फॉर्मूला

हम एक आवर्तक सूत्र को ऐसा सूत्र कहते हैं, जिसमें वें पद का पता लगाने के लिए, आपको पिछले या कई पिछले वाले को जानना होगा:

उदाहरण के लिए, इस तरह के एक सूत्र का उपयोग करके प्रगति का वां पद खोजने के लिए, हमें पिछले नौ की गणना करनी होगी। उदाहरण के लिए, चलो। फिर:

खैर, अब यह स्पष्ट है कि सूत्र क्या है?

प्रत्येक पंक्ति में, हम जोड़ते हैं, किसी संख्या से गुणा करते हैं। किस लिए? बहुत आसान: यह वर्तमान सदस्य माइनस की संख्या है:

अब और अधिक आरामदायक, है ना? हम जाँच:

अपने लिए तय करें:

एक समान्तर श्रेणी में, nवें पद का सूत्र ज्ञात कीजिए और सौवाँ पद ज्ञात कीजिए।

फेसला:

पहला पद बराबर है। और क्या अंतर है? और यहाँ क्या है:

(आखिरकार, इसे अंतर कहा जाता है क्योंकि यह प्रगति के क्रमिक सदस्यों के अंतर के बराबर है)।

तो सूत्र है:

तो सौवाँ पद है:

से सभी प्राकृत संख्याओं का योग क्या है?

किंवदंती के अनुसार, महान गणितज्ञ कार्ल गॉस ने 9 साल का लड़का होने के कारण कुछ ही मिनटों में इस राशि की गणना की। उन्होंने देखा कि पहली और अंतिम संख्या का योग समान है, दूसरी और अंतिम संख्या का योग समान है, अंत से तीसरे और तीसरे का योग समान है, और इसी तरह आगे भी। ऐसे कितने जोड़े हैं? यह सही है, सभी संख्याओं की आधी संख्या, यानी। इसलिए,

किसी भी अंकगणितीय प्रगति के पहले पदों के योग का सामान्य सूत्र होगा:

उदाहरण:
सभी दो अंकों के गुणजों का योग ज्ञात कीजिए।

फेसला:

ऐसा पहला नंबर है। प्रत्येक अगला पिछले एक में एक संख्या जोड़कर प्राप्त किया जाता है। इस प्रकार, हमारे लिए ब्याज की संख्या पहले पद और अंतर के साथ एक अंकगणितीय प्रगति बनाती है।

इस प्रगति के लिए वें पद का सूत्र है:

प्रगति में कितने पद हैं यदि वे सभी दो अंकों के होने चाहिए?

बहुत आसान: ।

प्रगति की अंतिम अवधि बराबर होगी। फिर योग:

जवाब: ।

अब आप स्वयं निर्णय लें:

  1. हर दिन एथलीट पिछले दिन की तुलना में 1 मी अधिक दौड़ता है। यदि वह पहले दिन किमी मीटर दौड़ता है तो वह सप्ताहों में कितने किलोमीटर दौड़ेगा?
  2. एक साइकिल चालक पिछले दिन की तुलना में प्रत्येक दिन अधिक मील की सवारी करता है। पहले दिन उन्होंने किमी की यात्रा की। एक किलोमीटर की दूरी तय करने के लिए उसे कितने दिन ड्राइव करना होगा? यात्रा के अंतिम दिन वह कितने किलोमीटर की यात्रा करेगा?
  3. स्टोर में एक रेफ्रिजरेटर की कीमत हर साल उतनी ही कम हो जाती है। निर्धारित करें कि एक रेफ्रिजरेटर की कीमत हर साल कितनी कम हो जाती है, अगर इसे रूबल के लिए बिक्री के लिए रखा जाता है, तो छह साल बाद इसे रूबल के लिए बेचा गया था।

उत्तर:

  1. यहां सबसे महत्वपूर्ण बात यह है कि अंकगणितीय प्रगति को पहचानना और उसके मापदंडों को निर्धारित करना है। इस मामले में, (सप्ताह = दिन)। आपको इस प्रगति की पहली शर्तों का योग निर्धारित करने की आवश्यकता है:
    .
    जवाब:
  2. यहाँ यह दिया गया है: इसे खोजना आवश्यक है।
    जाहिर है, आपको पिछली समस्या के समान योग सूत्र का उपयोग करने की आवश्यकता है:
    .
    मानों को प्रतिस्थापित करें:

    जड़ स्पष्ट रूप से फिट नहीं है, तो जवाब।
    आइए -वें पद के सूत्र का उपयोग करके अंतिम दिन में तय की गई दूरी की गणना करें:
    (किमी)।
    जवाब:

  3. दिया गया: । ढूँढ़ने के लिए: ।
    यह आसान नहीं होता है:
    (रगड़ना)।
    जवाब:

अंकगणितीय प्रगति। संक्षेप में मुख्य के बारे में

यह एक संख्यात्मक अनुक्रम है जिसमें आसन्न संख्याओं के बीच का अंतर समान और बराबर होता है।

अंकगणितीय प्रगति बढ़ रही है () और घट रही है ()।

उदाहरण के लिए:

अंकगणितीय प्रगति के n-वें सदस्य को खोजने का सूत्र

एक सूत्र के रूप में लिखा जाता है, जहाँ क्रम में संख्याओं की संख्या होती है।

एक समान्तर श्रेणी के सदस्यों की संपत्ति

यह प्रगति के सदस्य को ढूंढना आसान बनाता है यदि उसके पड़ोसी सदस्य ज्ञात हों - प्रगति में संख्याओं की संख्या कहां है।

एक समान्तर श्रेणी के सदस्यों का योग

राशि ज्ञात करने के दो तरीके हैं:

मूल्यों की संख्या कहां है।

मूल्यों की संख्या कहां है।

एक संख्यात्मक अनुक्रम की अवधारणा का तात्पर्य है कि प्रत्येक प्राकृतिक संख्या कुछ वास्तविक मूल्य से मेल खाती है। संख्याओं की ऐसी श्रृंखला मनमानी हो सकती है और इसमें कुछ गुण होते हैं - एक प्रगति। बाद के मामले में, अनुक्रम के प्रत्येक बाद के तत्व (सदस्य) की गणना पिछले एक का उपयोग करके की जा सकती है।

एक अंकगणितीय प्रगति संख्यात्मक मूल्यों का एक क्रम है जिसमें इसके पड़ोसी सदस्य एक ही संख्या से एक दूसरे से भिन्न होते हैं (श्रृंखला के सभी तत्व, 2 से शुरू होकर, समान संपत्ति रखते हैं)। यह संख्या - पिछले और बाद के सदस्य के बीच का अंतर - स्थिर है और इसे प्रगति अंतर कहा जाता है।

प्रगति अंतर: परिभाषा

एक अनुक्रम पर विचार करें जिसमें j मान A = a(1), a(2), a(3), a(4) … a(j), j हैं जो प्राकृतिक संख्याओं N के सेट से संबंधित हैं। एक अंकगणितीय प्रगति, इसकी परिभाषा के अनुसार, एक अनुक्रम है, जिसमें a(3) - a(2) = a(4) - a(3) = a(5) - a(4) = ... = a(j) - ए (जे -1) = डी। d का मान इस प्रगति का वांछित अंतर है।

डी = ए (जे) - ए (जे -1)।

आवंटित करें:

  • एक बढ़ती हुई प्रगति, जिस स्थिति में d> 0. उदाहरण: 4, 8, 12, 16, 20, ...
  • घटती प्रगति, फिर d< 0. Пример: 18, 13, 8, 3, -2, …

प्रगति और उसके मनमाने तत्वों का अंतर

यदि प्रगति के 2 मनमाने सदस्य (i-th, k-th) ज्ञात हैं, तो इस अनुक्रम के लिए अंतर संबंध के आधार पर स्थापित किया जा सकता है:

a(i) = a(k) + (i - k)*d, इसलिए d = (a(i) - a(k))/(i-k)।

प्रगति अंतर और इसका पहला कार्यकाल

यह अभिव्यक्ति अज्ञात मान को केवल उन मामलों में निर्धारित करने में मदद करेगी जहां अनुक्रम तत्व की संख्या ज्ञात है।

प्रगति अंतर और उसका योग

किसी प्रगति का योग उसके सदस्यों का योग होता है। इसके पहले j तत्वों के कुल मान की गणना करने के लिए, संबंधित सूत्र का उपयोग करें:

S(j) =((a(1) + a(j))/2)*j, लेकिन चूँकि a(j) = a(1) + d(j – 1), तब S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.