Jumlah terbesar yang diketahui di dunia. Tidak termasuk dalam kumpulan esai

Suatu kali saya membaca kisah tragis tentang seorang Chukchi yang diajari menghitung dan menulis angka oleh penjelajah kutub. Keajaiban angka membuatnya sangat terkesan sehingga dia memutuskan untuk menuliskan semua angka di dunia secara berurutan, mulai dari satu, di buku catatan yang disumbangkan oleh penjelajah kutub. Chukchi meninggalkan semua urusannya, berhenti berkomunikasi bahkan dengan istrinya sendiri, tidak lagi berburu anjing laut dan anjing laut, tetapi menulis dan menulis angka di buku catatan .... Jadi setahun berlalu. Pada akhirnya, buku catatan itu berakhir dan Chukchi menyadari bahwa dia hanya bisa menuliskan sebagian kecil dari semua angka. Dia menangis dengan sedih dan putus asa membakar buku catatannya untuk mulai menjalani kehidupan sederhana sebagai nelayan lagi, tidak lagi memikirkan angka tak terbatas yang misterius ...

Kami tidak akan mengulangi prestasi Chukchi ini dan mencoba mencari angka terbesar, karena cukup untuk menambahkan satu angka saja untuk mendapatkan angka yang lebih besar lagi. Mari kita tanyakan pada diri kita sendiri pertanyaan yang serupa tetapi berbeda: manakah di antara bilangan-bilangan yang memiliki namanya sendiri yang terbesar?

Jelas, meskipun angka-angka itu sendiri tidak terbatas, mereka tidak memiliki banyak nama diri, karena kebanyakan dari mereka puas dengan nama-nama yang terdiri dari angka-angka yang lebih kecil. Jadi, misalnya, angka 1 dan 100 memiliki nama sendiri "satu" dan "seratus", dan nama angka 101 sudah majemuk ("seratus satu"). Jelas bahwa dalam rangkaian angka terakhir yang telah diberikan umat manusia dengan namanya sendiri, pasti ada angka terbesar. Tapi apa namanya dan sama dengan apa? Mari kita coba mencari tahu dan temukan, pada akhirnya, ini adalah angka terbesar!

Nomor

angka kardinal latin

awalan Rusia


Skala "pendek" dan "panjang"

Sejarah sistem penamaan modern untuk bilangan besar dimulai pada pertengahan abad ke-15, ketika di Italia mereka mulai menggunakan kata "juta" (harfiah - seribu besar) untuk seribu kuadrat, "bijuta" untuk satu juta kuadrat dan "trijuta" untuk satu juta potong dadu. Kita tahu tentang sistem ini berkat ahli matematika Prancis Nicolas Chuquet (Nicolas Chuquet, c. 1450 - c. 1500): dalam risalahnya "The Science of Numbers" (Triparty en la science des nombres, 1484), ia mengembangkan ide ini, mengusulkan untuk lebih lanjut menggunakan nomor kardinal Latin (lihat tabel), menambahkannya ke akhiran "-juta". Jadi, "bijuta" Shuke berubah menjadi satu miliar, "trijuta" menjadi satu triliun, dan satu juta pangkat empat menjadi "kuadriliun".

Dalam sistem Schücke, angka 10 9 , yang antara satu juta dan satu miliar, tidak memiliki nama sendiri dan hanya disebut "seribu juta", demikian pula, 10 15 disebut "seribu miliar", 10 21 - " seribu triliun", dll. Itu sangat tidak nyaman, dan pada tahun 1549 penulis dan ilmuwan Prancis Jacques Peletier du Mans (1517-1582) mengusulkan untuk memberi nama nomor "perantara" seperti itu menggunakan awalan Latin yang sama, tetapi akhiran "-miliar". Jadi, 109 dikenal sebagai "miliar", 10 15 - "biliar", 10 21 - "triliun", dll.

Sistem Chuquet-Peletier secara bertahap menjadi populer dan digunakan di seluruh Eropa. Namun, pada abad ke-17, masalah tak terduga muncul. Ternyata karena alasan tertentu beberapa ilmuwan mulai bingung dan menyebut angka 109 bukan "satu miliar" atau "seribu juta", tetapi "satu miliar". Segera kesalahan ini menyebar dengan cepat, dan situasi paradoks muncul - "miliar" secara bersamaan menjadi sinonim untuk "miliar" (10 9) dan "juta juta" (10 18).

Kebingungan ini berlanjut untuk waktu yang lama dan mengarah pada fakta bahwa di AS mereka menciptakan sistem mereka sendiri untuk penamaan angka besar. Menurut sistem Amerika, nama-nama angka dibangun dengan cara yang sama seperti dalam sistem Schücke - awalan Latin dan akhiran "juta". Namun, angka-angka ini berbeda. Jika dalam sistem Schuecke nama dengan akhiran "juta" menerima angka yang merupakan pangkat satu juta, maka dalam sistem Amerika akhiran "-juta" menerima pangkat seribu. Artinya, seribu juta (1000 3 \u003d 10 9) mulai disebut "miliar", 1000 4 (10 12) - "triliun", 1000 5 (10 15) - "kuadriliun", dll.

Sistem lama penamaan angka besar terus digunakan di Inggris Raya yang konservatif dan mulai disebut "Inggris" di seluruh dunia, terlepas dari kenyataan bahwa itu ditemukan oleh French Shuquet dan Peletier. Namun, pada 1970-an, Inggris secara resmi beralih ke "sistem Amerika", yang menyebabkan fakta bahwa entah bagaimana menjadi aneh untuk menyebut satu sistem Amerika dan Inggris lainnya. Akibatnya, sistem Amerika sekarang sering disebut sebagai "skala pendek" dan sistem Inggris atau Chuquet-Peletier sebagai "skala panjang".

Agar tidak bingung, mari kita simpulkan hasil antara:

Nama nomor

Nilai pada "skala pendek"

Nilai pada "skala panjang"

Miliar

bola sodok

Triliun

triliun

milion lipat empat

milion lipat empat

Triliun

triliun

Sextillion

Sextillion

Septillion

Septilliard

Oktillion

oktiliard

Triliun

Nonilliard

Decillion

Decilliard


Skala penamaan pendek sekarang digunakan di Amerika Serikat, Inggris, Kanada, Irlandia, Australia, Brasil, dan Puerto Riko. Rusia, Denmark, Turki, dan Bulgaria juga menggunakan skala pendek, kecuali bahwa angka 109 tidak disebut "miliar" tetapi "miliar". Skala panjang terus digunakan hari ini di sebagian besar negara lain.

Sangat mengherankan bahwa di negara kita transisi terakhir ke skala pendek hanya terjadi pada paruh kedua abad ke-20. Jadi, misalnya, bahkan Yakov Isidorovich Perelman (1882-1942) dalam "Aritmatika Menghibur"-nya menyebutkan keberadaan paralel dua skala di Uni Soviet. Skala pendek, menurut Perelman, digunakan dalam kehidupan sehari-hari dan perhitungan keuangan, dan skala panjang digunakan dalam buku-buku ilmiah tentang astronomi dan fisika. Namun, sekarang salah menggunakan skala panjang di Rusia, meskipun jumlahnya banyak.

Tapi kembali ke mencari jumlah terbesar. Setelah satu desiliun, nama-nama angka diperoleh dengan menggabungkan awalan. Ini adalah bagaimana angka-angka seperti undecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion, novemdecillion, dll. diperoleh. Namun, nama-nama ini tidak lagi menarik bagi kami, karena kami sepakat untuk menemukan jumlah terbesar dengan nama non-kompositnya sendiri.

Jika kita beralih ke tata bahasa Latin, kita akan menemukan bahwa orang Romawi hanya memiliki tiga nama non-majemuk untuk angka yang lebih besar dari sepuluh: viginti - "dua puluh", centum - "seratus" dan mille - "seribu". Untuk angka yang lebih besar dari "seribu", orang Romawi tidak memiliki nama sendiri. Misalnya, orang Romawi menyebut satu juta (1.000.000) "decies centena milia", yaitu, "sepuluh kali seratus ribu". Menurut aturan Schuecke, tiga angka Latin yang tersisa ini memberi kita nama seperti "vigintillion", "centillion" dan "milleillion".


Jadi, kami menemukan bahwa pada "skala pendek" jumlah maksimum yang memiliki namanya sendiri dan bukan gabungan dari angka yang lebih kecil adalah "juta" (10 3003). Jika "skala panjang" nomor penamaan diadopsi di Rusia, maka nomor terbesar dengan namanya sendiri adalah "juta" (10 6003).

Namun, ada nama untuk angka yang lebih besar.

Angka di luar sistem

Beberapa nomor memiliki nama sendiri, tanpa ada hubungannya dengan sistem penamaan menggunakan awalan Latin. Dan ada banyak nomor seperti itu. Anda dapat, misalnya, mengingat nomornya e, angka "pi", selusin, angka binatang, dll. Namun, karena kita sekarang tertarik pada angka besar, kita hanya akan mempertimbangkan angka-angka dengan nama bukan-majemuknya sendiri yang lebih dari satu juta.

Sampai abad ke-17, Rusia menggunakan sistemnya sendiri untuk penamaan angka. Puluhan ribu disebut "kegelapan", ratusan ribu disebut "legiun", jutaan disebut "leodres", puluhan juta disebut "gagak", dan ratusan juta disebut "dek". Akun ini hingga ratusan juta disebut "akun kecil", dan dalam beberapa manuskrip penulis juga menganggap "akun besar", di mana nama yang sama digunakan untuk jumlah besar, tetapi dengan arti yang berbeda. Jadi, "kegelapan" tidak berarti sepuluh ribu, tetapi seribu ribu (10 6), "legiun" - kegelapan itu (10 12); "leodr" - legiun legiun (10 24), "gagak" - leodr leodres (10 48). Untuk beberapa alasan, "dek" dalam jumlah besar Slavia tidak disebut "gagak gagak" (10 96), tetapi hanya sepuluh "gagak", yaitu, 10 49 (lihat tabel).

Nama nomor

Artinya dalam "hitungan kecil"

Artinya dalam "akun hebat"

Penamaan

Gagak (Gagak)


Angka 10100 juga memiliki namanya sendiri dan ditemukan oleh seorang anak laki-laki berusia sembilan tahun. Dan itu seperti itu. Pada tahun 1938, matematikawan Amerika Edward Kasner (Edward Kasner, 1878-1955) sedang berjalan-jalan di taman dengan dua keponakannya dan mendiskusikan sejumlah besar dengan mereka. Selama percakapan, kami berbicara tentang angka dengan seratus nol, yang tidak memiliki namanya sendiri. Salah satu keponakannya, Milton Sirott yang berusia sembilan tahun, menyarankan untuk memanggil nomor ini "googol". Pada tahun 1940, Edward Kasner, bersama James Newman, menulis buku non-fiksi Matematika dan Imajinasi, di mana ia mengajar pecinta matematika tentang angka googol. Google menjadi lebih dikenal luas di akhir 1990-an, berkat mesin pencari Google yang dinamai menurut namanya.

Nama untuk jumlah yang lebih besar dari googol muncul pada tahun 1950 berkat bapak ilmu komputer, Claude Shannon (Claude Elwood Shannon, 1916-2001). Dalam artikelnya "Memrogram Komputer untuk Memainkan Catur", ia mencoba memperkirakan jumlah kemungkinan varian permainan catur. Menurutnya, setiap permainan berlangsung rata-rata 40 gerakan, dan pada setiap gerakan pemain memilih rata-rata 30 opsi, yang sesuai dengan 900 40 (kira-kira sama dengan 10.118) opsi permainan. Karya ini menjadi dikenal luas, dan nomor ini dikenal sebagai "nomor Shannon".

Dalam risalah Buddhis terkenal Jaina Sutra, berasal dari 100 SM, jumlah "asankheya" ditemukan sama dengan 10 140. Diyakini bahwa jumlah ini sama dengan jumlah siklus kosmik yang diperlukan untuk mencapai nirwana.

Milton Sirotta yang berusia sembilan tahun memasuki sejarah matematika tidak hanya dengan menemukan angka googol, tetapi juga dengan menyarankan angka lain pada saat yang sama - "googolplex", yang sama dengan 10 pangkat "googol", yaitu , satu dengan googol nol.

Dua bilangan lebih besar dari googolplex diusulkan oleh matematikawan Afrika Selatan Stanley Skewes (1899-1988) ketika membuktikan hipotesis Riemann. Angka pertama, yang kemudian disebut "Angka pertama Skeuse", sama dengan e sejauh e sejauh e pangkat 79, yaitu e e e 79 = 10 10 8.85.10 33 . Namun, "angka Skewes kedua" bahkan lebih besar dan 10 10 10 1000 .

Jelas, semakin banyak derajat dalam jumlah derajat, semakin sulit untuk menuliskan angka dan memahami artinya saat membaca. Selain itu, dimungkinkan untuk menghasilkan angka-angka seperti itu (dan mereka, omong-omong, telah ditemukan), ketika derajat derajat tidak sesuai dengan halaman. Ya, halaman yang luar biasa! Mereka bahkan tidak akan muat dalam sebuah buku seukuran seluruh alam semesta! Dalam hal ini, muncul pertanyaan bagaimana cara menuliskan angka-angka tersebut. Masalahnya, untungnya, dapat dipecahkan, dan matematikawan telah mengembangkan beberapa prinsip untuk menulis angka seperti itu. Benar, setiap matematikawan yang menanyakan masalah ini muncul dengan caranya sendiri dalam menulis, yang menyebabkan adanya beberapa cara yang tidak berhubungan untuk menulis bilangan besar - ini adalah notasi Knuth, Conway, Steinhaus, dll. Sekarang kita harus berurusan dengan beberapa dari mereka.

Notasi lainnya

Pada tahun 1938, tahun yang sama ketika Milton Sirotta yang berusia sembilan tahun menemukan bilangan googol dan googolplex, Hugo Dionizy Steinhaus, 1887-1972, sebuah buku tentang matematika yang menghibur, The Mathematical Kaleidoscope, diterbitkan di Polandia. Buku ini menjadi sangat populer, melewati banyak edisi dan diterjemahkan ke dalam banyak bahasa, termasuk Inggris dan Rusia. Di dalamnya, Steinhaus, membahas bilangan besar, menawarkan cara sederhana untuk menulisnya menggunakan tiga bentuk geometris - segitiga, persegi, dan lingkaran:

"n dalam segitiga" berarti " tidak ada»,
« n persegi" berarti " n di n segitiga",
« n dalam lingkaran" berarti " n di n kotak."

Menjelaskan cara penulisan ini, Steinhaus memunculkan angka "mega" sama dengan 2 dalam lingkaran dan menunjukkan bahwa itu sama dengan 256 dalam "persegi" atau 256 dalam 256 segitiga. Untuk menghitungnya, Anda perlu menaikkan 256 pangkat 256, menaikkan angka yang dihasilkan 3.2.10 616 ke pangkat 3.2.10 616, lalu menaikkan angka yang dihasilkan ke pangkat angka yang dihasilkan, dan seterusnya untuk menaikkan dengan kekuatan 256 kali. Misalnya, kalkulator di MS Windows tidak dapat menghitung karena meluap 256 bahkan dalam dua segitiga. Kira-kira jumlah yang besar ini adalah 10 10 2.10 619 .

Setelah menentukan angka "mega", Steinhaus mengundang pembaca untuk secara mandiri mengevaluasi angka lain - "medzon", sama dengan 3 dalam lingkaran. Dalam edisi lain buku ini, Steinhaus mengusulkan untuk mengevaluasi jumlah yang lebih besar daripada mezzon - "megiston", sama dengan 10 dalam lingkaran. Mengikuti Steinhaus, saya juga akan merekomendasikan agar pembaca beristirahat sejenak dari teks ini dan mencoba menulis angka-angka ini sendiri menggunakan kekuatan biasa untuk merasakan besarnya yang sangat besar.

Namun, ada nama untuk tentang angka yang lebih tinggi. Jadi, matematikawan Kanada Leo Moser (Leo Moser, 1921-1970) menyelesaikan notasi Steinhaus, yang dibatasi oleh fakta bahwa jika perlu untuk menuliskan angka yang jauh lebih besar daripada megiston, maka kesulitan dan ketidaknyamanan akan muncul, karena satu harus menggambar banyak lingkaran satu di dalam yang lain. Moser menyarankan untuk tidak menggambar lingkaran setelah kotak, tetapi segi lima, lalu segi enam, dan seterusnya. Dia juga mengusulkan notasi formal untuk poligon ini, sehingga angka dapat ditulis tanpa menggambar pola yang rumit. Notasi Moser terlihat seperti ini:

« n segitiga" = tidak ada = n;
« n dalam persegi" = n = « n di n segitiga" = nn;
« n dalam segi lima" = n = « n di n kuadrat" = nn;
« n di k+ 1-gon" = n[k+1] = " n di n k-gon" = n[k]n.

Jadi, menurut notasi Moser, "mega" Steinhausian ditulis sebagai 2, "medzon" sebagai 3, dan "megiston" sebagai 10. Selain itu, Leo Moser menyarankan untuk memanggil poligon dengan jumlah sisi yang sama dengan mega - "megagon ". Dan dia mengusulkan angka "2 dalam megagon", yaitu 2. Angka ini kemudian dikenal sebagai angka Moser atau hanya sebagai "moser".

Tetapi bahkan "moser" bukanlah jumlah terbesar. Jadi, bilangan terbesar yang pernah digunakan dalam pembuktian matematis adalah "bilangan Graham". Bilangan ini pertama kali digunakan oleh matematikawan Amerika Ronald Graham pada tahun 1977 ketika membuktikan satu taksiran dalam teori Ramsey, yaitu ketika menghitung dimensi-dimensi tertentu. n-hiperkubus bikromatik dimensi. Nomor Graham mendapatkan ketenaran hanya setelah cerita tentangnya dalam buku Martin Gardner tahun 1989 "From Penrose Mosaics to Secure Ciphers".

Untuk menjelaskan seberapa besar bilangan Graham, kita harus menjelaskan cara lain untuk menulis bilangan besar, yang diperkenalkan oleh Donald Knuth pada tahun 1976. Profesor Amerika Donald Knuth datang dengan konsep superdegree, yang ia usulkan untuk ditulis dengan panah menunjuk ke atas:

Saya pikir semuanya sudah jelas, jadi mari kita kembali ke nomor Graham. Ronald Graham mengusulkan apa yang disebut G-number:

Berikut adalah nomor G 64 dan disebut nomor Graham (sering dilambangkan hanya sebagai G). Angka ini merupakan angka terbesar yang diketahui di dunia yang digunakan dalam pembuktian matematis, dan bahkan tercatat dalam Guinness Book of Records.

Dan akhirnya

Setelah menulis artikel ini, saya tidak dapat menahan godaan dan membuat nomor saya sendiri. Biarkan nomor ini dipanggil staplex» dan akan sama dengan angka G 100 . Hafalkan, dan ketika anak-anak Anda bertanya berapa angka terbesar di dunia, beri tahu mereka bahwa angka ini disebut staplex.

berita mitra

10 hingga 3003 derajat

Perdebatan tentang siapa sosok terbesar di dunia sedang berlangsung. Sistem kalkulus yang berbeda menawarkan pilihan yang berbeda dan orang tidak tahu apa yang harus dipercaya, dan nomor mana yang dianggap terbesar.

Pertanyaan ini telah menarik minat para ilmuwan sejak zaman Kekaisaran Romawi. Kendala terbesar terletak pada definisi apa itu "angka" dan apa itu "angka". Pada suatu waktu, orang untuk waktu yang lama menganggap jumlah terbesar sebagai desiliun, yaitu, 10 pangkat ke-33. Tetapi, setelah para ilmuwan mulai secara aktif mempelajari sistem metrik Amerika dan Inggris, ditemukan bahwa jumlah terbesar di dunia adalah 10 pangkat 3003 - satu juta. Orang-orang dalam kehidupan sehari-hari percaya bahwa jumlah terbesar adalah satu triliun. Apalagi ini cukup formal, karena setelah satu triliun, nama tidak diberikan, karena akunnya mulai terlalu rumit. Namun, murni secara teoritis, jumlah nol dapat ditambahkan tanpa batas. Oleh karena itu, membayangkan bahkan satu triliun visual murni dan apa yang mengikutinya hampir tidak mungkin.

dalam angka romawi

Di sisi lain, definisi "angka" dalam pemahaman matematikawan sedikit berbeda. Bilangan adalah tanda yang diterima secara universal dan digunakan untuk menunjukkan besaran yang dinyatakan dalam istilah numerik. Konsep kedua "angka" berarti ekspresi karakteristik kuantitatif dalam bentuk yang nyaman melalui penggunaan angka. Oleh karena itu, bilangan terdiri dari angka-angka. Penting juga bahwa gambar tersebut memiliki sifat tanda. Mereka terkondisi, dapat dikenali, tidak dapat diubah. Angka juga memiliki sifat tanda, tetapi mereka mengikuti fakta bahwa angka terdiri dari angka. Dari sini kita dapat menyimpulkan bahwa satu triliun bukanlah angka sama sekali, tetapi angka. Lalu berapa angka terbesar di dunia jika bukan satu triliun yang merupakan angka?

Yang penting bilangan digunakan sebagai bilangan penyusun, tapi tidak hanya itu. Angka tersebut, bagaimanapun, adalah angka yang sama jika kita berbicara tentang beberapa hal, menghitungnya dari nol hingga sembilan. Sistem tanda seperti itu tidak hanya berlaku untuk angka Arab yang kita kenal, tetapi juga untuk Romawi I, V, X, L, C, D, M. Ini adalah angka Romawi. Di sisi lain, V I I I adalah angka Romawi. Dalam perhitungan Arab, itu sesuai dengan angka delapan.

dalam angka arab

Jadi, ternyata menghitung unit dari nol hingga sembilan dianggap angka, dan yang lainnya adalah angka. Oleh karena itu kesimpulan bahwa jumlah terbesar di dunia adalah sembilan. 9 adalah tanda, dan angka adalah abstraksi kuantitatif sederhana. Satu triliun adalah angka, dan bukan angka, dan karena itu tidak bisa menjadi angka terbesar di dunia. Satu triliun dapat disebut jumlah terbesar di dunia, dan kemudian murni nominal, karena angka dapat dihitung hingga tak terhingga. Jumlah digit sangat terbatas - dari 0 hingga 9.

Juga harus diingat bahwa angka dan bilangan dari sistem kalkulus yang berbeda tidak cocok, seperti yang kita lihat dari contoh dengan angka dan angka Arab dan Romawi. Ini karena angka dan angka adalah konsep sederhana yang diciptakan oleh seseorang sendiri. Oleh karena itu, jumlah satu sistem perhitungan dapat dengan mudah menjadi jumlah yang lain dan sebaliknya.

Dengan demikian, bilangan terbesar tidak dapat dihitung, karena dapat terus ditambahkan tanpa batas dari angka-angka. Adapun angka itu sendiri, dalam sistem yang berlaku umum, 9 dianggap sebagai angka terbesar.

“Saya melihat gumpalan angka samar bersembunyi di luar sana dalam kegelapan, di balik titik kecil cahaya yang diberikan lilin pikiran. Mereka saling berbisik; berbicara tentang siapa yang tahu apa. Mungkin mereka tidak terlalu menyukai kita karena menangkap adik laki-laki mereka dengan pikiran kita. Atau mungkin mereka hanya menjalani cara hidup numerik yang tidak ambigu, di sana, di luar pemahaman kita.
Douglas Ray

Cepat atau lambat, semua orang tersiksa oleh pertanyaan, berapa angka terbesar. Pertanyaan seorang anak dapat dijawab dalam sejuta. Apa berikutnya? Triliun. Dan lebih jauh lagi? Sebenarnya, jawaban untuk pertanyaan berapa bilangan terbesar itu sederhana. Sebaiknya tambahkan satu ke angka terbesar, karena tidak akan lagi menjadi yang terbesar. Prosedur ini dapat dilanjutkan tanpa batas.

Tetapi jika Anda bertanya pada diri sendiri: apa jumlah terbesar yang ada, dan apa namanya sendiri?

Sekarang kita semua tahu...

Ada dua sistem untuk penamaan angka - Amerika dan Inggris.

Sistem Amerika dibangun dengan cukup sederhana. Semua nama bilangan besar dibangun seperti ini: di awal ada nomor urut Latin, dan di akhir ditambahkan akhiran -juta. Pengecualian adalah nama "juta" yang merupakan nama angka seribu (lat. seribu) dan akhiran pembesar -juta (lihat tabel). Jadi jumlahnya diperoleh - triliun, kuadriliun, triliun, sextillion, septillion, octillion, nonillion dan decillion. Sistem Amerika digunakan di AS, Kanada, Prancis, dan Rusia. Anda dapat mengetahui jumlah nol dalam angka yang ditulis dalam sistem Amerika menggunakan rumus sederhana 3 x + 3 (di mana x adalah angka Latin).

Sistem penamaan bahasa Inggris adalah yang paling umum di dunia. Ini digunakan, misalnya, di Inggris Raya dan Spanyol, serta di sebagian besar bekas koloni Inggris dan Spanyol. Nama-nama angka dalam sistem ini dibangun seperti ini: seperti ini: sufiks -juta ditambahkan ke angka Latin, angka berikutnya (1000 kali lebih besar) dibangun sesuai dengan prinsip - angka Latin yang sama, tetapi sufiksnya adalah -miliar. Artinya, setelah satu triliun dalam sistem Inggris muncul satu triliun, dan hanya kemudian satu kuadriliun, diikuti oleh satu kuadriliun, dan seterusnya. Jadi, satu kuadriliun menurut sistem Inggris dan Amerika adalah angka yang sama sekali berbeda! Anda dapat mengetahui jumlah nol dalam angka yang ditulis dalam sistem bahasa Inggris dan diakhiri dengan akhiran -juta menggunakan rumus 6 x + 3 (di mana x adalah angka Latin) dan menggunakan rumus 6 x + 6 untuk angka yang berakhiran -miliar.

Hanya jumlah miliar (10 9 ) yang berpindah dari sistem Inggris ke bahasa Rusia, yang, bagaimanapun, akan lebih tepat untuk menyebutnya dengan cara orang Amerika menyebutnya - satu miliar, karena kita telah mengadopsi sistem Amerika. Tapi siapa di negara kita yang melakukan sesuatu sesuai aturan! ;-) Omong-omong, terkadang kata triliun juga digunakan dalam bahasa Rusia (Anda dapat melihat sendiri dengan menjalankan pencarian di Google atau Yandex) dan itu berarti, tampaknya, 1000 triliun, mis. milion lipat empat.

Selain angka-angka yang ditulis menggunakan awalan Latin dalam sistem Amerika atau Inggris, dikenal juga yang disebut angka di luar sistem, yaitu. nomor yang memiliki nama sendiri tanpa awalan Latin. Ada beberapa angka seperti itu, tetapi saya akan membicarakannya lebih detail nanti.

Mari kembali menulis menggunakan angka latin. Tampaknya mereka dapat menulis angka hingga tak terbatas, tetapi ini tidak sepenuhnya benar. Sekarang saya akan menjelaskan alasannya. Mari kita lihat dulu bagaimana angka dari 1 hingga 10 33 dipanggil:

Jadi, sekarang muncul pertanyaan, apa selanjutnya. Apa itu satu desiun? Pada prinsipnya, tentu saja, dimungkinkan dengan menggabungkan awalan untuk menghasilkan monster seperti: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion, dan novemdecillion, tetapi ini sudah akan menjadi nama majemuk, dan kami tertarik nomor nama kita sendiri. Oleh karena itu, menurut sistem ini, selain yang di atas, Anda masih bisa mendapatkan hanya tiga nama yang tepat - vigintillion (dari lat.pemandangan- dua puluh), centillion (dari lat.persen- seratus) dan satu juta (dari lat.seribu- seribu). Bangsa Romawi tidak memiliki lebih dari seribu nama mereka sendiri untuk angka (semua angka di atas seribu adalah gabungan). Misalnya, satu juta (1.000.000) orang Romawi disebutcentena miliayaitu sepuluh ratus ribu. Dan sekarang, sebenarnya, tabelnya:

Jadi, menurut sistem yang sama, bilangan lebih besar dari 10 3003 , yang akan memiliki sendiri, nama non-majemuk, tidak mungkin untuk mendapatkan! Namun demikian, angka yang lebih besar dari satu juta diketahui - ini adalah angka yang sangat non-sistemik. Akhirnya, mari kita bicara tentang mereka.


Angka terkecil adalah segudang (bahkan dalam kamus Dahl), yang berarti seratus ratusan, yaitu 10.000. Benar, kata ini sudah usang dan praktis tidak digunakan, tetapi anehnya kata "segudang" tersebar luas digunakan, yang tidak berarti angka tertentu sama sekali, tetapi seperangkat sesuatu yang tak terhitung dan tak terhitung. Diyakini bahwa kata myriad (bahasa Inggris myriad) datang ke bahasa-bahasa Eropa dari Mesir kuno.

Ada perbedaan pendapat tentang asal usul angka ini. Beberapa percaya bahwa itu berasal dari Mesir, sementara yang lain percaya bahwa itu hanya lahir di Yunani kuno. Bagaimanapun, pada kenyataannya, segudang memperoleh ketenaran justru berkat orang-orang Yunani. Segudang adalah nama untuk 10.000, dan tidak ada nama untuk angka di atas sepuluh ribu. Namun, dalam catatan "Psammit" (yaitu, kalkulus pasir), Archimedes menunjukkan bagaimana seseorang dapat secara sistematis membangun dan menamai bilangan besar secara sewenang-wenang. Secara khusus, menempatkan 10.000 (segudang) butir pasir dalam biji poppy, ia menemukan bahwa di Semesta (bola dengan diameter segudang diameter Bumi) akan muat (dalam notasi kami) tidak lebih dari 10 63 butiran pasir. Sangat mengherankan bahwa perhitungan modern dari jumlah atom di alam semesta yang terlihat mengarah ke angka 10 67 (hanya beberapa kali lebih banyak). Nama-nama bilangan yang diusulkan Archimedes adalah sebagai berikut:
1 segudang = 10 4 .
1 di-segudang = segudang segudang = 10 8 .
1 tri-segudang = di-segudang di-segudang = 10 16 .
1 tetra-myriad = tiga-myriad tiga-myriad = 10 32 .
dll.


googol(dari bahasa Inggris googol) adalah angka sepuluh pangkat seratus, yaitu satu dengan seratus nol. The "googol" pertama kali ditulis pada tahun 1938 dalam artikel "Nama Baru dalam Matematika" dalam edisi Januari jurnal Scripta Mathematica oleh matematikawan Amerika Edward Kasner. Menurutnya, keponakannya yang berusia sembilan tahun, Milton Sirotta, menyarankan untuk memanggil sejumlah besar "googol". Nomor ini menjadi terkenal berkat mesin pencari yang dinamai menurut namanya. Google. Perhatikan bahwa "Google" adalah merek dagang dan googol adalah angka.


Edward Kasner.

Di Internet, Anda sering menemukan penyebutan itu - tetapi ini tidak begitu ...

Dalam risalah Buddhis terkenal Jaina Sutra, berasal dari 100 SM, ada nomor asankhiya(dari bahasa Cina asentzi- tak terhitung), sama dengan 10 140. Diyakini bahwa jumlah ini sama dengan jumlah siklus kosmik yang diperlukan untuk mencapai nirwana.


Googolplex(Bahasa inggris) googolplex) - angka yang juga ditemukan oleh Kasner dengan keponakannya dan artinya satu dengan googol nol, yaitu, 10 10100 . Inilah cara Kasner sendiri menggambarkan "penemuan" ini:


Kata-kata bijak diucapkan oleh anak-anak setidaknya sesering oleh para ilmuwan. Nama "googol" ditemukan oleh seorang anak (keponakan Dr. Kasner yang berusia sembilan tahun) yang diminta untuk memikirkan nama untuk angka yang sangat besar, yaitu 1 dengan seratus nol di belakangnya. yakin bahwa jumlah ini tidak terbatas, dan karena itu sama-sama yakin bahwa ia harus memiliki nama, googol, tetapi masih terbatas, seperti yang ditunjukkan oleh penemu nama itu dengan cepat.

Matematika dan Imajinasi(1940) oleh Kasner dan James R. Newman.

Bahkan lebih dari sekadar angka googolplex - nomor tusuk (Skewes" number) diusulkan oleh Skewes pada tahun 1933 (Skewes. J.London Matematika. pergaulan 8, 277-283, 1933.) dalam membuktikan dugaan Riemann tentang bilangan prima. Itu berarti e sejauh e sejauh e pangkat 79, yaitu ee e 79 . Kemudian, Riele (te Riele, H. J. J. "Pada Tanda Perbedaan P(x)-Li(x)." Matematika. Hitung. 48, 323-328, 1987) mengurangi nomor Skuse menjadi ee 27/4 , yang kira-kira sama dengan 8,185 10 370. Jelas bahwa karena nilai angka Skewes tergantung pada angka e, maka itu bukan bilangan bulat, jadi kami tidak akan mempertimbangkannya, jika tidak, kami harus mengingat bilangan non-alami lainnya - bilangan pi, bilangan e, dll.

Tetapi perlu dicatat bahwa ada angka Skewes kedua, yang dalam matematika dilambangkan sebagai Sk2 , yang bahkan lebih besar dari angka Skewes pertama (Sk1 ). Nomor kedua Skuse, diperkenalkan oleh J. Skuse dalam artikel yang sama untuk menunjukkan angka yang hipotesis Riemann tidak valid. Sk2 adalah 1010 10103 , yaitu 1010 101000 .

Seperti yang Anda pahami, semakin banyak derajat, semakin sulit untuk memahami angka mana yang lebih besar. Misalnya, melihat angka Skewes, tanpa perhitungan khusus, hampir tidak mungkin untuk memahami mana dari dua angka ini yang lebih besar. Jadi, untuk bilangan super besar, menjadi tidak nyaman untuk menggunakan kekuatan. Selain itu, Anda dapat menemukan angka-angka seperti itu (dan mereka telah ditemukan) ketika derajat derajat tidak sesuai dengan halaman. Ya, halaman yang luar biasa! Mereka bahkan tidak akan muat ke dalam sebuah buku seukuran seluruh alam semesta! Dalam hal ini, muncul pertanyaan bagaimana cara menuliskannya. Masalahnya, seperti yang Anda pahami, dapat dipecahkan, dan matematikawan telah mengembangkan beberapa prinsip untuk menulis angka seperti itu. Benar, setiap matematikawan yang menanyakan masalah ini muncul dengan cara penulisannya sendiri, yang mengarah pada keberadaan beberapa cara penulisan angka yang tidak terkait - ini adalah notasi Knuth, Conway, Steinhaus, dll.

Perhatikan notasi Hugo Stenhaus (H. Steinhaus. Snapshot Matematika, edisi ke-3. 1983), yang cukup sederhana. Steinhouse menyarankan untuk menulis bilangan besar di dalam bentuk geometris - segitiga, bujur sangkar, dan lingkaran:

Steinhouse datang dengan dua angka super besar baru. Dia menyebutkan nomor Mega, dan bilangan tersebut adalah Megiston.

Matematikawan Leo Moser menyempurnakan notasi Stenhouse, yang dibatasi oleh fakta bahwa jika perlu untuk menulis angka yang jauh lebih besar daripada megiston, kesulitan dan ketidaknyamanan muncul, karena banyak lingkaran harus ditarik satu di dalam yang lain. Moser menyarankan untuk tidak menggambar lingkaran setelah kotak, tetapi segi lima, lalu segi enam, dan seterusnya. Dia juga mengusulkan notasi formal untuk poligon ini, sehingga angka dapat ditulis tanpa menggambar pola yang rumit. notasi moser terlihat seperti itu:

Jadi, menurut notasi Moser, mega Steinhouse ditulis sebagai 2, dan megiston sebagai 10. Selain itu, Leo Moser menyarankan untuk memanggil poligon dengan jumlah sisi yang sama dengan mega - megagon. Dan dia mengusulkan angka "2 di Megagon", yaitu 2. Angka ini kemudian dikenal sebagai angka Moser atau hanya sebagai lebih

Tetapi jumlah yang lebih besar bukanlah yang terbesar. Angka terbesar yang pernah digunakan dalam pembuktian matematis adalah nilai pembatas yang dikenal sebagai nomor Graham(Nomor Graham "s), pertama kali digunakan pada tahun 1977 dalam pembuktian satu perkiraan dalam teori Ramsey. Hal ini terkait dengan hiperkubus bikromatik dan tidak dapat diekspresikan tanpa sistem 64-tingkat khusus dari simbol matematika khusus yang diperkenalkan oleh Knuth pada tahun 1976.

Sayangnya, angka yang ditulis dalam notasi Knuth tidak dapat diterjemahkan ke dalam notasi Moser. Oleh karena itu, sistem ini juga harus dijelaskan. Pada prinsipnya, tidak ada yang rumit di dalamnya juga. Donald Knuth (ya, ya, ini adalah Knuth yang sama yang menulis The Art of Programming dan menciptakan editor TeX) datang dengan konsep negara adidaya, yang ia usulkan untuk ditulis dengan panah menunjuk ke atas:

Secara umum, terlihat seperti ini:

Saya pikir semuanya sudah jelas, jadi mari kita kembali ke nomor Graham. Graham mengusulkan apa yang disebut G-numbers:

Nomor G63 dikenal sebagai nomor Graham(sering dilambangkan hanya sebagai G). Angka ini merupakan angka terbesar yang diketahui di dunia dan bahkan tercatat dalam Guinness Book of Records. Dan, di sini, angka Graham lebih besar dari angka Moser.

P.S. Untuk membawa manfaat besar bagi seluruh umat manusia dan menjadi terkenal selama berabad-abad, saya memutuskan untuk menciptakan dan memberi nama nomor terbesar sendiri. Nomor ini akan dipanggil staplex dan itu sama dengan angka G100 . Hafalkan, dan ketika anak-anak Anda bertanya berapa angka terbesar di dunia, beri tahu mereka bahwa angka ini disebut staplex

Jadi ada angka yang lebih besar dari angka Graham? Tentu saja, sebagai permulaan ada nomor Graham. Mengenai bilangan penting... yah, ada beberapa bidang matematika yang sangat sulit (khususnya, bidang yang dikenal sebagai kombinatorik) dan ilmu komputer, di mana ada bilangan yang bahkan lebih besar dari bilangan Graham. Tapi kita hampir mencapai batas yang bisa dijelaskan secara rasional dan jelas.

Banyak orang tertarik dengan pertanyaan tentang seberapa besar angka yang disebut dan nomor berapa yang terbesar di dunia. Pertanyaan-pertanyaan menarik ini akan dibahas dalam artikel ini.

Cerita

Orang Slavia selatan dan timur menggunakan penomoran alfabet untuk menulis angka, dan hanya huruf-huruf yang ada dalam alfabet Yunani. Di atas huruf, yang menunjukkan nomor, mereka menempatkan ikon "titlo" khusus. Nilai numerik huruf meningkat dalam urutan yang sama di mana huruf diikuti dalam alfabet Yunani (dalam alfabet Slavia, urutan hurufnya sedikit berbeda). Di Rusia, penomoran Slavia dipertahankan hingga akhir abad ke-17, dan di bawah Peter I mereka beralih ke "penomoran Arab", yang masih kita gunakan sampai sekarang.

Nama-nama nomor juga berubah. Jadi, sampai abad ke-15, angka "dua puluh" ditetapkan sebagai "dua sepuluh" (dua puluhan), dan kemudian dikurangi untuk pengucapan yang lebih cepat. Angka 40 sampai abad ke-15 disebut “empat puluh”, kemudian diganti dengan kata “empat puluh”, yang semula berarti tas berisi 40 kulit tupai atau musang. Nama "juta" muncul di Italia pada tahun 1500. Itu dibentuk dengan menambahkan sufiks augmentatif ke angka "mille" (seribu). Belakangan, nama ini datang ke bahasa Rusia.

Di "Aritmatika" Magnitsky yang lama (abad XVIII), ada tabel nama-nama angka, dibawa ke "kuadriliun" (10 ^ 24, menurut sistem melalui 6 digit). Perelman Ya.I. dalam buku "Hiburan Aritmatika" nama-nama sejumlah besar waktu itu diberikan, agak berbeda dari hari ini: septillion (10 ^ 42), octalion (10 ^ 48), nonalion (10 ^ 54), decalion (10 ^ 60) , endecalion (10 ^ 66), dodecalion (10 ^ 72) dan tertulis bahwa "tidak ada lagi nama".

Cara membangun nama bilangan besar

Ada 2 cara utama untuk memberi nama bilangan besar:

  • sistem Amerika, yang digunakan di AS, Rusia, Prancis, Kanada, Italia, Turki, Yunani, Brasil. Nama-nama bilangan besar dibangun dengan cukup sederhana: pada awalnya ada nomor urut Latin, dan akhiran "-juta" ditambahkan di akhir. Pengecualian adalah angka "juta", yang merupakan nama angka seribu (mille) dan akhiran pembesar "-juta". Banyaknya angka nol dalam suatu bilangan yang ditulis menurut sistem Amerika dapat dicari dengan rumus: 3x + 3, di mana x adalah bilangan urut latin
  • sistem bahasa inggris paling umum di dunia, digunakan di Jerman, Spanyol, Hongaria, Polandia, Republik Ceko, Denmark, Swedia, Finlandia, Portugal. Nama-nama angka menurut sistem ini dibangun sebagai berikut: akhiran "-juta" ditambahkan ke angka Latin, angka berikutnya (1000 kali lebih besar) adalah angka Latin yang sama, tetapi akhiran "-miliar" ditambahkan. Banyaknya angka nol pada suatu bilangan yang ditulis dalam sistem bahasa Inggris dan diakhiri dengan akhiran “-juta” dapat dicari dengan rumus: 6x + 3, di mana x adalah bilangan urut latin. Banyaknya angka nol pada bilangan yang diakhiri dengan akhiran “-miliar” dapat dicari dengan rumus: 6x + 6, di mana x adalah bilangan urut latin.

Dari sistem bahasa Inggris, hanya kata miliar yang diteruskan ke bahasa Rusia, yang masih lebih tepat untuk menyebutnya dengan cara orang Amerika menyebutnya - miliar (karena sistem penamaan angka Amerika digunakan dalam bahasa Rusia).

Selain bilangan yang ditulis dalam sistem Amerika atau Inggris dengan menggunakan awalan Latin, dikenal juga bilangan nonsistemik yang memiliki nama sendiri tanpa awalan Latin.

Nama yang tepat untuk bilangan besar

Nomor angka latin Nama Nilai praktis
10 1 10 sepuluh Jumlah jari pada 2 tangan
10 2 100 ratus Kira-kira setengah jumlah semua negara bagian di Bumi
10 3 1000 seribu Perkiraan jumlah hari dalam 3 tahun
10 6 1000 000 unus (saya) juta 5 kali lebih banyak dari jumlah tetes dalam 10 liter. seember air
10 9 1000 000 000 pasangan(II) miliar (miliar) Perkiraan populasi India
10 12 1000 000 000 000 tres(III) triliun
10 15 1000 000 000 000 000 quattor(IV) milion lipat empat 1/30 dari panjang parsec dalam meter
10 18 quinque (V) triliun 1/18 jumlah butir dari penghargaan legendaris hingga penemu catur
10 21 jenis kelamin (VI) sextillion 1/6 massa planet bumi dalam ton
10 24 Septem(VII) septillion Jumlah molekul dalam 37,2 liter udara
10 27 okto(VIII) oktillion Setengah massa Jupiter dalam kilogram
10 30 novem(IX) triliun 1/5 dari semua mikroorganisme di planet ini
10 33 desem(X) satu juta Setengah massa Matahari dalam gram
  • Vigintillion (dari lat. viginti - dua puluh) - 10 63
  • Centillion (dari bahasa Latin centum - seratus) - 10 303
  • Milleillion (dari bahasa Latin mille - ribu) - 10 3003

Untuk angka yang lebih besar dari seribu, orang Romawi tidak memiliki nama sendiri (semua nama angka di bawah ini adalah gabungan).

Nama majemuk untuk bilangan besar

Selain nama mereka sendiri, untuk angka yang lebih besar dari 10 33 Anda bisa mendapatkan nama majemuk dengan menggabungkan awalan.

Nama majemuk untuk bilangan besar

Nomor angka latin Nama Nilai praktis
10 36 putuskan (XI) andecillion
10 39 duodecim(XII) duodecillion
10 42 tredecim(XIII) triliun 1/100 dari jumlah molekul udara di Bumi
10 45 quattuordecim (XIV) quattordecillion
10 48 quindecim (XV) quindecillion
10 51 sedecim (XVI) sexdecillion
10 54 septendecim (XVII) septemdecillion
10 57 octodecillion Begitu banyak partikel elementer di matahari
10 60 novemdecillion
10 63 viginti (XX) vigintillion
10 66 unus et viginti (XXI) anvigintillion
10 69 duo et viginti (XXII) duovigintillion
10 72 tres et viginti (XXIII) trevigintillion
10 75 quattorvigintillion
10 78 quinvigintillion
10 81 sexvigintillion Begitu banyak partikel elementer di alam semesta
10 84 septemvigintillion
10 87 octovigintillion
10 90 novemvigintillion
10 93 triginta (XXX) trigintillion
10 96 antirigintillion
  • 10 123 - quadragintillion
  • 10 153 - quinquagintillion
  • 10 183 - sexagintillion
  • 10 213 - septuagintillion
  • 10 243 - octogintillion
  • 10 273 - nonagintillion
  • 10 303 - centillion

Nama lebih lanjut dapat diperoleh dengan urutan langsung atau terbalik dari angka Latin (tidak diketahui cara yang benar):

  • 10 306 - ancentillion atau centunillion
  • 10 309 - duocentillion atau centduollion
  • 10 312 - trecentillion atau centtrillion
  • 10 315 - quattorcentillion atau centquadrillion
  • 10 402 - tretrigintacentillion atau centtretrigintillion

Ejaan kedua lebih sesuai dengan konstruksi angka dalam bahasa Latin dan menghindari ambiguitas (misalnya, pada angka trecentillion, yang pada ejaan pertama adalah 10903 dan 10312).

  • 10 603 - desenillion
  • 10 903 - triliun
  • 10 1203 - kuadringentillion
  • 10 1503 - triliun triliun
  • 10 1803 - sescentillion
  • 10 2103 - septingentillion
  • 10 2403 - octingentillion
  • 10 2703 - nongentillion
  • 10.3003 - juta
  • 10 6003 - dua juta
  • 10.9003 - triliun
  • 10 15003 - quinquemillion
  • 10 308760 -on
  • 10 3000003 - miamimiliaillion
  • 10 6000003 - duomyamimiliaillion

banyak sekali– 10.000. Nama itu sudah usang dan praktis tidak pernah digunakan. Namun, kata "segudang" digunakan secara luas, yang berarti bukan angka tertentu, tetapi kumpulan sesuatu yang tak terhitung dan tak terhitung.

googl ( Bahasa inggris . googol) — 10 100 . Matematikawan Amerika Edward Kasner pertama kali menulis tentang angka ini pada tahun 1938 di jurnal Scripta Mathematica dalam artikel "Nama Baru dalam Matematika". Menurutnya, keponakannya yang berusia 9 tahun, Milton Sirotta, menyarankan untuk menelepon nomor tersebut dengan cara ini. Nomor ini menjadi pengetahuan publik berkat mesin pencari Google, dinamai menurut namanya.

Asankheyya(dari asentzi Cina - tak terhitung) - 10 1 4 0. Angka ini ditemukan dalam risalah Buddhis terkenal Jaina Sutra (100 SM). Diyakini bahwa jumlah ini sama dengan jumlah siklus kosmik yang diperlukan untuk mencapai nirwana.

Googolplex ( Bahasa inggris . Googolplex) — 10^10^100. Angka ini juga ditemukan oleh Edward Kasner dan keponakannya, artinya satu dengan googol nol.

nomor tusuk (Nomor tusuk sate Sk 1) berarti e pangkat e pangkat e pangkat 79, yaitu e^e^e^79. Bilangan ini diusulkan oleh Skewes pada tahun 1933 (Skewes. J. London Math. Soc. 8, 277-283, 1933.) dalam membuktikan dugaan Riemann mengenai bilangan prima. Kemudian, Riele (te Riele, H. J. J. "Pada Tanda Selisih P(x)-Li(x"). Math. Comput. 48, 323-328, 1987) mereduksi bilangan Skuse menjadi e^e^27/4, yang kira-kira sama dengan 8,185 10^370. Namun bilangan ini bukan bilangan bulat, sehingga tidak termasuk dalam tabel bilangan besar.

Nomor Tusuk Kedua (Sk2) sama dengan 10^10^10^10^3, yaitu 10^10^10^1000. Angka ini diperkenalkan oleh J. Skuse dalam artikel yang sama untuk menunjukkan angka di mana hipotesis Riemann valid.

Untuk bilangan super besar, tidak nyaman menggunakan pangkat, jadi ada beberapa cara untuk menulis bilangan - notasi Knuth, Conway, Steinhouse, dll.

Hugo Steinhaus menyarankan untuk menulis bilangan besar di dalam bentuk geometris (segitiga, persegi, dan lingkaran).

Matematikawan Leo Moser menyelesaikan notasi Steinhaus, menyarankan bahwa setelah kotak, gambar bukan lingkaran, tetapi segi lima, lalu segi enam, dan seterusnya. Moser juga mengusulkan notasi formal untuk poligon ini, sehingga angka dapat ditulis tanpa menggambar pola yang rumit.

Steinhouse datang dengan dua nomor super besar baru: Mega dan Megiston. Dalam notasi Moser, mereka ditulis sebagai berikut: Mega – 2, megiston– 10. Leo Moser menyarankan juga untuk memanggil poligon dengan jumlah sisi sama dengan mega – megagon, dan juga menyarankan angka "2 di Megagon" - 2. Angka terakhir dikenal sebagai Nomor Moser atau seperti Moser.

Ada angka yang lebih besar dari Moser. Bilangan terbesar yang digunakan dalam pembuktian matematis adalah nomor Graham(nomor Graham). Ini pertama kali digunakan pada tahun 1977 dalam pembuktian satu perkiraan dalam teori Ramsey. Angka ini dikaitkan dengan hiperkubus bikromatik dan tidak dapat diekspresikan tanpa sistem khusus 64 tingkat simbol matematika yang diperkenalkan oleh Knuth pada tahun 1976. Donald Knuth (yang menulis The Art of Programming dan menciptakan editor TeX) mengemukakan konsep kekuatan super, yang ia usulkan untuk ditulis dengan panah menunjuk ke atas:

Secara umum

Graham menyarankan G-number:

Angka G 63 disebut angka Graham, sering disebut sebagai G. Angka ini adalah angka terbesar yang diketahui di dunia dan terdaftar dalam Guinness Book of Records.

17 Juni 2015

“Saya melihat gumpalan angka samar bersembunyi di luar sana dalam kegelapan, di balik titik kecil cahaya yang diberikan lilin pikiran. Mereka saling berbisik; berbicara tentang siapa yang tahu apa. Mungkin mereka tidak terlalu menyukai kita karena menangkap adik laki-laki mereka dengan pikiran kita. Atau mungkin mereka hanya menjalani cara hidup numerik yang tidak ambigu, di sana, di luar pemahaman kita.
Douglas Ray

Kami melanjutkan milik kami. Hari ini kita punya nomor...

Cepat atau lambat, semua orang tersiksa oleh pertanyaan, berapa angka terbesar. Pertanyaan seorang anak dapat dijawab dalam sejuta. Apa berikutnya? Triliun. Dan lebih jauh lagi? Sebenarnya, jawaban untuk pertanyaan berapa bilangan terbesar itu sederhana. Sebaiknya tambahkan satu ke angka terbesar, karena tidak akan lagi menjadi yang terbesar. Prosedur ini dapat dilanjutkan tanpa batas.

Tetapi jika Anda bertanya pada diri sendiri: apa jumlah terbesar yang ada, dan apa namanya sendiri?

Sekarang kita semua tahu...

Ada dua sistem untuk penamaan angka - Amerika dan Inggris.

Sistem Amerika dibangun dengan cukup sederhana. Semua nama bilangan besar dibangun seperti ini: di awal ada nomor urut Latin, dan di akhir ditambahkan akhiran -juta. Pengecualian adalah nama "juta" yang merupakan nama angka seribu (lat. seribu) dan akhiran pembesar -juta (lihat tabel). Jadi jumlahnya diperoleh - triliun, kuadriliun, triliun, sextillion, septillion, octillion, nonillion dan decillion. Sistem Amerika digunakan di AS, Kanada, Prancis, dan Rusia. Anda dapat mengetahui jumlah nol dalam angka yang ditulis dalam sistem Amerika menggunakan rumus sederhana 3 x + 3 (di mana x adalah angka Latin).

Sistem penamaan bahasa Inggris adalah yang paling umum di dunia. Ini digunakan, misalnya, di Inggris Raya dan Spanyol, serta di sebagian besar bekas koloni Inggris dan Spanyol. Nama-nama angka dalam sistem ini dibangun seperti ini: seperti ini: sufiks -juta ditambahkan ke angka Latin, angka berikutnya (1000 kali lebih besar) dibangun sesuai dengan prinsip - angka Latin yang sama, tetapi sufiksnya adalah -miliar. Artinya, setelah satu triliun dalam sistem Inggris muncul satu triliun, dan hanya kemudian satu kuadriliun, diikuti oleh satu kuadriliun, dan seterusnya. Jadi, satu kuadriliun menurut sistem Inggris dan Amerika adalah angka yang sama sekali berbeda! Anda dapat mengetahui jumlah nol dalam angka yang ditulis dalam sistem bahasa Inggris dan diakhiri dengan akhiran -juta menggunakan rumus 6 x + 3 (di mana x adalah angka Latin) dan menggunakan rumus 6 x + 6 untuk angka yang berakhiran -miliar.

Hanya jumlah miliar (10 9 ) yang berpindah dari sistem Inggris ke bahasa Rusia, yang, bagaimanapun, akan lebih tepat untuk menyebutnya dengan cara orang Amerika menyebutnya - satu miliar, karena kita telah mengadopsi sistem Amerika. Tapi siapa di negara kita yang melakukan sesuatu sesuai aturan! ;-) Omong-omong, terkadang kata triliun juga digunakan dalam bahasa Rusia (Anda dapat melihat sendiri dengan menjalankan pencarian di Google atau Yandex) dan itu berarti, tampaknya, 1000 triliun, mis. milion lipat empat.

Selain angka-angka yang ditulis menggunakan awalan Latin dalam sistem Amerika atau Inggris, dikenal juga yang disebut angka di luar sistem, yaitu. nomor yang memiliki nama sendiri tanpa awalan Latin. Ada beberapa angka seperti itu, tetapi saya akan membicarakannya lebih detail nanti.

Mari kembali menulis menggunakan angka latin. Tampaknya mereka dapat menulis angka hingga tak terbatas, tetapi ini tidak sepenuhnya benar. Sekarang saya akan menjelaskan alasannya. Mari kita lihat dulu bagaimana angka dari 1 hingga 10 33 dipanggil:

Jadi, sekarang muncul pertanyaan, apa selanjutnya. Apa itu satu desiun? Pada prinsipnya, tentu saja, dimungkinkan dengan menggabungkan awalan untuk menghasilkan monster seperti: andecillion, duodecillion, tredecillion, quattordecillion, quindecillion, sexdecillion, septemdecillion, octodecillion, dan novemdecillion, tetapi ini sudah akan menjadi nama majemuk, dan kami tertarik nomor nama kita sendiri. Oleh karena itu, menurut sistem ini, selain yang di atas, Anda masih bisa mendapatkan hanya tiga nama yang tepat - vigintillion (dari lat.pemandangan- dua puluh), centillion (dari lat.persen- seratus) dan satu juta (dari lat.seribu- seribu). Bangsa Romawi tidak memiliki lebih dari seribu nama mereka sendiri untuk angka (semua angka di atas seribu adalah gabungan). Misalnya, satu juta (1.000.000) orang Romawi disebutcentena miliayaitu sepuluh ratus ribu. Dan sekarang, sebenarnya, tabelnya:

Jadi, menurut sistem yang sama, bilangan lebih besar dari 10 3003 , yang akan memiliki sendiri, nama non-majemuk, tidak mungkin untuk mendapatkan! Namun demikian, angka yang lebih besar dari satu juta diketahui - ini adalah angka yang sangat non-sistemik. Akhirnya, mari kita bicara tentang mereka.


Angka terkecil adalah segudang (bahkan dalam kamus Dahl), yang berarti seratus ratusan, yaitu 10.000. Benar, kata ini sudah usang dan praktis tidak digunakan, tetapi anehnya kata "segudang" tersebar luas digunakan, yang tidak berarti angka tertentu sama sekali, tetapi seperangkat sesuatu yang tak terhitung dan tak terhitung. Diyakini bahwa kata myriad (bahasa Inggris myriad) datang ke bahasa-bahasa Eropa dari Mesir kuno.

Ada perbedaan pendapat tentang asal usul angka ini. Beberapa percaya bahwa itu berasal dari Mesir, sementara yang lain percaya bahwa itu hanya lahir di Yunani kuno. Bagaimanapun, pada kenyataannya, segudang memperoleh ketenaran justru berkat orang-orang Yunani. Segudang adalah nama untuk 10.000, dan tidak ada nama untuk angka di atas sepuluh ribu. Namun, dalam catatan "Psammit" (yaitu, kalkulus pasir), Archimedes menunjukkan bagaimana seseorang dapat secara sistematis membangun dan menamai bilangan besar secara sewenang-wenang. Secara khusus, menempatkan 10.000 (segudang) butir pasir dalam biji poppy, ia menemukan bahwa di Semesta (bola dengan diameter segudang diameter Bumi) akan muat (dalam notasi kami) tidak lebih dari 10 63 butiran pasir. Sangat mengherankan bahwa perhitungan modern dari jumlah atom di alam semesta yang terlihat mengarah ke angka 10 67 (hanya beberapa kali lebih banyak). Nama-nama bilangan yang diusulkan Archimedes adalah sebagai berikut:
1 segudang = 10 4 .
1 di-segudang = segudang segudang = 10 8 .
1 tri-segudang = di-segudang di-segudang = 10 16 .
1 tetra-myriad = tiga-myriad tiga-myriad = 10 32 .
dll.



Googol (dari bahasa Inggris googol) adalah angka sepuluh pangkat seratus, yaitu satu dengan seratus nol. Kata "googol" pertama kali ditulis pada tahun 1938 dalam artikel "Nama Baru dalam Matematika" dalam jurnal Scripta Mathematica edisi Januari oleh ahli matematika Amerika Edward Kasner. Menurutnya, keponakannya yang berusia sembilan tahun, Milton Sirotta, menyarankan untuk memanggil sejumlah besar "googol". Nomor ini menjadi terkenal berkat mesin pencari yang dinamai menurut namanya. Google. Perhatikan bahwa "Google" adalah merek dagang dan googol adalah angka.


Edward Kasner.

Di Internet, Anda sering menemukan penyebutan itu - tetapi ini tidak begitu ...

Dalam risalah Buddhis terkenal Jaina Sutra, berasal dari 100 SM, nomor Asankheya (dari bahasa Cina. asentzi- tak terhitung), sama dengan 10 140. Diyakini bahwa jumlah ini sama dengan jumlah siklus kosmik yang diperlukan untuk mencapai nirwana.


Googolplex (Inggris) googolplex) - angka yang juga ditemukan oleh Kasner dengan keponakannya dan artinya satu dengan googol nol, yaitu, 10 10100 . Inilah cara Kasner sendiri menggambarkan "penemuan" ini:


Kata-kata bijak diucapkan oleh anak-anak setidaknya sesering oleh para ilmuwan. Nama "googol" ditemukan oleh seorang anak (keponakan Dr. Kasner yang berusia sembilan tahun) yang diminta untuk memikirkan nama untuk angka yang sangat besar, yaitu 1 dengan seratus nol di belakangnya. yakin bahwa jumlah ini tidak terbatas, dan karena itu sama-sama yakin bahwa ia harus memiliki nama, googol, tetapi masih terbatas, seperti yang ditunjukkan oleh penemu nama itu dengan cepat.

Matematika dan Imajinasi(1940) oleh Kasner dan James R. Newman.

Bahkan lebih besar dari bilangan googolplex, bilangan Skewes diusulkan oleh Skewes pada tahun 1933 (Skewes. J.London Matematika. pergaulan 8, 277-283, 1933.) dalam membuktikan dugaan Riemann tentang bilangan prima. Itu berarti e sejauh e sejauh e pangkat 79, yaitu ee e 79 . Kemudian, Riele (te Riele, H. J. J. "Pada Tanda Perbedaan P(x)-Li(x)." Matematika. Hitung. 48, 323-328, 1987) mengurangi nomor Skuse menjadi ee 27/4 , yang kira-kira sama dengan 8,185 10 370. Jelas bahwa karena nilai angka Skewes tergantung pada angka e, maka itu bukan bilangan bulat, jadi kami tidak akan mempertimbangkannya, jika tidak, kami harus mengingat bilangan non-alami lainnya - bilangan pi, bilangan e, dll.


Tetapi perlu dicatat bahwa ada angka Skewes kedua, yang dalam matematika dilambangkan sebagai Sk2 , yang bahkan lebih besar dari angka Skewes pertama (Sk1 ). Nomor kedua Skuse, diperkenalkan oleh J. Skuse dalam artikel yang sama untuk menunjukkan angka yang hipotesis Riemann tidak valid. Sk2 adalah 1010 10103 , yaitu 1010 101000 .

Seperti yang Anda pahami, semakin banyak derajat, semakin sulit untuk memahami angka mana yang lebih besar. Misalnya, melihat angka Skewes, tanpa perhitungan khusus, hampir tidak mungkin untuk memahami mana dari dua angka ini yang lebih besar. Jadi, untuk bilangan super besar, menjadi tidak nyaman untuk menggunakan kekuatan. Selain itu, Anda dapat menemukan angka-angka seperti itu (dan mereka telah ditemukan) ketika derajat derajat tidak sesuai dengan halaman. Ya, halaman yang luar biasa! Mereka bahkan tidak akan muat ke dalam sebuah buku seukuran seluruh alam semesta! Dalam hal ini, muncul pertanyaan bagaimana cara menuliskannya. Masalahnya, seperti yang Anda pahami, dapat dipecahkan, dan matematikawan telah mengembangkan beberapa prinsip untuk menulis angka seperti itu. Benar, setiap matematikawan yang menanyakan masalah ini muncul dengan cara penulisannya sendiri, yang mengarah pada keberadaan beberapa cara penulisan angka yang tidak terkait - ini adalah notasi Knuth, Conway, Steinhaus, dll.

Perhatikan notasi Hugo Stenhaus (H. Steinhaus. Snapshot Matematika, edisi ke-3. 1983), yang cukup sederhana. Steinhouse menyarankan untuk menulis bilangan besar di dalam bentuk geometris - segitiga, bujur sangkar, dan lingkaran:

Steinhouse datang dengan dua angka super besar baru. Dia menyebut nomor itu - Mega, dan nomornya - Megiston.

Matematikawan Leo Moser menyempurnakan notasi Stenhouse, yang dibatasi oleh fakta bahwa jika perlu untuk menulis angka yang jauh lebih besar daripada megiston, kesulitan dan ketidaknyamanan muncul, karena banyak lingkaran harus ditarik satu di dalam yang lain. Moser menyarankan untuk tidak menggambar lingkaran setelah kotak, tetapi segi lima, lalu segi enam, dan seterusnya. Dia juga mengusulkan notasi formal untuk poligon ini, sehingga angka dapat ditulis tanpa menggambar pola yang rumit. Notasi Moser terlihat seperti ini:

Jadi, menurut notasi Moser, mega Steinhouse ditulis sebagai 2, dan megiston sebagai 10. Selain itu, Leo Moser menyarankan untuk memanggil poligon dengan jumlah sisi yang sama dengan mega - megagon. Dan dia mengusulkan angka "2 di Megagon", yaitu 2. Angka ini kemudian dikenal sebagai angka Moser atau hanya sebagai moser.


Tetapi jumlah yang lebih besar bukanlah yang terbesar. Angka terbesar yang pernah digunakan dalam pembuktian matematis adalah nilai pembatas yang dikenal sebagai bilangan Graham, pertama kali digunakan pada tahun 1977 dalam pembuktian satu perkiraan dalam teori Ramsey. Ini terkait dengan hiperkubus bikromatik dan tidak dapat diekspresikan tanpa sistem 64-tingkat khusus simbol matematika khusus yang diperkenalkan oleh Knuth pada tahun 1976.

Sayangnya, angka yang ditulis dalam notasi Knuth tidak dapat diterjemahkan ke dalam notasi Moser. Oleh karena itu, sistem ini juga harus dijelaskan. Pada prinsipnya, tidak ada yang rumit di dalamnya juga. Donald Knuth (ya, ya, ini adalah Knuth yang sama yang menulis The Art of Programming dan menciptakan editor TeX) datang dengan konsep negara adidaya, yang ia usulkan untuk ditulis dengan panah menunjuk ke atas:

Secara umum, terlihat seperti ini:

Saya pikir semuanya sudah jelas, jadi mari kita kembali ke nomor Graham. Graham mengusulkan apa yang disebut G-numbers:


  1. G1 = 3.3, di mana jumlah panah superderajat adalah 33.

  2. G2 = ..3, di mana jumlah panah superderajat sama dengan G1 .

  3. G3 = ..3, di mana jumlah panah superderajat sama dengan G2 .


  4. G63 = ..3, di mana jumlah panah superpower adalah G62 .

Angka G63 kemudian dikenal sebagai angka Graham (sering dilambangkan hanya sebagai G). Angka ini merupakan angka terbesar yang diketahui di dunia dan bahkan tercatat dalam Guinness Book of Records. Dan di sini