लघुगणक क्या है

(ग्रीक λόγος से - "शब्द", "संबंध" और ἀριθμός - "संख्या") संख्या बीवजह से (लॉग α बी) को ऐसी संख्या कहा जाता है सी, और बी= एसी, वह है, लॉग α बी=सीऔर बी = एसीसमकक्ष हैं। लॉगरिदम समझ में आता है अगर a> 0, a 1, b> 0।

दूसरे शब्दों में लोगारित्मनंबर बीवजह से एक घातांक के रूप में तैयार किया गया है जिसके लिए एक संख्या को उठाया जाना चाहिए नंबर पाने के लिए बी(लघुगणक केवल सकारात्मक संख्याओं के लिए मौजूद है)।

इस सूत्रीकरण से यह निष्कर्ष निकलता है कि परिकलन x= log α बी, समीकरण a x =b को हल करने के बराबर है।

उदाहरण के लिए:

लॉग 2 8 = 3 क्योंकि 8=2 3 .

हम ध्यान दें कि लघुगणक का संकेतित सूत्रीकरण तुरंत निर्धारित करना संभव बनाता है लघुगणक मानजब लघुगणक के चिन्ह के नीचे की संख्या आधार की एक निश्चित शक्ति होती है। वास्तव में, लघुगणक का निरूपण यह उचित ठहराना संभव बनाता है कि यदि बी = एक सी, तो संख्या का लघुगणक बीवजह से बराबरी साथ. यह भी स्पष्ट है कि लघुगणक का विषय विषय से निकटता से संबंधित है संख्या की डिग्री.

लघुगणक की गणना को संदर्भित किया जाता है लोगारित्म. लघुगणक एक लघुगणक लेने की गणितीय क्रिया है। लघुगणक लेते समय, कारकों के उत्पाद शब्दों के योग में बदल जाते हैं।

क्षमतालॉगरिदम के विपरीत गणितीय ऑपरेशन है। पोटेंशियेटिंग करते समय, दिए गए आधार को उस अभिव्यक्ति की शक्ति तक बढ़ा दिया जाता है जिस पर पोटेंशिएशन किया जाता है। इस मामले में, शब्दों का योग कारकों के उत्पाद में बदल जाता है।

अक्सर, आधार 2 (बाइनरी), ई यूलर संख्या ई 2.718 (प्राकृतिक लघुगणक) और 10 (दशमलव) के साथ वास्तविक लघुगणक का उपयोग किया जाता है।

इस स्तर पर, यह विचार करने योग्य है लघुगणक के नमूनेलॉग 7 2 , एलएन 5, एलजी0.0001.

और प्रविष्टियाँ lg (-3), log -3 3.2, log -1 -4.3 का कोई मतलब नहीं है, क्योंकि उनमें से पहले में एक ऋणात्मक संख्या लघुगणक के चिन्ह के नीचे रखी गई है, दूसरे में - एक ऋणात्मक संख्या आधार, और तीसरे में - और आधार में लघुगणक और इकाई के संकेत के तहत एक ऋणात्मक संख्या।

लघुगणक के निर्धारण के लिए शर्तें।

ए> 0, ए 1, बी> 0 शर्तों पर अलग से विचार करना उचित है। लघुगणक की परिभाषा।आइए विचार करें कि ये प्रतिबंध क्यों लिए गए हैं। यह हमें x = log α . के रूप की समानता में सहायता करेगा बी, जिसे मूल लघुगणकीय पहचान कहा जाता है, जो सीधे ऊपर दिए गए लघुगणक की परिभाषा का अनुसरण करता है।

शर्त लो ए≠1. चूँकि एक किसी भी घात के बराबर है, तो समानता x=log α बीकेवल तभी मौजूद हो सकता है जब ख = 1, लेकिन लॉग 1 1 कोई भी वास्तविक संख्या होगी। इस अस्पष्टता को दूर करने के लिए, हम लेते हैं ए≠1.

आइए हम शर्त की आवश्यकता को साबित करें ए>0. पर ए = 0लघुगणक के निर्माण के अनुसार, केवल तभी मौजूद हो सकता है जब बी = 0. और फिर तदनुसार लॉग 0 0कोई भी शून्येतर वास्तविक संख्या हो सकती है, क्योंकि शून्य से किसी भी शून्येतर घात शून्य होती है। इस अस्पष्टता को दूर करने के लिए शर्त ए≠0. और जब ए<0 हमें लघुगणक के तर्कसंगत और अपरिमेय मूल्यों के विश्लेषण को अस्वीकार करना होगा, क्योंकि तर्कसंगत और अपरिमेय घातांक वाले घातांक को केवल गैर-ऋणात्मक आधारों के लिए परिभाषित किया गया है। यही कारण है कि स्थिति ए>0.

और आखिरी शर्त ख>0असमानता से अनुसरण करता है ए>0, क्योंकि x=लॉग α बी, और एक सकारात्मक आधार के साथ डिग्री का मान हमेशा सकारात्मक।

लघुगणक की विशेषताएं।

लघुगणकविशिष्ट द्वारा विशेषता विशेषताएँ, जिसके कारण श्रमसाध्य गणनाओं को सुविधाजनक बनाने के लिए उनका व्यापक उपयोग हुआ। "लघुगणक की दुनिया में" संक्रमण में, गुणन एक बहुत आसान जोड़ में बदल जाता है, विभाजन घटाव में, और एक शक्ति में वृद्धि और एक जड़ को क्रमशः एक घातांक द्वारा गुणा और विभाजन में बदल दिया जाता है।

लघुगणक का निर्माण और उनके मूल्यों की एक तालिका (त्रिकोणमितीय कार्यों के लिए) पहली बार 1614 में स्कॉटिश गणितज्ञ जॉन नेपियर द्वारा प्रकाशित की गई थी। अन्य वैज्ञानिकों द्वारा विस्तृत और विस्तृत लघुगणक तालिकाएँ वैज्ञानिक और इंजीनियरिंग गणनाओं में व्यापक रूप से उपयोग की जाती थीं, और तब तक प्रासंगिक बनी रहीं जब तक कि इलेक्ट्रॉनिक कैलकुलेटर और कंप्यूटर का उपयोग शुरू नहीं हुआ।


इस लेख का फोकस है लोगारित्म. यहां हम लघुगणक की परिभाषा देंगे, स्वीकृत संकेतन दिखाएंगे, लघुगणक के उदाहरण देंगे, और प्राकृतिक और दशमलव लघुगणक के बारे में बात करेंगे। उसके बाद, मूल लघुगणकीय पहचान पर विचार करें।

पृष्ठ नेविगेशन।

लघुगणक की परिभाषा

एक लघुगणक की अवधारणा तब उत्पन्न होती है जब किसी समस्या को एक निश्चित अर्थ में उलटा हल किया जाता है, जब आपको डिग्री के ज्ञात मूल्य और ज्ञात आधार से घातांक खोजने की आवश्यकता होती है।

लेकिन पर्याप्त प्रस्तावना, "लघुगणक क्या है" प्रश्न का उत्तर देने का समय आ गया है? आइए एक उपयुक्त परिभाषा दें।

परिभाषा।

b से आधार a . का लघुगणक, जहां a>0 , a≠1 और b>0 वह घातांक है जिसके परिणामस्वरूप आपको b प्राप्त करने के लिए संख्या a को बढ़ाने की आवश्यकता होती है।

इस स्तर पर, हम ध्यान दें कि बोले गए शब्द "लघुगणक" को तुरंत दो आगामी प्रश्न उठाने चाहिए: "कौन सी संख्या" और "किस आधार पर।" दूसरे शब्दों में, कोई लघुगणक नहीं होता है, लेकिन किसी आधार में किसी संख्या का केवल लघुगणक होता है।

हम तुरंत परिचय देंगे लघुगणक संकेतन: आधार a से संख्या b का लघुगणक आमतौर पर log a b के रूप में दर्शाया जाता है। आधार ई से संख्या बी के लघुगणक और आधार 10 के लघुगणक के अपने विशेष पदनाम क्रमशः lnb और lgb हैं, अर्थात, वे log e b नहीं, बल्कि lnb लिखते हैं, और लॉग 10 b नहीं, बल्कि lgb लिखते हैं।

अब आप ला सकते हैं: .
और रिकॉर्ड इसका कोई मतलब नहीं है, क्योंकि उनमें से पहले में लघुगणक के संकेत के तहत एक ऋणात्मक संख्या है, दूसरे में - आधार में एक ऋणात्मक संख्या, और तीसरे में - लघुगणक के संकेत के तहत एक ऋणात्मक संख्या और दोनों आधार में एक इकाई।

अब बात करते हैं लघुगणक पढ़ने के नियम. प्रविष्टि लॉग a b को "b से आधार a के लघुगणक" के रूप में पढ़ा जाता है। उदाहरण के लिए, लॉग 2 3 तीन से आधार 2 का लघुगणक है, और पांच के वर्गमूल के दो आधार तिहाई के दो पूर्णांकों का लघुगणक है। आधार e का लघुगणक कहलाता है प्राकृतिक, और संकेतन lnb को "b के प्राकृतिक लघुगणक" के रूप में पढ़ा जाता है। उदाहरण के लिए, ln7 सात का प्राकृतिक लघुगणक है, और हम इसे pi के प्राकृतिक लघुगणक के रूप में पढ़ेंगे। आधार 10 के लघुगणक का भी एक विशेष नाम है - दशमलव लघुगणक, और संकेतन lgb को "दशमलव लघुगणक b" के रूप में पढ़ा जाता है। उदाहरण के लिए, lg1 एक का दशमलव लघुगणक है, और lg2.75 दो दशमलव पचहत्तर सौवें का दशमलव लघुगणक है।

यह शर्तों पर अलग से रहने लायक है a>0, a≠1 तथा b>0, जिसके तहत लघुगणक की परिभाषा दी गई है। आइए बताते हैं कि ये प्रतिबंध कहां से आते हैं। ऐसा करने के लिए, हमें फॉर्म की समानता से मदद मिलेगी, जिसे कहा जाता है, जो ऊपर दिए गए लॉगरिदम की परिभाषा से सीधे अनुसरण करता है।

आइए a≠1 से शुरू करें। चूँकि एक किसी भी घात के बराबर है, तो समानता केवल b=1 के लिए ही सही हो सकती है, लेकिन log 1 1 कोई भी वास्तविक संख्या हो सकती है। इस अस्पष्टता से बचने के लिए, a≠1 स्वीकार किया जाता है।

आइए हम शर्त a>0 की समीचीनता की पुष्टि करें। a=0 के साथ, लघुगणक की परिभाषा के अनुसार, हमारे पास समानता होगी, जो केवल b=0 के साथ ही संभव है। लेकिन फिर लॉग 0 0 कोई भी गैर-शून्य वास्तविक संख्या हो सकती है, क्योंकि शून्य से किसी भी गैर-शून्य शक्ति शून्य है। a≠0 की स्थिति से इस अस्पष्टता से बचा जा सकता है। और एक के लिए<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

अंत में, स्थिति b>0 असमानता a>0 से अनुसरण करती है, क्योंकि, और एक सकारात्मक आधार के साथ डिग्री का मान हमेशा सकारात्मक होता है।

इस पैराग्राफ के निष्कर्ष में, हम कहते हैं कि लॉगरिदम की आवाज वाली परिभाषा आपको लॉगरिदम के मूल्य को तुरंत इंगित करने की अनुमति देती है जब लॉगरिदम के संकेत के तहत संख्या एक निश्चित डिग्री आधार होती है। वास्तव में, लघुगणक की परिभाषा हमें यह दावा करने की अनुमति देती है कि यदि b=a p , तो आधार a से संख्या b का लघुगणक p के बराबर है। अर्थात्, समता लघुगणक a a p =p सत्य है। उदाहरण के लिए, हम जानते हैं कि 2 3 =8, फिर 2 8=3 लॉग करें। हम इस बारे में लेख में और बात करेंगे।

समाज के विकास के साथ-साथ उत्पादन की जटिलता, गणित का भी विकास हुआ। सरल से जटिल की ओर गति। जोड़ और घटाव की सामान्य लेखांकन पद्धति से, उनकी बार-बार पुनरावृत्ति के साथ, वे गुणा और भाग की अवधारणा पर आए। बार-बार होने वाले ऑपरेशन में कमी घातांक की अवधारणा बन गई। आधार पर संख्याओं की निर्भरता और घातांक की संख्या की पहली तालिकाएँ भारतीय गणितज्ञ वरसेना द्वारा 8वीं शताब्दी में संकलित की गई थीं। उनसे, आप लघुगणक की घटना के समय की गणना कर सकते हैं।

ऐतिहासिक रूपरेखा

16वीं शताब्दी में यूरोप के पुनरुद्धार ने यांत्रिकी के विकास को भी प्रेरित किया। टी गणना की एक बड़ी मात्रा की आवश्यकता हैबहु-अंकीय संख्याओं के गुणन और विभाजन से संबंधित। प्राचीन तालिकाओं ने बहुत अच्छी सेवा की। उन्होंने जटिल कार्यों को सरल लोगों के साथ बदलना संभव बना दिया - जोड़ और घटाव। एक बड़ा कदम आगे 1544 में प्रकाशित गणितज्ञ माइकल स्टीफेल का काम था, जिसमें उन्होंने कई गणितज्ञों के विचार को महसूस किया। इससे न केवल अभाज्य संख्याओं के रूप में अंशों के लिए, बल्कि मनमाने परिमेय संख्याओं के लिए भी तालिकाओं का उपयोग करना संभव हो गया।

1614 में, स्कॉट्समैन जॉन नेपियर ने इन विचारों को विकसित करते हुए, पहली बार "एक संख्या का लघुगणक" शब्द पेश किया। साइन और कोसाइन के लघुगणक, साथ ही स्पर्शरेखाओं की गणना के लिए नई जटिल तालिकाएँ संकलित की गईं। इसने खगोलविदों के काम को बहुत कम कर दिया।

नई तालिकाएँ दिखाई देने लगीं, जिनका वैज्ञानिकों द्वारा तीन शताब्दियों तक सफलतापूर्वक उपयोग किया गया। बीजगणित में नए ऑपरेशन को अपना तैयार रूप हासिल करने से पहले बहुत समय बीत गया। लघुगणक को परिभाषित किया गया और इसके गुणों का अध्ययन किया गया।

केवल 20वीं शताब्दी में, कैलकुलेटर और कंप्यूटर के आगमन के साथ, मानव जाति ने उन प्राचीन तालिकाओं को त्याग दिया जो 13वीं शताब्दी में सफलतापूर्वक काम कर रही थीं।

आज हम संख्या x को आधार बनाने के लिए b का लघुगणक कहते हैं, जो कि संख्या b प्राप्त करने के लिए a की घात है। यह एक सूत्र के रूप में लिखा गया है: x = log a(b)।

उदाहरण के लिए, लॉग 3(9) 2 के बराबर होगा। यदि आप परिभाषा का पालन करते हैं तो यह स्पष्ट है। यदि हम 3 को 2 के घात तक बढ़ाते हैं, तो हमें 9 प्राप्त होता है।

इस प्रकार, तैयार की गई परिभाषा केवल एक प्रतिबंध लगाती है, संख्याएँ a और b वास्तविक होनी चाहिए।

लघुगणक की किस्में

शास्त्रीय परिभाषा को वास्तविक लघुगणक कहा जाता है और यह वास्तव में समीकरण a x = b का समाधान है। विकल्प a = 1 सीमा रेखा है और इसमें कोई रुचि नहीं है। नोट: किसी भी घात के लिए 1 होता है।

लघुगणक का वास्तविक मूल्यकेवल तभी परिभाषित किया जाता है जब आधार और तर्क 0 से अधिक हों, और आधार 1 के बराबर न हो।

गणित के क्षेत्र में विशेष स्थानलघुगणक खेलें, जिनका नाम उनके आधार के मान के आधार पर रखा जाएगा:

नियम और प्रतिबंध

लघुगणक का मूल गुण नियम है: किसी उत्पाद का लघुगणक लघुगणक योग के बराबर होता है। लॉग एबीपी = लॉग ए (बी) + लॉग ए (पी)।

इस कथन के एक प्रकार के रूप में, यह होगा: लॉग सी (बी / पी) \u003d लॉग सी (बी) - लॉग सी (पी), भागफल फ़ंक्शन फ़ंक्शन के अंतर के बराबर है।

पिछले दो नियमों से यह देखना आसान है कि: लॉग ए (बी पी) = पी * लॉग ए (बी)।

अन्य गुणों में शामिल हैं:

टिप्पणी। सामान्य गलती न करें - योग का लघुगणक लघुगणक के योग के बराबर नहीं होता है।

कई शताब्दियों के लिए, लघुगणक को खोजने का कार्य काफी समय लेने वाला कार्य था। गणितज्ञों ने बहुपद में विस्तार के लघुगणकीय सिद्धांत के प्रसिद्ध सूत्र का उपयोग किया:

एलएन (1 + एक्स) = एक्स - (एक्स^2)/2 + (एक्स^3)/3 - (एक्स^4)/4 + ... + ((-1)^(एन + 1))* ((x^n)/n), जहां n 1 से बड़ी एक प्राकृत संख्या है, जो गणना की सटीकता को निर्धारित करती है।

अन्य आधारों के साथ लघुगणक की गणना एक आधार से दूसरे आधार में संक्रमण और उत्पाद के लघुगणक की संपत्ति पर प्रमेय का उपयोग करके की गई थी।

चूंकि यह विधि बहुत श्रमसाध्य है और व्यावहारिक समस्याओं को हल करते समयलागू करना मुश्किल था, उन्होंने लॉगरिदम की पूर्व-संकलित तालिकाओं का उपयोग किया, जिससे पूरे काम में तेजी आई।

कुछ मामलों में, लघुगणक के विशेष रूप से संकलित रेखांकन का उपयोग किया गया था, जो कम सटीकता देता था, लेकिन वांछित मूल्य की खोज में काफी तेजी लाता था। फ़ंक्शन का वक्र y = लॉग a(x), कई बिंदुओं पर निर्मित, किसी अन्य बिंदु पर फ़ंक्शन के मूल्यों को खोजने के लिए सामान्य शासक का उपयोग करने की अनुमति देता है। लंबे समय तक, इंजीनियरों ने इन उद्देश्यों के लिए तथाकथित ग्राफ पेपर का इस्तेमाल किया।

17वीं शताब्दी में, पहली सहायक एनालॉग कंप्यूटिंग स्थितियां सामने आईं, जिन्होंने 19वीं शताब्दी तक एक पूर्ण रूप प्राप्त कर लिया था। सबसे सफल उपकरण को स्लाइड नियम कहा जाता था। डिवाइस की सादगी के बावजूद, इसकी उपस्थिति ने सभी इंजीनियरिंग गणनाओं की प्रक्रिया को काफी तेज कर दिया है, और इसे कम करना मुश्किल है। वर्तमान में, बहुत कम लोग इस उपकरण से परिचित हैं।

कैलकुलेटर और कंप्यूटर के आगमन ने किसी भी अन्य उपकरण का उपयोग करना व्यर्थ बना दिया है।

समीकरण और असमानता

लघुगणक का उपयोग करके विभिन्न समीकरणों और असमानताओं को हल करने के लिए निम्नलिखित सूत्रों का उपयोग किया जाता है:

  • एक आधार से दूसरे में संक्रमण: लॉग ए (बी) = लॉग सी (बी) / लॉग सी (ए);
  • पिछले संस्करण के परिणामस्वरूप: लॉग ए (बी) = 1 / लॉग बी (ए)।

असमानताओं को हल करने के लिए, यह जानना उपयोगी है:

  • लघुगणक का मान केवल तभी धनात्मक होगा जब आधार और तर्क दोनों एक से अधिक या कम हों; यदि कम से कम एक शर्त का उल्लंघन किया जाता है, तो लघुगणक का मान ऋणात्मक होगा।
  • यदि लघुगणक फलन असमानता के दाएँ और बाएँ पक्षों पर लागू होता है, और लघुगणक का आधार एक से बड़ा होता है, तो असमानता चिह्न संरक्षित रहता है; अन्यथा, यह बदल जाता है।

कार्य उदाहरण

लघुगणक और उनके गुणों का उपयोग करने के लिए कई विकल्पों पर विचार करें। समीकरणों को हल करने के उदाहरण:

लघुगणक को डिग्री में रखने के विकल्प पर विचार करें:

  • कार्य 3. 25^लॉग 5(3) की गणना करें। समाधान: समस्या की स्थितियों में, संकेतन निम्न (5^2)^log5(3) या 5^(2 * log 5(3)) के समान है। आइए इसे अलग तरीके से लिखें: 5^लॉग 5(3*2), या किसी संख्या के वर्ग को फ़ंक्शन तर्क के रूप में फ़ंक्शन के वर्ग के रूप में ही लिखा जा सकता है (5^लॉग 5(3))^2। लघुगणक के गुणों का उपयोग करते हुए, यह व्यंजक 3^2 है। उत्तर: गणना के परिणामस्वरूप हमें 9 प्राप्त होते हैं।

प्रायोगिक उपयोग

विशुद्ध रूप से गणितीय उपकरण होने के कारण, यह वास्तविक जीवन से बहुत दूर लगता है कि वास्तविक दुनिया में वस्तुओं का वर्णन करने में लघुगणक अचानक बहुत महत्व का हो गया है। ऐसा विज्ञान खोजना मुश्किल है जहां इसका उपयोग नहीं किया जाता है। यह पूरी तरह से न केवल प्राकृतिक पर लागू होता है, बल्कि ज्ञान के मानविकी क्षेत्रों पर भी लागू होता है।

लॉगरिदमिक निर्भरता

यहाँ संख्यात्मक निर्भरता के कुछ उदाहरण दिए गए हैं:

यांत्रिकी और भौतिकी

ऐतिहासिक रूप से, यांत्रिकी और भौतिकी हमेशा गणितीय अनुसंधान विधियों का उपयोग करके विकसित हुए हैं और साथ ही साथ गणित के विकास के लिए एक प्रोत्साहन के रूप में कार्य किया है, जिसमें लॉगरिदम भी शामिल है। भौतिकी के अधिकांश नियमों का सिद्धांत गणित की भाषा में लिखा जाता है। हम लघुगणक का उपयोग करते हुए भौतिक नियमों के वर्णन के केवल दो उदाहरण देते हैं।

Tsiolkovsky सूत्र का उपयोग करके रॉकेट की गति के रूप में इतनी जटिल मात्रा की गणना करने की समस्या को हल करना संभव है, जिसने अंतरिक्ष अन्वेषण के सिद्धांत की नींव रखी:

वी = मैं * एलएन(एम1/एम2), जहां

  • V वायुयान की अंतिम गति है।
  • मैं इंजन का विशिष्ट आवेग है।
  • एम 1 रॉकेट का प्रारंभिक द्रव्यमान है।
  • एम 2 - अंतिम द्रव्यमान।

एक और महत्वपूर्ण उदाहरण- यह एक अन्य महान वैज्ञानिक मैक्स प्लैंक के सूत्र में उपयोग है, जो थर्मोडायनामिक्स में संतुलन की स्थिति का मूल्यांकन करने का कार्य करता है।

एस = के * एलएन (Ω), जहां

  • S एक ऊष्मागतिकीय गुण है।
  • k बोल्ट्जमान नियतांक है।
  • Ω विभिन्न राज्यों का सांख्यिकीय भार है।

रसायन विज्ञान

लघुगणक के अनुपात वाले रसायन विज्ञान में सूत्रों का उपयोग कम स्पष्ट होगा। यहाँ सिर्फ दो उदाहरण हैं:

  • नर्नस्ट समीकरण, पदार्थों की गतिविधि और संतुलन स्थिरांक के संबंध में माध्यम की रेडॉक्स क्षमता की स्थिति।
  • ऑटोप्रोलिसिस इंडेक्स और समाधान की अम्लता जैसे स्थिरांक की गणना भी हमारे कार्य के बिना पूरी नहीं होती है।

मनोविज्ञान और जीव विज्ञान

और यह पूरी तरह से समझ से बाहर है कि मनोविज्ञान का इससे क्या लेना-देना है। यह पता चला है कि इस फ़ंक्शन द्वारा संवेदना की ताकत को उत्तेजना के तीव्रता मूल्य के कम तीव्रता मूल्य के विपरीत अनुपात के रूप में अच्छी तरह से वर्णित किया गया है।

उपरोक्त उदाहरणों के बाद, अब यह आश्चर्य की बात नहीं है कि जीव विज्ञान में लघुगणक का विषय भी व्यापक रूप से उपयोग किया जाता है। लॉगरिदमिक सर्पिल के अनुरूप जैविक रूपों के बारे में संपूर्ण खंड लिखे जा सकते हैं।

अन्य क्षेत्र

ऐसा लगता है कि इस कार्य के संबंध के बिना दुनिया का अस्तित्व असंभव है, और यह सभी कानूनों को नियंत्रित करता है। खासकर जब प्रकृति के नियम ज्यामितीय प्रगति से जुड़े हों। यह MatProfi वेबसाइट को संदर्भित करने योग्य है, और गतिविधि के निम्नलिखित क्षेत्रों में ऐसे कई उदाहरण हैं:

सूची अंतहीन हो सकती है। इस समारोह के बुनियादी नियमों में महारत हासिल करने के बाद, आप अनंत ज्ञान की दुनिया में उतर सकते हैं।

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

आइए इसे आसान समझाते हैं। उदाहरण के लिए, \(\log_(2)(8)\) घात के बराबर है \(2\) को \(8\) प्राप्त करने के लिए बढ़ाया जाना चाहिए। इससे यह स्पष्ट होता है कि \(\log_(2)(8)=3\).

उदाहरण:

\(\log_(5)(25)=2\)

क्योंकि \(5^(2)=25\)

\(\log_(3)(81)=4\)

क्योंकि \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

क्योंकि \(2^(-5)=\)\(\frac(1)(32)\)

लघुगणक का तर्क और आधार

किसी भी लघुगणक में निम्नलिखित "शरीर रचना" होती है:

लघुगणक का तर्क आमतौर पर इसके स्तर पर लिखा जाता है, और आधार लघुगणक के संकेत के करीब सबस्क्रिप्ट में लिखा जाता है। और इस प्रविष्टि को इस प्रकार पढ़ा जाता है: "पच्चीस का लघुगणक से पाँच के आधार तक।"

लघुगणक की गणना कैसे करें?

लघुगणक की गणना करने के लिए, आपको प्रश्न का उत्तर देने की आवश्यकता है: तर्क प्राप्त करने के लिए आधार को किस डिग्री तक बढ़ाया जाना चाहिए?

उदाहरण के लिए, लघुगणक की गणना करें: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) \(16\) प्राप्त करने के लिए \(4\) को किस शक्ति तक बढ़ाया जाना चाहिए? जाहिर है दूसरा। इसलिए:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(1\) प्राप्त करने के लिए \(\sqrt(5)\) को किस शक्ति तक बढ़ाया जाना चाहिए? और कौन सी डिग्री किसी भी संख्या को एक इकाई बनाती है? जीरो, बिल्कुल!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) प्राप्त करने के लिए \(\sqrt(7)\) को किस घात तक बढ़ाया जाना चाहिए? प्रथम में - प्रथम अंश में कोई भी संख्या स्वयं के बराबर होती है।

\(\log_(\sqrt(7))(\sqrt(7))=1\)

ई) \(\sqrt(3)\) प्राप्त करने के लिए \(3\) को किस शक्ति तक बढ़ाया जाना चाहिए? हम जानते हैं कि यह एक भिन्नात्मक शक्ति है, और इसलिए वर्गमूल \(\frac(1)(2)\) की शक्ति है।

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

उदाहरण : लघुगणक की गणना करें \(\log_(4\sqrt(2))(8)\)

फेसला :

\(\log_(4\sqrt(2))(8)=x\)

हमें लघुगणक का मान ज्ञात करने की आवश्यकता है, आइए इसे x के रूप में निरूपित करें। आइए अब लघुगणक की परिभाषा का उपयोग करें:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

क्या लिंक \(4\sqrt(2)\) और \(8\)? दो, क्योंकि दोनों संख्याओं को दो से दर्शाया जा सकता है:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

बाईं ओर, हम डिग्री गुणों का उपयोग करते हैं: \(a^(m)\cdot a^(n)=a^(m+n)\) और \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

आधार समान हैं, हम संकेतकों की समानता के लिए आगे बढ़ते हैं

\(\frac(5x)(2)\) \(=3\)


समीकरण के दोनों पक्षों को \(\frac(2)(5)\) से गुणा करें


परिणामी जड़ लघुगणक का मान है

जवाब : \(\log_(4\sqrt(2))(8)=1,2\)

लॉगरिदम का आविष्कार क्यों किया गया था?

इसे समझने के लिए, आइए समीकरण को हल करें: \(3^(x)=9\)। समानता कार्य करने के लिए बस \(x\) का मिलान करें। बेशक, \(x=2\)।

अब समीकरण को हल करें: \(3^(x)=8\)। x किसके बराबर है? यही तो बात है।

सबसे सरल कहेगा: "X दो से थोड़ा कम है।" यह संख्या वास्तव में कैसे लिखी जाए? इस प्रश्न का उत्तर देने के लिए, वे लघुगणक के साथ आए। उसके लिए धन्यवाद, यहाँ उत्तर \(x=\log_(3)(8)\) के रूप में लिखा जा सकता है।

मैं इस बात पर जोर देना चाहता हूं कि \(\log_(3)(8)\), साथ ही कोई भी लघुगणक केवल एक संख्या है. हाँ, यह असामान्य लगता है, लेकिन यह छोटा है। क्योंकि अगर हम इसे दशमलव के रूप में लिखना चाहते हैं, तो यह इस तरह दिखेगा: \(1.892789260714.....\)

उदाहरण : समीकरण को हल करें \(4^(5x-4)=10\)

फेसला :

\(4^(5x-4)=10\)

\(4^(5x-4)\) और \(10\) को एक ही आधार पर कम नहीं किया जा सकता है। तो यहाँ आप लघुगणक के बिना नहीं कर सकते।

आइए लघुगणक की परिभाषा का उपयोग करें:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

समीकरण को पलटें ताकि x बाईं ओर हो

\(5x-4=\log_(4)(10)\)

हमारे सामने। \(4\) को दाईं ओर ले जाएं।

और लघुगणक से डरो मत, इसे एक नियमित संख्या की तरह मानें।

\(5x=\log_(4)(10)+4\)

समीकरण को 5 . से विभाजित करें

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


यहाँ हमारी जड़ है। हां, यह असामान्य लग रहा है, लेकिन उत्तर नहीं चुना गया है।

जवाब : \(\frac(\log_(4)(10)+4)(5)\)

दशमलव और प्राकृतिक लघुगणक

जैसा कि लघुगणक की परिभाषा में कहा गया है, इसका आधार एक \((a>0, a\neq1)\) को छोड़कर कोई भी धनात्मक संख्या हो सकती है। और सभी संभावित आधारों में से दो ऐसे होते हैं जो इतनी बार होते हैं कि उनके साथ लघुगणक के लिए एक विशेष लघु संकेतन का आविष्कार किया गया था:

प्राकृतिक लघुगणक: एक लघुगणक जिसका आधार यूलर संख्या \(e\) है (लगभग \(2.7182818…\) के बराबर), और लघुगणक \(\ln(a)\) के रूप में लिखा जाता है।

अर्थात, \(\ln(a)\) \(\log_(e)(a)\) के समान है

दशमलव लघुगणक: एक लघुगणक जिसका आधार 10 है \(\lg(a)\) लिखा है।

अर्थात, \(\lg(a)\) \(\log_(10)(a)\) के समान है, जहां \(a\) कुछ संख्या है।

मूल लघुगणकीय पहचान

लॉगरिदम में कई गुण होते हैं। उनमें से एक को "मूल लघुगणकीय पहचान" कहा जाता है और यह इस तरह दिखता है:

\(a^(\log_(a)(c))=c\)

यह संपत्ति सीधे परिभाषा से आती है। आइए देखें कि यह सूत्र वास्तव में कैसा दिखाई दिया।

लघुगणक की संक्षिप्त परिभाषा को याद करें:

अगर \(a^(b)=c\), तो \(\log_(a)(c)=b\)

अर्थात्, \(b\) \(\log_(a)(c)\) के समान है। फिर हम सूत्र \(a^(b)=c\) में \(b\) के बजाय \(\log_(a)(c)\) लिख सकते हैं। यह निकला \(a^(\log_(a)(c))=c\) - मुख्य लघुगणकीय पहचान।

आप लघुगणक के शेष गुण पा सकते हैं। उनकी मदद से, आप लघुगणक के साथ भावों के मूल्यों को सरल और गणना कर सकते हैं, जिनकी सीधे गणना करना मुश्किल है।

उदाहरण : व्यंजक का मान ज्ञात कीजिए \(36^(\log_(6)(5))\)

फेसला :

जवाब : \(25\)

किसी संख्या को लघुगणक के रूप में कैसे लिखें?

जैसा कि ऊपर उल्लेख किया गया है, कोई भी लघुगणक केवल एक संख्या है। विलोम भी सत्य है: किसी भी संख्या को लघुगणक के रूप में लिखा जा सकता है। उदाहरण के लिए, हम जानते हैं कि \(\log_(2)(4)\) दो के बराबर है। फिर आप दो के बजाय \(\log_(2)(4)\) लिख सकते हैं।

लेकिन \(\log_(3)(9)\) भी \(2\) के बराबर है, इसलिए आप \(2=\log_(3)(9)\) भी लिख सकते हैं। इसी तरह \(\log_(5)(25)\), और \(\log_(9)(81)\), आदि के साथ। यानी यह पता चला है

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ लॉग_(7)(49)...\)

इस प्रकार, यदि हमें आवश्यकता है, तो हम दोनों को किसी भी आधार के साथ लॉगरिदम के रूप में कहीं भी लिख सकते हैं (यहां तक ​​​​कि एक समीकरण में, यहां तक ​​​​कि एक अभिव्यक्ति में भी, यहां तक ​​​​कि असमानता में भी) - हम केवल वर्ग आधार को तर्क के रूप में लिखते हैं।

ट्रिपल के साथ भी ऐसा ही है - इसे \(\log_(2)(8)\), या \(\log_(3)(27)\), या \(\log_(4)( के रूप में लिखा जा सकता है) 64) \) ... यहाँ हम घन में आधार को तर्क के रूप में लिखते हैं:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ लॉग_(7)(343)...\)

और चार के साथ:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ लॉग_(7)(2401)...\)

और माइनस वन के साथ:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\)\(...\)

और एक तिहाई के साथ:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

किसी भी संख्या \(a\) को आधार \(b\) के साथ लघुगणक के रूप में दर्शाया जा सकता है: \(a=\log_(b)(b^(a))\)

उदाहरण : व्यंजक का मान ज्ञात कीजिए \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

फेसला :

जवाब : \(1\)

बुनियादी गुण.

  1. लॉगैक्स + लोगे = लॉग (एक्स वाई);
  2. लघुगणक - लघुगणक = लघुगणक (x: y)।

एक ही आधार

लॉग 6 4 + लॉग 6 9.

अब कार्य को थोड़ा जटिल करते हैं।

लघुगणक हल करने के उदाहरण

क्या होगा यदि लघुगणक के आधार या तर्क में कोई डिग्री हो? तब इस डिग्री के घातांक को निम्न नियमों के अनुसार लघुगणक के चिह्न से निकाला जा सकता है:

बेशक, ये सभी नियम समझ में आते हैं यदि ODZ लघुगणक मनाया जाता है: a > 0, a 1, x >

काम। व्यंजक का मान ज्ञात कीजिए:

एक नई नींव में संक्रमण

बता दें कि लघुगणक लघुगणक दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

काम। व्यंजक का मान ज्ञात कीजिए:

यह सभी देखें:


लघुगणक के मूल गुण

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



घातांक 2.718281828…. प्रतिपादक को याद करने के लिए, आप नियम का अध्ययन कर सकते हैं: प्रतिपादक 2.7 है और लियो टॉल्स्टॉय के जन्म के वर्ष का दोगुना है।

लघुगणक के मूल गुण

इस नियम को जानकर आप घातांक का सही मूल्य और लियो टॉल्स्टॉय की जन्म तिथि दोनों को जान जाएंगे।


लघुगणक के उदाहरण

व्यंजकों का लघुगणक लें

उदाहरण 1
ए)। x=10ac^2 (ए>0, सी>0)।

गुण 3,5 से हम गणना करते हैं

2.

3.

4. कहाँ पे .



उदाहरण 2 x ज्ञात कीजिए यदि


उदाहरण 3. मान लीजिए कि लघुगणक का मान दिया गया है

लॉग (x) की गणना करें यदि




लघुगणक के मूल गुण

लॉगरिदम, किसी भी संख्या की तरह, हर संभव तरीके से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है बुनियादी गुण.

इन नियमों को अवश्य जानना चाहिए - इनके बिना कोई भी गंभीर लघुगणकीय समस्या हल नहीं हो सकती है। इसके अलावा, उनमें से बहुत कम हैं - एक दिन में सब कुछ सीखा जा सकता है। तो चलो शुरू करते है।

लघुगणक का जोड़ और घटाव

समान आधार वाले दो लघुगणक पर विचार करें: लघुगणक और लघुगणक। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉगैक्स + लोगे = लॉग (एक्स वाई);
  2. लघुगणक - लघुगणक = लघुगणक (x: y)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल का लघुगणक है। कृपया ध्यान दें: यहाँ मुख्य बिंदु है - एक ही आधार. यदि आधार भिन्न हैं, तो ये नियम काम नहीं करते हैं!

ये सूत्र लघुगणक व्यंजक की गणना करने में मदद करेंगे, भले ही इसके अलग-अलग हिस्सों पर विचार न किया गया हो (पाठ "एक लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

चूंकि लघुगणक के आधार समान हैं, इसलिए हम योग सूत्र का उपयोग करते हैं:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2।

काम। व्यंजक का मान ज्ञात कीजिए: log2 48 - log2 3.

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
log2 48 - log2 3 = log2 (48: 3) = log2 16 = 4।

काम। व्यंजक का मान ज्ञात कीजिए: log3 135 - log3 5.

फिर से, आधार समान हैं, इसलिए हमारे पास है:
log3 135 - log3 5 = log3 (135: 5) = log3 27 = 3।

जैसा कि आप देख सकते हैं, मूल भाव "खराब" लघुगणक से बने होते हैं, जिन्हें अलग से नहीं माना जाता है। लेकिन परिवर्तनों के बाद काफी सामान्य संख्याएँ निकलती हैं। कई परीक्षण इस तथ्य पर आधारित हैं। हां, नियंत्रण - पूरी गंभीरता से समान भाव (कभी-कभी - वस्तुतः कोई बदलाव नहीं) परीक्षा में पेश किए जाते हैं।

घातांक को लघुगणक से हटाना

यह देखना आसान है कि अंतिम नियम उनके पहले दो का अनुसरण करता है। लेकिन इसे वैसे भी याद रखना बेहतर है - कुछ मामलों में यह गणना की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम समझ में आते हैं यदि ओडीजेड लॉगरिदम मनाया जाता है: ए> 0, ए ≠ 1, एक्स> 0. और एक और बात: न केवल बाएं से दाएं, बल्कि इसके विपरीत भी सभी सूत्रों को लागू करना सीखें, यानी। आप लघुगणक के चिह्न से पहले संख्याओं को लघुगणक में ही दर्ज कर सकते हैं। यह वही है जो सबसे अधिक बार आवश्यक होता है।

काम। व्यंजक का मान ज्ञात कीजिए: log7 496।

आइए पहले सूत्र के अनुसार तर्क में डिग्री से छुटकारा पाएं:
log7 496 = 6 log7 49 = 6 2 = 12

काम। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि हर एक लघुगणक है जिसका आधार और तर्क सटीक शक्तियाँ हैं: 16 = 24; 49 = 72. हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण को स्पष्टीकरण की आवश्यकता है। लॉगरिदम कहाँ चले गए हैं? अंतिम क्षण तक, हम केवल हर के साथ काम करते हैं।

लघुगणक के सूत्र। लघुगणक समाधान के उदाहरण हैं।

उन्होंने वहां खड़े लघुगणक के आधार और तर्क को डिग्री के रूप में प्रस्तुत किया और संकेतक निकाले - उन्हें "तीन मंजिला" अंश मिला।

अब आइए मुख्य अंश को देखें। अंश और हर की संख्या समान है: log2 7. चूंकि log2 7 0, हम भिन्न को कम कर सकते हैं - 2/4 हर में रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो किया गया था। परिणाम उत्तर है: 2.

एक नई नींव में संक्रमण

लॉगरिदम जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल एक ही आधार के साथ काम करते हैं। क्या होगा यदि आधार अलग हैं? क्या होगा यदि वे एक ही संख्या की सटीक शक्तियां नहीं हैं?

एक नए आधार पर संक्रमण के लिए सूत्र बचाव के लिए आते हैं। हम उन्हें एक प्रमेय के रूप में तैयार करते हैं:

बता दें कि लघुगणक लघुगणक दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

विशेष रूप से, यदि हम c = x रखते हैं, तो हमें प्राप्त होता है:

यह दूसरे सूत्र से इस प्रकार है कि आधार और लघुगणक के तर्क को आपस में बदलना संभव है, लेकिन इस मामले में पूरी अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। यह मूल्यांकन करना संभव है कि लॉगरिदमिक समीकरणों और असमानताओं को हल करते समय ही वे कितने सुविधाजनक होते हैं।

हालाँकि, ऐसे कार्य हैं जिन्हें एक नई नींव में जाने के अलावा हल नहीं किया जा सकता है। आइए इनमें से कुछ पर विचार करें:

काम। व्यंजक का मान ज्ञात कीजिए: log5 16 log2 25.

ध्यान दें कि दोनों लघुगणक के तर्क सटीक घातांक हैं। आइए संकेतक निकालें: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

अब दूसरा लघुगणक पलटें:

चूंकि उत्पाद कारकों के क्रमपरिवर्तन से नहीं बदलता है, हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक का पता लगाया।

काम। व्यंजक का मान ज्ञात कीजिए: log9 100 lg 3.

पहले लघुगणक का आधार और तर्क सटीक शक्तियाँ हैं। आइए इसे लिख लें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

मूल लघुगणकीय पहचान

अक्सर हल करने की प्रक्रिया में किसी दिए गए आधार के लिए एक संख्या को लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है। इस मामले में, सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में घातांक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल लघुगणक का मान है।

दूसरा सूत्र वास्तव में एक व्याख्यात्मक परिभाषा है। इसे इस तरह कहा जाता है:

वास्तव में, क्या होगा यदि संख्या b को इस हद तक बढ़ा दिया जाए कि इस अंश की संख्या b संख्या a दे दे? यह सही है: यह वही संख्या है a. इस पैराग्राफ को फिर से ध्यान से पढ़ें - बहुत से लोग इसे "लटका" देते हैं।

नए आधार रूपांतरण फ़ार्मुलों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभव समाधान होता है।

काम। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि log25 64 = log5 8 - बस आधार और लघुगणक के तर्क से वर्ग निकाल लिया। समान आधार से घातों को गुणा करने के नियमों को देखते हुए, हम प्राप्त करते हैं:

अगर किसी को पता नहीं है, तो यह एकीकृत राज्य परीक्षा से एक वास्तविक कार्य था

लघुगणक इकाई और लघुगणक शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें गुणों को कॉल करना मुश्किल है - बल्कि, ये लॉगरिदम की परिभाषा से परिणाम हैं। वे लगातार समस्याओं में पाए जाते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लोगा = 1 है। एक बार और सभी के लिए याद रखें: किसी भी आधार के लिए लघुगणक उस आधार से ही एक के बराबर होता है।
  2. लॉगा 1 = 0 है। आधार a कुछ भी हो सकता है, लेकिन यदि तर्क एक है, तो लघुगणक शून्य है! क्योंकि a0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

वह सब गुण है। उन्हें अभ्यास में लाने का अभ्यास करना सुनिश्चित करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।

यह सभी देखें:

संख्या b का आधार a का लघुगणक व्यंजक को दर्शाता है। लघुगणक की गणना करने का अर्थ है ऐसी घात x () ज्ञात करना जिस पर समानता सत्य हो

लघुगणक के मूल गुण

उपरोक्त गुणों को जानने की आवश्यकता है, क्योंकि उनके आधार पर लगभग सभी समस्याओं और उदाहरणों को लघुगणक के आधार पर हल किया जाता है। शेष विदेशी गुण इन सूत्रों के साथ गणितीय जोड़तोड़ द्वारा प्राप्त किए जा सकते हैं

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

योग और लघुगणक (3.4) के अंतर के सूत्रों की गणना करते समय अक्सर सामना किया जाता है। बाकी कुछ जटिल हैं, लेकिन कई कार्यों में वे जटिल अभिव्यक्तियों को सरल बनाने और उनके मूल्यों की गणना के लिए अनिवार्य हैं।

लघुगणक के सामान्य मामले

कुछ सामान्य लघुगणक वे हैं जिनमें आधार सम भी दस, घातांक या ड्यूस है।
आधार दस लघुगणक को आमतौर पर आधार दस लघुगणक कहा जाता है और इसे केवल lg(x) के रूप में दर्शाया जाता है।

रिकॉर्ड से यह देखा जा सकता है कि मूल बातें रिकॉर्ड में नहीं लिखी गई हैं। उदाहरण के लिए

प्राकृतिक लघुगणक वह लघुगणक है जिसका आधार घातांक (निरूपित ln(x)) है।

घातांक 2.718281828…. प्रतिपादक को याद करने के लिए, आप नियम का अध्ययन कर सकते हैं: प्रतिपादक 2.7 है और लियो टॉल्स्टॉय के जन्म के वर्ष का दोगुना है। इस नियम को जानकर आप घातांक का सही मूल्य और लियो टॉल्स्टॉय की जन्म तिथि दोनों को जान जाएंगे।

और दूसरा महत्वपूर्ण आधार दो लघुगणक है

फ़ंक्शन के लघुगणक का व्युत्पन्न चर द्वारा विभाजित एक के बराबर है

अभिन्न या प्रतिपक्षी लघुगणक निर्भरता द्वारा निर्धारित किया जाता है

उपरोक्त सामग्री आपके लिए लघुगणक और लघुगणक से संबंधित समस्याओं की एक विस्तृत श्रेणी को हल करने के लिए पर्याप्त है। सामग्री को समझने के लिए, मैं केवल कुछ सामान्य उदाहरण दूंगा स्कूल के पाठ्यक्रमऔर विश्वविद्यालय।

लघुगणक के उदाहरण

व्यंजकों का लघुगणक लें

उदाहरण 1
ए)। x=10ac^2 (ए>0, सी>0)।

गुण 3,5 से हम गणना करते हैं

2.
लघुगणक के अंतर गुण से, हमारे पास है

3.
गुण 3.5 का उपयोग करके हम पाते हैं

4. कहाँ पे .

नियमों की एक श्रृंखला का उपयोग करके प्रतीत होने वाली जटिल अभिव्यक्ति को फॉर्म में सरल बनाया गया है

लघुगणक मान ढूँढना

उदाहरण 2 x ज्ञात कीजिए यदि

फेसला। गणना के लिए, हम गुण 5 और 13 को अंतिम पद तक लागू करते हैं

रिकॉर्ड में स्थानापन्न करें और शोक करें

चूँकि आधार समान हैं, हम व्यंजकों को समान करते हैं

लघुगणक। प्रथम स्तर।

मान लीजिए लघुगणक का मान दिया गया है

लॉग (x) की गणना करें यदि

हल: पदों के योग से लघुगणक लिखने के लिए चर का लघुगणक लें


यह लघुगणक और उनके गुणों से परिचित होने की शुरुआत है। गणना का अभ्यास करें, अपने व्यावहारिक कौशल को समृद्ध करें - लॉगरिदमिक समीकरणों को हल करने के लिए आपको जल्द ही अर्जित ज्ञान की आवश्यकता होगी। ऐसे समीकरणों को हल करने के लिए बुनियादी तरीकों का अध्ययन करने के बाद, हम आपके ज्ञान को एक और समान रूप से महत्वपूर्ण विषय - लघुगणकीय असमानताओं के लिए विस्तारित करेंगे ...

लघुगणक के मूल गुण

लॉगरिदम, किसी भी संख्या की तरह, हर संभव तरीके से जोड़ा, घटाया और परिवर्तित किया जा सकता है। लेकिन चूंकि लॉगरिदम बिल्कुल सामान्य संख्या नहीं हैं, इसलिए यहां नियम हैं, जिन्हें कहा जाता है बुनियादी गुण.

इन नियमों को अवश्य जानना चाहिए - इनके बिना कोई भी गंभीर लघुगणकीय समस्या हल नहीं हो सकती है। इसके अलावा, उनमें से बहुत कम हैं - एक दिन में सब कुछ सीखा जा सकता है। तो चलो शुरू करते है।

लघुगणक का जोड़ और घटाव

समान आधार वाले दो लघुगणक पर विचार करें: लघुगणक और लघुगणक। फिर उन्हें जोड़ा और घटाया जा सकता है, और:

  1. लॉगैक्स + लोगे = लॉग (एक्स वाई);
  2. लघुगणक - लघुगणक = लघुगणक (x: y)।

तो, लघुगणक का योग उत्पाद के लघुगणक के बराबर है, और अंतर भागफल का लघुगणक है। कृपया ध्यान दें: यहाँ मुख्य बिंदु है - एक ही आधार. यदि आधार भिन्न हैं, तो ये नियम काम नहीं करते हैं!

ये सूत्र लघुगणक व्यंजक की गणना करने में मदद करेंगे, भले ही इसके अलग-अलग हिस्सों पर विचार न किया गया हो (पाठ "एक लघुगणक क्या है" देखें)। उदाहरणों पर एक नज़र डालें और देखें:

काम। व्यंजक का मान ज्ञात कीजिए: log6 4 + log6 9.

चूंकि लघुगणक के आधार समान हैं, इसलिए हम योग सूत्र का उपयोग करते हैं:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2।

काम। व्यंजक का मान ज्ञात कीजिए: log2 48 - log2 3.

आधार समान हैं, हम अंतर सूत्र का उपयोग करते हैं:
log2 48 - log2 3 = log2 (48: 3) = log2 16 = 4।

काम। व्यंजक का मान ज्ञात कीजिए: log3 135 - log3 5.

फिर से, आधार समान हैं, इसलिए हमारे पास है:
log3 135 - log3 5 = log3 (135: 5) = log3 27 = 3।

जैसा कि आप देख सकते हैं, मूल भाव "खराब" लघुगणक से बने होते हैं, जिन्हें अलग से नहीं माना जाता है। लेकिन परिवर्तनों के बाद काफी सामान्य संख्याएँ निकलती हैं। कई परीक्षण इस तथ्य पर आधारित हैं। हां, नियंत्रण - पूरी गंभीरता से समान भाव (कभी-कभी - वस्तुतः कोई बदलाव नहीं) परीक्षा में पेश किए जाते हैं।

घातांक को लघुगणक से हटाना

अब कार्य को थोड़ा जटिल करते हैं। क्या होगा यदि लघुगणक के आधार या तर्क में कोई डिग्री हो? तब इस डिग्री के घातांक को निम्न नियमों के अनुसार लघुगणक के चिह्न से निकाला जा सकता है:

यह देखना आसान है कि अंतिम नियम उनके पहले दो का अनुसरण करता है। लेकिन इसे वैसे भी याद रखना बेहतर है - कुछ मामलों में यह गणना की मात्रा को काफी कम कर देगा।

बेशक, ये सभी नियम समझ में आते हैं यदि ओडीजेड लॉगरिदम मनाया जाता है: ए> 0, ए ≠ 1, एक्स> 0. और एक और बात: न केवल बाएं से दाएं, बल्कि इसके विपरीत भी सभी सूत्रों को लागू करना सीखें, यानी। आप लघुगणक के चिह्न से पहले संख्याओं को लघुगणक में ही दर्ज कर सकते हैं।

लघुगणक कैसे हल करें

यह वही है जो सबसे अधिक बार आवश्यक होता है।

काम। व्यंजक का मान ज्ञात कीजिए: log7 496।

आइए पहले सूत्र के अनुसार तर्क में डिग्री से छुटकारा पाएं:
log7 496 = 6 log7 49 = 6 2 = 12

काम। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि हर एक लघुगणक है जिसका आधार और तर्क सटीक शक्तियाँ हैं: 16 = 24; 49 = 72. हमारे पास है:

मुझे लगता है कि अंतिम उदाहरण को स्पष्टीकरण की आवश्यकता है। लघुगणक कहाँ चले गए हैं? अंतिम क्षण तक, हम केवल हर के साथ काम करते हैं। उन्होंने वहां खड़े लघुगणक के आधार और तर्क को डिग्री के रूप में प्रस्तुत किया और संकेतक निकाले - उन्हें "तीन मंजिला" अंश मिला।

अब आइए मुख्य अंश को देखें। अंश और हर की संख्या समान है: log2 7. चूंकि log2 7 0, हम भिन्न को कम कर सकते हैं - 2/4 हर में रहेगा। अंकगणित के नियमों के अनुसार, चार को अंश में स्थानांतरित किया जा सकता है, जो किया गया था। परिणाम उत्तर है: 2.

एक नई नींव में संक्रमण

लॉगरिदम जोड़ने और घटाने के नियमों के बारे में बोलते हुए, मैंने विशेष रूप से जोर दिया कि वे केवल एक ही आधार के साथ काम करते हैं। क्या होगा यदि आधार अलग हैं? क्या होगा यदि वे एक ही संख्या की सटीक शक्तियां नहीं हैं?

एक नए आधार पर संक्रमण के लिए सूत्र बचाव के लिए आते हैं। हम उन्हें एक प्रमेय के रूप में तैयार करते हैं:

बता दें कि लघुगणक लघुगणक दिया जाता है। फिर किसी भी संख्या c जैसे कि c > 0 और c ≠ 1 के लिए, समानता सत्य है:

विशेष रूप से, यदि हम c = x रखते हैं, तो हमें प्राप्त होता है:

यह दूसरे सूत्र से इस प्रकार है कि आधार और लघुगणक के तर्क को आपस में बदलना संभव है, लेकिन इस मामले में पूरी अभिव्यक्ति "उलट" है, अर्थात। लघुगणक हर में है।

ये सूत्र सामान्य संख्यात्मक अभिव्यक्तियों में बहुत कम पाए जाते हैं। यह मूल्यांकन करना संभव है कि लॉगरिदमिक समीकरणों और असमानताओं को हल करते समय ही वे कितने सुविधाजनक होते हैं।

हालाँकि, ऐसे कार्य हैं जिन्हें एक नई नींव में जाने के अलावा हल नहीं किया जा सकता है। आइए इनमें से कुछ पर विचार करें:

काम। व्यंजक का मान ज्ञात कीजिए: log5 16 log2 25.

ध्यान दें कि दोनों लघुगणक के तर्क सटीक घातांक हैं। आइए संकेतक निकालें: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

अब दूसरा लघुगणक पलटें:

चूंकि उत्पाद कारकों के क्रमपरिवर्तन से नहीं बदलता है, हमने शांति से चार और दो को गुणा किया, और फिर लघुगणक का पता लगाया।

काम। व्यंजक का मान ज्ञात कीजिए: log9 100 lg 3.

पहले लघुगणक का आधार और तर्क सटीक शक्तियाँ हैं। आइए इसे लिख लें और संकेतकों से छुटकारा पाएं:

आइए अब एक नए आधार पर जाकर दशमलव लघुगणक से छुटकारा पाएं:

मूल लघुगणकीय पहचान

अक्सर हल करने की प्रक्रिया में किसी दिए गए आधार के लिए एक संख्या को लघुगणक के रूप में प्रस्तुत करना आवश्यक होता है। इस मामले में, सूत्र हमारी मदद करेंगे:

पहले मामले में, संख्या n तर्क में घातांक बन जाती है। संख्या n बिल्कुल कुछ भी हो सकती है, क्योंकि यह केवल लघुगणक का मान है।

दूसरा सूत्र वास्तव में एक व्याख्यात्मक परिभाषा है। इसे इस तरह कहा जाता है:

वास्तव में, क्या होगा यदि संख्या b को इस हद तक बढ़ा दिया जाए कि इस अंश की संख्या b संख्या a दे दे? यह सही है: यह वही संख्या है a. इस पैराग्राफ को फिर से ध्यान से पढ़ें - बहुत से लोग इसे "लटका" देते हैं।

नए आधार रूपांतरण फ़ार्मुलों की तरह, मूल लघुगणकीय पहचान कभी-कभी एकमात्र संभव समाधान होता है।

काम। व्यंजक का मान ज्ञात कीजिए:

ध्यान दें कि log25 64 = log5 8 - बस आधार और लघुगणक के तर्क से वर्ग निकाल लिया। समान आधार से घातों को गुणा करने के नियमों को देखते हुए, हम प्राप्त करते हैं:

अगर किसी को पता नहीं है, तो यह एकीकृत राज्य परीक्षा से एक वास्तविक कार्य था

लघुगणक इकाई और लघुगणक शून्य

अंत में, मैं दो पहचान दूंगा जिन्हें गुणों को कॉल करना मुश्किल है - बल्कि, ये लॉगरिदम की परिभाषा से परिणाम हैं। वे लगातार समस्याओं में पाए जाते हैं और आश्चर्यजनक रूप से, "उन्नत" छात्रों के लिए भी समस्याएं पैदा करते हैं।

  1. लोगा = 1 है। एक बार और सभी के लिए याद रखें: किसी भी आधार के लिए लघुगणक उस आधार से ही एक के बराबर होता है।
  2. लॉगा 1 = 0 है। आधार a कुछ भी हो सकता है, लेकिन यदि तर्क एक है, तो लघुगणक शून्य है! क्योंकि a0 = 1 परिभाषा का प्रत्यक्ष परिणाम है।

वह सब गुण है। उन्हें अभ्यास में लाने का अभ्यास करना सुनिश्चित करें! पाठ की शुरुआत में चीट शीट डाउनलोड करें, उसका प्रिंट आउट लें और समस्याओं का समाधान करें।