Tabel nilai fungsi trigonometri triwulan pertama.

Dalam artikel ini kita akan memahami sepenuhnya seperti apa tampilannya tabel nilai trigonometri, sinus, cosinus, tangen dan kotangen. Mari kita simak pengertian dasar fungsi trigonometri, dari sudut 0,30,45,60,90,...,360 derajat. Dan mari kita lihat cara menggunakan tabel ini dalam menghitung nilai fungsi trigonometri.
Pertama mari kita lihat tabel cosinus, sinus, tangen dan kotangen dari sudut 0, 30, 45, 60, 90,... derajat. Definisi besaran-besaran ini memungkinkan kita menentukan nilai fungsi sudut 0 dan 90 derajat:

sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, kotangen dari 0 0 tidak terdefinisi
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0, garis singgung dari 90 0 tidak pasti

Jika kita mengambil segitiga siku-siku yang sudutnya 30 sampai 90 derajat. Kita mendapatkan:

sin 30 0 = 1/2, cos 30 0 = √3/2, tan 30 0 = √3/3, cos 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tan 45 0 = 1, cos 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3, cot 60 0 = √3/3

Mari kita nyatakan semua nilai yang diperoleh dalam bentuk tabel trigonometri:

Tabel sinus, cosinus, garis singgung dan kotangen!

Jika kita menggunakan rumus reduksi, tabel kita akan bertambah, menambah nilai sudut hingga 360 derajat. Ini akan terlihat seperti:

Selain itu, berdasarkan sifat periodisitas, tabel dapat diperbesar jika kita mengganti sudut dengan 0 0 +360 0 *z .... 330 0 +360 0 *z, yang mana z adalah bilangan bulat. Dalam tabel ini dimungkinkan untuk menghitung nilai semua sudut yang bersesuaian dengan titik-titik dalam satu lingkaran.

Mari kita lihat cara menggunakan tabel dalam suatu solusi.
Semuanya sangat sederhana. Karena nilai yang kita butuhkan terletak pada titik potong sel yang kita butuhkan. Misal kita ambil cos sudut 60 derajat, pada tabel akan terlihat seperti ini:

Pada tabel akhir nilai utama fungsi trigonometri, kita melanjutkan dengan cara yang sama. Namun pada tabel ini dapat diketahui berapa besar garis singgung sudut 1020 derajat = -√3 Coba kita periksa 1020 0 = 300 0 +360 0 *2. Mari kita cari menggunakan tabel.

Untuk pencarian lebih lanjut, digunakan nilai sudut trigonometri yang akurat hingga menit. Petunjuk terperinci tentang cara menggunakannya ada di halaman.

Meja Bradis. Untuk sinus, cosinus, tangen dan kotangen.

Tabel Bradis dibagi menjadi beberapa bagian, terdiri dari tabel cosinus dan sinus, tangen dan kotangen - yang terbagi menjadi dua bagian (tg sudut sampai dengan 90 derajat dan ctg sudut kecil).

Sinus dan kosinus

tg sudut mulai dari 0 0 diakhiri dengan 76 0, ctg sudut dimulai dari 14 0 diakhiri dengan 90 0.

tg hingga 90 0 dan ctg sudut kecil.

Mari kita cari tahu cara menggunakan tabel Bradis dalam menyelesaikan masalah.

Carilah sebutan sin (sebutan pada kolom sebelah kiri) 42 menit (sebutan pada baris paling atas). Berdasarkan perpotongannya kita cari peruntukannya, = 0,3040.

Nilai menit ditunjukkan dengan interval enam menit, apa yang harus dilakukan jika nilai yang kita butuhkan berada tepat dalam interval ini. Mari kita ambil 44 menit, tapi hanya ada 42 di tabel. Kita ambil 42 sebagai dasar dan gunakan kolom tambahan di sisi kanan, ambil amandemen ke-2 dan tambahkan ke 0,3040 + 0,0006 kita mendapatkan 0,3046.

Dengan sin 47 menit, kita ambil 48 menit sebagai dasar dan kurangi 1 koreksi, yaitu 0,3057 - 0,0003 = 0,3054

Saat menghitung cos, cara kerjanya mirip dengan sin, hanya saja kita menggunakan baris terbawah tabel sebagai dasar. Misalnya cos 20 0 = 0,9397

Nilai tg sudut sampai dengan 90 0 dan cot sudut kecil sudah benar dan tidak ada koreksi didalamnya. Misalnya, carilah tg 78 0 37 menit = 4,967


dan ctg 20 0 13 menit = 25,83

Baiklah, kita telah melihat tabel dasar trigonometri. Kami harap informasi ini sangat berguna bagi Anda. Jika Anda memiliki pertanyaan tentang tabel, pastikan untuk menuliskannya di komentar!

Catatan: Bumper dinding - papan bumper untuk melindungi dinding (http://www.spi-polymer.ru/otboyniki/)

Tabel nilai fungsi trigonometri

Catatan. Tabel nilai fungsi trigonometri ini menggunakan tanda √ untuk menyatakan akar kuadrat. Untuk menunjukkan pecahan, gunakan simbol "/".

Lihat juga bahan yang berguna:

Untuk menentukan nilai fungsi trigonometri, temukan di perpotongan garis yang menunjukkan fungsi trigonometri. Misalnya sinus 30 derajat - kita mencari kolom dengan judul sin (sinus) dan menemukan perpotongan kolom tabel ini dengan baris "30 derajat", di perpotongannya kita membaca hasilnya - satu setengah. Demikian pula yang kita temukan kosinus 60 derajat, sinus 60 derajat (sekali lagi, pada perpotongan kolom sin dan garis 60 derajat kita menemukan nilai sin 60 = √3/2), dst. Nilai sinus, cosinus, dan garis singgung sudut “populer” lainnya ditemukan dengan cara yang sama.

Sinus pi, kosinus pi, tangen pi dan sudut lainnya dalam radian

Tabel cosinus, sinus, dan tangen di bawah ini juga cocok untuk mencari nilai fungsi trigonometri yang argumennya adalah diberikan dalam radian. Untuk melakukan ini, gunakan kolom kedua nilai sudut. Berkat ini, Anda dapat mengonversi nilai sudut populer dari derajat ke radian. Misalnya, cari sudut 60 derajat pada baris pertama dan baca nilainya dalam radian di bawahnya. 60 derajat sama dengan π/3 radian.

Angka pi dengan jelas menyatakan ketergantungan keliling pada besaran sudut. Jadi, pi radian sama dengan 180 derajat.

Bilangan apa pun yang dinyatakan dalam pi (radian) dapat dengan mudah diubah menjadi derajat dengan mengganti pi (π) dengan 180.

Contoh:
1. Sinus pi.
dosa π = dosa 180 = 0
jadi, sinus pi sama dengan sinus 180 derajat dan sama dengan nol.

2. Kosinus pi.
cosπ = cos 180 = -1
jadi, kosinus pi sama dengan kosinus 180 derajat dan sama dengan minus satu.

3. Garis singgung pi
tg π = tg 180 = 0
jadi, tangen pi sama dengan tangen 180 derajat dan sama dengan nol.

Tabel nilai sinus, cosinus, tangen sudut 0 - 360 derajat (nilai umum)

nilai sudut α
(derajat)

nilai sudut α
dalam radian

(melalui pi)

dosa
(sinus)
karena
(kosinus)
tg
(garis singgung)
ctg
(kotangens)
detik
(garis potong)
cosec
(kosekans)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Jika dalam tabel nilai fungsi trigonometri, alih-alih nilai fungsi, tanda hubung ditunjukkan (tangen (tg) 90 derajat, kotangen (ctg) 180 derajat), maka untuk nilai tertentu ukuran derajat sudut fungsi tersebut tidak mempunyai nilai tertentu. Jika tidak ada tanda hubung, berarti selnya kosong, artinya kita belum memasukkan nilai yang diperlukan. Kami tertarik dengan pertanyaan apa yang diminta pengguna kepada kami dan melengkapi tabel dengan nilai baru, meskipun faktanya data saat ini tentang nilai cosinus, sinus, dan tangen dari nilai sudut paling umum sudah cukup untuk menyelesaikan sebagian besar masalah.

Tabel nilai fungsi trigonometri sin, cos, tg untuk sudut terpopuler
0, 15, 30, 45, 60, 90...360 derajat
(nilai numerik “sesuai tabel Bradis”)

nilai sudut α (derajat) nilai sudut α dalam radian dosa (sinus) cos (kosinus) tg (singgung) ctg (kotangen)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Sederhananya, ini adalah sayuran yang dimasak dalam air sesuai resep khusus. Saya akan mempertimbangkan dua komponen awal (salad sayuran dan air) dan hasil akhirnya - borscht. Secara geometris, dapat digambarkan sebagai persegi panjang, dengan satu sisi melambangkan selada dan sisi lainnya melambangkan air. Jumlah kedua sisi ini akan menunjukkan borscht. Diagonal dan luas persegi panjang “borscht” adalah konsep matematika murni dan tidak pernah digunakan dalam resep borscht.


Bagaimana selada dan air berubah menjadi borscht dari sudut pandang matematika? Bagaimana cara menjumlahkan dua ruas garis menjadi trigonometri? Untuk memahami hal ini, kita memerlukan fungsi sudut linier.


Anda tidak akan menemukan apa pun tentang fungsi sudut linier di buku teks matematika. Tapi tanpa mereka tidak akan ada matematika. Hukum matematika, seperti hukum alam, bekerja terlepas dari apakah kita mengetahui keberadaannya atau tidak.

Fungsi sudut linier adalah hukum penjumlahan. Lihat bagaimana aljabar berubah menjadi geometri dan geometri berubah menjadi trigonometri.

Apakah mungkin dilakukan tanpa fungsi sudut linier? Hal ini mungkin terjadi, karena matematikawan masih dapat melakukannya tanpa mereka. Trik para ahli matematika adalah mereka selalu memberi tahu kita hanya tentang masalah-masalah yang mereka sendiri tahu cara menyelesaikannya, dan tidak pernah membicarakan masalah-masalah yang tidak dapat mereka selesaikan. Lihat. Jika kita mengetahui hasil penjumlahan dan satu suku, kita menggunakan pengurangan untuk mencari suku lainnya. Semua. Kami tidak mengetahui masalah lain dan tidak mengetahui cara menyelesaikannya. Apa yang harus kita lakukan jika kita hanya mengetahui hasil penjumlahan dan tidak mengetahui kedua sukunya? Dalam hal ini, hasil penjumlahan harus didekomposisi menjadi dua suku menggunakan fungsi sudut linier. Selanjutnya, kita sendiri yang memilih salah satu sukunya, dan fungsi sudut linier menunjukkan berapa suku kedua yang seharusnya agar hasil penjumlahannya sesuai dengan yang kita butuhkan. Pasangan suku seperti itu jumlahnya tidak terbatas. Dalam kehidupan sehari-hari, kita baik-baik saja tanpa menguraikan jumlahnya; Namun dalam penelitian ilmiah mengenai hukum alam, menguraikan suatu penjumlahan menjadi komponen-komponennya bisa sangat berguna.

Hukum penjumlahan lain yang tidak suka dibicarakan oleh para ahli matematika (trik mereka yang lain) mengharuskan suku-suku tersebut memiliki satuan pengukuran yang sama. Untuk salad, air, dan borscht, ini bisa berupa satuan berat, volume, nilai, atau satuan pengukuran.

Gambar tersebut menunjukkan dua tingkat perbedaan matematika. Tingkat pertama adalah perbedaan dalam bidang angka yang ditunjukkan A, B, C. Inilah yang dilakukan para ahli matematika. Tingkat kedua adalah perbedaan bidang satuan pengukuran, yang ditunjukkan dalam tanda kurung siku dan ditandai dengan huruf kamu. Inilah yang dilakukan fisikawan. Kita dapat memahami tingkat ketiga - perbedaan luas benda yang dideskripsikan. Benda yang berbeda dapat mempunyai jumlah satuan pengukuran yang sama. Betapa pentingnya hal ini dapat kita lihat pada contoh trigonometri borscht. Jika kita menambahkan subskrip ke satuan yang sama untuk objek yang berbeda, kita dapat mengetahui dengan tepat besaran matematis apa yang mendeskripsikan objek tertentu dan bagaimana perubahannya seiring waktu atau karena tindakan kita. Surat W Saya akan menunjuk air dengan surat S Saya akan menunjuk salad dengan surat B- borscht. Seperti inilah fungsi sudut linier untuk borscht.

Jika kita mengambil sebagian air dan sebagian salad, keduanya akan berubah menjadi satu porsi borscht. Di sini saya sarankan Anda beristirahat sejenak dari borscht dan mengingat masa kecil Anda yang jauh. Ingat bagaimana kita diajari untuk menyatukan kelinci dan bebek? Penting untuk mengetahui berapa banyak hewan yang ada. Apa yang diajarkan kepada kita saat itu? Kami diajari untuk memisahkan satuan ukuran dari angka dan menjumlahkan angka. Ya, satu nomor dapat ditambahkan ke nomor lainnya. Ini adalah jalan langsung menuju autisme matematika modern - kita melakukannya dengan tidak dapat dipahami apa, tidak dapat dipahami mengapa, dan sangat kurang memahami bagaimana hal ini berhubungan dengan kenyataan, karena tiga tingkat perbedaan, ahli matematika beroperasi hanya dengan satu tingkat. Akan lebih tepat jika mempelajari cara berpindah dari satu satuan pengukuran ke satuan pengukuran lainnya.

Kelinci, bebek, dan binatang kecil dapat dihitung satu per satu. Satu satuan ukuran umum untuk objek yang berbeda memungkinkan kita untuk menjumlahkannya. Ini adalah masalah versi anak-anak. Mari kita lihat masalah serupa pada orang dewasa. Apa yang Anda dapatkan jika menambahkan kelinci dan uang? Ada dua kemungkinan solusi di sini.

Pilihan pertama. Kami menentukan nilai pasar kelinci dan menambahkannya ke jumlah uang yang tersedia. Kami mendapatkan nilai total kekayaan kami dalam bentuk moneter.

Pilihan kedua. Anda dapat menambahkan jumlah kelinci ke jumlah uang kertas yang kita miliki. Kami akan menerima sejumlah barang bergerak dalam potongan.

Seperti yang Anda lihat, hukum penjumlahan yang sama memungkinkan Anda mendapatkan hasil yang berbeda. Itu semua tergantung pada apa sebenarnya yang ingin kita ketahui.

Tapi mari kita kembali ke borscht kita. Sekarang kita dapat melihat apa yang akan terjadi pada nilai sudut yang berbeda dari fungsi sudut linier.

Sudutnya nol. Kami punya salad, tapi tidak ada air. Kami tidak bisa memasak borscht. Jumlah borscht juga nol. Ini tidak berarti bahwa nol borscht sama dengan nol air. Tidak ada borscht dengan nol salad (sudut kanan).


Bagi saya pribadi, ini adalah bukti matematis utama dari fakta bahwa . Nol tidak mengubah angka ketika dijumlahkan. Hal ini terjadi karena penjumlahan sendiri tidak mungkin dilakukan jika hanya ada satu suku dan suku kedua tidak ada. Anda dapat merasakan hal ini sesuka Anda, tetapi ingat - semua operasi matematika dengan nol ditemukan oleh ahli matematika sendiri, jadi buang logika Anda dan dengan bodohnya menjejalkan definisi yang ditemukan oleh ahli matematika: "pembagian dengan nol tidak mungkin", "bilangan apa pun dikalikan dengan nol sama dengan nol”, “di luar titik tusukan nol” dan omong kosong lainnya. Cukup diingat sekali bahwa nol bukanlah suatu bilangan, dan anda tidak akan pernah lagi mempertanyakan apakah nol itu bilangan asli atau bukan, karena pertanyaan seperti itu kehilangan maknanya: bagaimana sesuatu yang bukan bilangan dapat dianggap suatu bilangan? ? Ini seperti menanyakan warna apa yang harus diklasifikasikan sebagai warna yang tidak terlihat. Menambah angka nol pada suatu angka sama saja dengan mengecat dengan cat yang tidak ada. Kami melambaikan kuas kering dan memberi tahu semua orang bahwa “kami melukis”. Tapi saya ngelantur sedikit.

Sudutnya lebih besar dari nol tetapi kurang dari empat puluh lima derajat. Kami punya banyak selada, tapi airnya tidak cukup. Hasilnya, kita akan mendapatkan borscht yang kental.

Sudutnya empat puluh lima derajat. Kami memiliki jumlah air dan salad yang sama. Ini borscht yang sempurna (maafkan saya, koki, ini hanya matematika).

Sudutnya lebih besar dari empat puluh lima derajat, tetapi kurang dari sembilan puluh derajat. Kami punya banyak air dan sedikit salad. Anda akan mendapatkan borscht cair.

Sudut kanan. Kami punya air. Yang tersisa dari salad tersebut hanyalah kenangan, saat kami terus mengukur sudut dari garis yang pernah menandai salad tersebut. Kami tidak bisa memasak borscht. Jumlah borschtnya nol. Dalam hal ini, tunggu dan minumlah air selagi Anda meminumnya)))

Di Sini. Sesuatu seperti ini. Saya dapat menceritakan kisah-kisah lain di sini yang lebih dari pantas di sini.

Dua orang teman mempunyai saham dalam bisnis yang sama. Setelah membunuh salah satu dari mereka, semuanya berpindah ke yang lain.

Munculnya matematika di planet kita.

Semua cerita ini diceritakan dalam bahasa matematika menggunakan fungsi sudut linier. Di lain waktu saya akan menunjukkan kepada Anda kedudukan sebenarnya dari fungsi-fungsi ini dalam struktur matematika. Sementara itu, mari kembali ke trigonometri borscht dan pertimbangkan proyeksinya.

Sabtu, 26 Oktober 2019

Rabu, 7 Agustus 2019

Mengakhiri pembicaraan tentang, kita perlu mempertimbangkan himpunan tak terhingga. Intinya adalah bahwa konsep “tak terhingga” mempengaruhi ahli matematika seperti ular boa mempengaruhi kelinci. Kengerian yang menggetarkan akan ketidakterbatasan menghilangkan akal sehat para matematikawan. Berikut ini contohnya:

Sumber aslinya berada. Alpha adalah singkatan dari bilangan real. Tanda sama dengan pada ekspresi di atas menunjukkan bahwa jika Anda menambahkan angka atau tak terhingga ke tak terhingga, tidak ada yang berubah, hasilnya akan sama tak terhingga. Jika kita mengambil himpunan bilangan asli tak terhingga sebagai contoh, maka contoh yang dipertimbangkan dapat direpresentasikan dalam bentuk ini:

Untuk membuktikan dengan jelas bahwa mereka benar, ahli matematika menemukan banyak metode berbeda. Secara pribadi, saya melihat semua metode ini sebagai dukun yang menari dengan rebana. Pada dasarnya, semuanya bermuara pada fakta bahwa beberapa kamar kosong dan ada tamu baru yang pindah, atau beberapa pengunjung dibuang ke koridor untuk memberi ruang bagi tamu (sangat manusiawi). Saya memaparkan pandangan saya tentang keputusan tersebut dalam bentuk cerita fantasi tentang si Pirang. Berdasarkan apa alasan saya? Merelokasi pengunjung dalam jumlah tak terbatas membutuhkan waktu yang tak terbatas. Setelah kita mengosongkan kamar pertama untuk seorang tamu, salah satu pengunjung akan selalu berjalan menyusuri koridor dari kamarnya ke kamar berikutnya hingga akhir zaman. Tentu saja faktor waktu bisa saja diabaikan begitu saja, namun hal ini akan masuk dalam kategori “tidak ada undang-undang yang ditulis untuk orang bodoh”. Itu semua tergantung pada apa yang kita lakukan: menyesuaikan kenyataan dengan teori matematika atau sebaliknya.

Apa itu “hotel tanpa akhir”? Hotel tak terhingga adalah hotel yang selalu mempunyai jumlah tempat tidur kosong berapa pun, berapa pun jumlah kamar yang ditempati. Jika semua ruangan di koridor "pengunjung" tak berujung terisi, ada koridor tak berujung lainnya dengan kamar "tamu". Jumlah koridor seperti itu tidak terbatas. Terlebih lagi, “hotel tanpa batas” memiliki jumlah lantai yang tidak terbatas pada jumlah bangunan yang tidak terbatas pada jumlah planet yang tidak terbatas dalam jumlah alam semesta yang tidak terbatas yang diciptakan oleh Dewa yang jumlahnya tidak terbatas. Matematikawan tidak bisa menjauhkan diri dari permasalahan sehari-hari yang dangkal: selalu hanya ada satu Tuhan-Allah-Buddha, hanya ada satu hotel, hanya ada satu koridor. Jadi para ahli matematika mencoba mengatur nomor seri kamar hotel, meyakinkan kita bahwa “mendorong hal-hal yang mustahil” adalah mungkin.

Saya akan menunjukkan kepada Anda logika alasan saya menggunakan contoh himpunan bilangan asli tak terhingga. Pertama, Anda perlu menjawab pertanyaan yang sangat sederhana: ada berapa himpunan bilangan asli - satu atau banyak? Tidak ada jawaban yang benar untuk pertanyaan ini, karena kita sendiri yang menemukan angka; angka tidak ada di Alam. Ya, Alam sangat pandai berhitung, tetapi untuk ini ia menggunakan alat matematika lain yang tidak kita kenal. Saya akan memberi tahu Anda apa yang dipikirkan Alam lain kali. Sejak kita menemukan bilangan, kita sendiri yang akan memutuskan berapa banyak himpunan bilangan asli yang ada. Mari kita pertimbangkan kedua pilihan tersebut, sebagaimana layaknya ilmuwan sejati.

Opsi satu. “Mari kita diberikan” satu set bilangan asli, yang terletak dengan tenang di rak. Kami mengambil set ini dari rak. Itu saja, tidak ada bilangan asli lain yang tersisa di rak dan tidak ada tempat untuk membawanya. Kami tidak dapat menambahkan satu pun ke set ini, karena kami sudah memilikinya. Bagaimana jika Anda benar-benar menginginkannya? Tidak masalah. Kita dapat mengambil satu dari set yang telah kita ambil dan mengembalikannya ke rak. Setelah itu, kita dapat mengambil satu dari rak dan menambahkannya ke sisa yang tersisa. Hasilnya, kita kembali mendapatkan himpunan bilangan asli tak terhingga. Anda dapat menuliskan semua manipulasi kami seperti ini:

Saya menuliskan tindakan dalam notasi aljabar dan notasi teori himpunan, dengan daftar rinci elemen-elemen himpunan. Subskrip menunjukkan bahwa kita mempunyai satu-satunya himpunan bilangan asli. Ternyata himpunan bilangan asli tidak akan berubah hanya jika bilangan tersebut dikurangi satu dan ditambah satuan yang sama.

Opsi dua. Kami memiliki banyak himpunan bilangan asli tak terhingga yang berbeda di rak kami. Saya tekankan - BERBEDA, meskipun faktanya keduanya praktis tidak dapat dibedakan. Mari kita ambil salah satu dari set ini. Kemudian kita ambil satu dari himpunan bilangan asli yang lain dan menjumlahkannya ke himpunan yang telah kita ambil. Kita bahkan dapat menjumlahkan dua himpunan bilangan asli. Inilah yang kami dapatkan:

Subskrip "satu" dan "dua" menunjukkan bahwa unsur-unsur ini termasuk dalam himpunan yang berbeda. Ya, kalau dijumlahkan satu ke himpunan tak hingga, hasilnya juga himpunan tak hingga, tapi tidak akan sama dengan himpunan aslinya. Jika Anda menambahkan himpunan tak hingga lainnya ke satu himpunan tak hingga, hasilnya adalah himpunan tak hingga baru yang terdiri dari elemen-elemen dari dua himpunan pertama.

Himpunan bilangan asli digunakan untuk menghitung dengan cara yang sama seperti penggaris untuk mengukur. Sekarang bayangkan Anda menambahkan satu sentimeter pada penggaris. Ini akan menjadi garis yang berbeda, tidak sama dengan garis aslinya.

Anda dapat menerima atau tidak menerima alasan saya - itu urusan Anda sendiri. Namun jika Anda pernah menghadapi masalah matematika, pertimbangkan apakah Anda mengikuti jalur penalaran salah yang telah dilakukan oleh generasi ahli matematika. Lagi pula, mempelajari matematika, pertama-tama, membentuk stereotip berpikir yang stabil dalam diri kita, dan baru kemudian menambah kemampuan mental kita (atau, sebaliknya, menghilangkan kebebasan berpikir kita).

pozg.ru

Minggu, 4 Agustus 2019

Saya sedang menyelesaikan catatan tambahan untuk sebuah artikel tentang dan melihat teks indah ini di Wikipedia:

Kita membaca: "... landasan teori yang kaya dari matematika Babel tidak memiliki karakter holistik dan direduksi menjadi seperangkat teknik yang berbeda, tanpa sistem umum dan basis bukti."

Wow! Seberapa pintar kita dan seberapa baik kita bisa melihat kekurangan orang lain. Apakah sulit bagi kita untuk melihat matematika modern dari sudut pandang yang sama? Sedikit memparafrasekan teks di atas, saya pribadi mendapatkan yang berikut:

Landasan teori matematika modern yang kaya tidak holistik dan direduksi menjadi sekumpulan bagian yang berbeda, tanpa sistem umum dan basis bukti.

Saya tidak akan mengkonfirmasi kata-kata saya jauh-jauh - ia memiliki bahasa dan konvensi yang berbeda dari bahasa dan konvensi banyak cabang matematika lainnya. Nama yang sama pada cabang matematika yang berbeda dapat mempunyai arti yang berbeda. Saya ingin mengabdikan seluruh rangkaian publikasi untuk kesalahan paling nyata dalam matematika modern. Sampai berjumpa lagi.

Sabtu, 3 Agustus 2019

Bagaimana cara membagi himpunan menjadi himpunan bagian? Untuk melakukan ini, Anda perlu memasukkan satuan pengukuran baru yang ada di beberapa elemen himpunan yang dipilih. Mari kita lihat sebuah contoh.

Semoga kita punya banyak A terdiri dari empat orang. Himpunan ini dibentuk atas dasar “orang”. Mari kita nyatakan unsur-unsur himpunan ini dengan huruf A, subskrip dengan nomor akan menunjukkan nomor seri setiap orang dalam kumpulan ini. Mari kita perkenalkan unit pengukuran baru "gender" dan nyatakan dengan huruf B. Karena karakteristik seksual melekat pada semua orang, kami mengalikan setiap elemen dari himpunan tersebut A berdasarkan jenis kelamin B. Perhatikan bahwa kumpulan “orang” kita kini telah menjadi kumpulan “orang dengan karakteristik gender”. Setelah ini kita bisa membagi ciri-ciri seksual menjadi laki-laki bm dan wanita bw karakteristik seksual. Sekarang kita dapat menerapkan filter matematis: kita memilih salah satu dari karakteristik seksual ini, tidak peduli yang mana - pria atau wanita. Kalau ada orang, maka kita kalikan dengan satu, jika tidak ada tandanya, kita kalikan dengan nol. Dan kemudian kami menggunakan matematika sekolah biasa. Lihat apa yang terjadi.

Setelah perkalian, reduksi, dan penataan ulang, kita mendapatkan dua himpunan bagian: himpunan bagian laki-laki Bm dan sebagian perempuan Bw. Para matematikawan bernalar dengan cara yang kira-kira sama ketika mereka menerapkan teori himpunan dalam praktik. Namun mereka tidak memberi tahu kita rinciannya, namun memberi kita hasil akhirnya - “banyak orang terdiri dari sebagian laki-laki dan sebagian perempuan.” Tentu saja, Anda mungkin mempunyai pertanyaan: seberapa benar penerapan matematika dalam transformasi yang diuraikan di atas? Saya berani meyakinkan Anda bahwa pada dasarnya semuanya dilakukan dengan benar; mengetahui dasar matematika aritmatika, aljabar Boolean, dan cabang matematika lainnya sudah cukup. Apa itu? Lain kali saya akan menceritakan hal ini kepada Anda.

Sedangkan untuk superset, Anda dapat menggabungkan dua himpunan menjadi satu superset dengan memilih satuan ukuran yang ada pada elemen kedua himpunan tersebut.

Seperti yang Anda lihat, satuan pengukuran dan matematika biasa menjadikan teori himpunan sebagai peninggalan masa lalu. Tanda bahwa teori himpunan tidak berjalan baik adalah para ahli matematika telah menciptakan bahasa dan notasi mereka sendiri untuk teori himpunan. Matematikawan pernah bertindak seperti dukun. Hanya dukun yang tahu bagaimana menerapkan “pengetahuan” mereka dengan “benar”. Mereka mengajari kita “pengetahuan” ini.

Sebagai kesimpulan, saya ingin menunjukkan kepada Anda bagaimana ahli matematika memanipulasi.

Senin, 7 Januari 2019

Pada abad kelima SM, filsuf Yunani kuno Zeno dari Elea merumuskan aporianya yang terkenal, yang paling terkenal adalah aporia “Achilles dan Kura-kura”. Berikut bunyinya:

Katakanlah Achilles berlari sepuluh kali lebih cepat dari kura-kura dan berada seribu langkah di belakangnya. Selama waktu yang dibutuhkan Achilles untuk berlari sejauh ini, kura-kura akan merangkak seratus langkah ke arah yang sama. Ketika Achilles berlari seratus langkah, kura-kura merangkak sepuluh langkah lagi, dan seterusnya. Prosesnya akan terus berlanjut tanpa batas, Achilles tidak akan pernah bisa mengejar kura-kura.

Alasan ini menjadi kejutan logis bagi semua generasi berikutnya. Aristoteles, Diogenes, Kant, Hegel, Hilbert... Mereka semua menganggap aporia Zeno dalam satu atau lain cara. Guncangannya begitu kuat sehingga " ... diskusi berlanjut hingga hari ini; komunitas ilmiah belum dapat mencapai konsensus tentang esensi paradoks ... analisis matematis, teori himpunan, pendekatan fisik dan filosofis baru dilibatkan dalam studi masalah ini ; tidak satupun dari mereka menjadi solusi yang diterima secara umum untuk masalah ini..."[Wikipedia," Zeno's Aporia ". Semua orang mengerti bahwa mereka sedang dibodohi, tapi tidak ada yang mengerti apa isi penipuan itu.

Dari sudut pandang matematika, Zeno dalam aporianya dengan jelas menunjukkan transisi dari kuantitas ke kuantitas. Transisi ini menyiratkan penerapan, bukan penerapan permanen. Sejauh yang saya pahami, peralatan matematika untuk menggunakan satuan pengukuran variabel belum dikembangkan, atau belum diterapkan pada aporia Zeno. Menerapkan logika biasa membawa kita ke dalam jebakan. Karena kelembaman berpikir, kita menerapkan satuan waktu yang konstan pada nilai timbal balik. Dari sudut pandang fisik, ini tampak seperti waktu yang melambat hingga berhenti sepenuhnya pada saat Achilles menyusul penyu tersebut. Jika waktu berhenti, Achilles tidak bisa lagi berlari lebih cepat dari kura-kura.

Jika kita membalikkan logika kita yang biasa, semuanya akan beres. Achilles berlari dengan kecepatan konstan. Setiap segmen jalur berikutnya sepuluh kali lebih pendek dari segmen sebelumnya. Oleh karena itu, waktu yang dibutuhkan untuk mengatasinya sepuluh kali lebih sedikit dibandingkan waktu sebelumnya. Jika kita menerapkan konsep “tak terhingga” dalam situasi ini, maka benar jika dikatakan “Achilles akan menyusul penyu dengan sangat cepat.”

Bagaimana cara menghindari jebakan logis ini? Tetap dalam satuan waktu yang konstan dan jangan beralih ke satuan timbal balik. Dalam bahasa Zeno tampilannya seperti ini:

Dalam waktu yang dibutuhkan Achilles untuk berlari seribu langkah, kura-kura akan merangkak seratus langkah ke arah yang sama. Selama selang waktu berikutnya yang sama dengan waktu pertama, Achilles akan berlari seribu langkah lagi, dan kura-kura akan merangkak seratus langkah. Sekarang Achilles berada delapan ratus langkah di depan kura-kura.

Pendekatan ini cukup menggambarkan realitas tanpa adanya paradoks logis. Tapi ini bukanlah solusi lengkap untuk masalah ini. Pernyataan Einstein tentang kecepatan cahaya yang tak tertahankan sangat mirip dengan aporia Zeno “Achilles and the Tortoise”. Kita masih harus mempelajari, memikirkan kembali dan menyelesaikan masalah ini. Dan solusinya harus dicari bukan dalam jumlah yang sangat besar, namun dalam satuan pengukuran.

Aporia menarik lainnya dari Zeno menceritakan tentang panah terbang:

Anak panah yang terbang tidak bergerak, karena ia diam pada setiap saat, dan karena ia diam pada setiap saat, maka ia selalu diam.

Dalam aporia ini, paradoks logis diatasi dengan sangat sederhana - cukup untuk memperjelas bahwa pada setiap momen waktu sebuah panah terbang diam di berbagai titik di ruang angkasa, yang sebenarnya adalah gerakan. Hal lain yang perlu diperhatikan di sini. Dari satu foto sebuah mobil di jalan raya, tidak mungkin untuk menentukan fakta pergerakannya atau jaraknya. Untuk menentukan apakah sebuah mobil sedang bergerak, Anda memerlukan dua foto yang diambil dari titik yang sama pada titik waktu yang berbeda, tetapi Anda tidak dapat menentukan jarak dari keduanya. Untuk menentukan jarak ke sebuah mobil, Anda memerlukan dua buah foto yang diambil dari titik ruang yang berbeda pada satu titik waktu, namun dari foto tersebut Anda tidak dapat menentukan fakta pergerakannya (tentunya Anda masih memerlukan data tambahan untuk perhitungannya, trigonometri akan membantu Anda ). Yang ingin saya tarik perhatian khusus adalah bahwa dua titik dalam waktu dan dua titik dalam ruang adalah dua hal berbeda yang tidak boleh dikacaukan, karena keduanya memberikan peluang penelitian yang berbeda.
Saya akan menunjukkan prosesnya dengan sebuah contoh. Kami memilih "padat merah dalam jerawat" - ini adalah "keseluruhan" kami. Pada saat yang sama, kita melihat bahwa benda-benda ini ada yang memiliki busur, dan ada yang tidak memiliki busur. Setelah itu, kita pilih bagian dari “keseluruhan” dan membentuk satu set “dengan busur”. Beginilah cara dukun mendapatkan makanannya dengan mengaitkan teori himpunan mereka dengan kenyataan.

Sekarang mari kita lakukan sedikit trik. Mari kita ambil "padat dengan jerawat dengan busur" dan gabungkan "keseluruhan" ini menurut warna, pilih elemen merah. Kami mendapat banyak "merah". Sekarang pertanyaan terakhir: apakah himpunan yang dihasilkan “dengan busur” dan “merah” merupakan himpunan yang sama atau dua himpunan berbeda? Hanya dukun yang tahu jawabannya. Lebih tepatnya, mereka sendiri tidak tahu apa-apa, tetapi seperti yang mereka katakan, memang begitulah adanya.

Contoh sederhana ini menunjukkan bahwa teori himpunan sama sekali tidak berguna jika dikaitkan dengan kenyataan. Apa rahasianya? Kami membentuk satu set "padatan merah dengan jerawat dan busur". Pembentukannya terjadi dalam empat satuan ukuran yang berbeda: warna (merah), kekuatan (padat), kekasaran (berjerawat), hiasan (dengan busur). Hanya seperangkat satuan pengukuran yang memungkinkan kita mendeskripsikan objek nyata secara memadai dalam bahasa matematika. Seperti inilah tampilannya.

Huruf "a" dengan indeks berbeda menunjukkan satuan pengukuran yang berbeda. Unit pengukuran yang membedakan "keseluruhan" pada tahap awal ditandai dalam tanda kurung. Satuan ukuran yang digunakan untuk membentuk himpunan dikeluarkan dari tanda kurung. Baris terakhir menunjukkan hasil akhir - elemen himpunan. Seperti yang Anda lihat, jika kita menggunakan satuan pengukuran untuk membentuk suatu himpunan, maka hasilnya tidak bergantung pada urutan tindakan kita. Dan ini matematika, dan bukan tarian dukun dengan rebana. Dukun dapat “secara intuitif” mendapatkan hasil yang sama, dengan alasan bahwa hal tersebut “jelas”, karena satuan pengukuran bukanlah bagian dari persenjataan “ilmiah” mereka.

Dengan menggunakan satuan ukuran, sangat mudah untuk membagi satu set atau menggabungkan beberapa set menjadi satu superset. Mari kita lihat lebih dekat aljabar dari proses ini.

Tabel nilai sinus (sin), cosinus (cos), tangen (tg), kotangen (ctg) adalah alat yang ampuh dan berguna yang membantu memecahkan banyak masalah, baik teoritis maupun terapan. Pada artikel kali ini kami akan memberikan tabel fungsi dasar trigonometri (sinus, cosinus, tangen, dan kotangen) untuk sudut 0, 30, 45, 60, 90, ..., 360 derajat (0, π 6, π 3, π 2,... , 2 π radian). Tabel Bradis terpisah untuk sinus dan cosinus, tangen, dan kotangen juga akan ditampilkan, disertai penjelasan cara menggunakannya untuk mencari nilai fungsi dasar trigonometri.

Tabel fungsi dasar trigonometri sudut 0, 30, 45, 60, 90, ..., 360 derajat

Berdasarkan definisi sinus, cosinus, tangen, dan kotangen, Anda dapat menemukan nilai fungsi-fungsi tersebut untuk sudut 0 dan 90 derajat

sin 0 = 0, cos 0 = 1, t g 0 = 0, kotangen nol tidak terdefinisi,

sin 90° = 1, cos 90° = 0, c t g 90° = 0, garis singgung sembilan puluh derajat tidak terdefinisi.

Nilai sinus, cosinus, garis singgung, dan kotangen pada mata kuliah geometri didefinisikan sebagai perbandingan sisi-sisi suatu segitiga siku-siku yang sudutnya 30, 60 dan 90 derajat, serta 45, 45 dan 90 derajat.

Mendefinisikan fungsi trigonometri sudut lancip pada segitiga siku-siku

Sinus- rasio sisi berlawanan dengan sisi miring.

Kosinus- rasio kaki yang berdekatan dengan sisi miring.

Garis singgung- perbandingan sisi yang berlawanan dengan sisi yang berdekatan.

Kotangens- perbandingan sisi yang berdekatan dengan sisi yang berlawanan.

Sesuai dengan definisinya, ditemukan nilai fungsi:

sin 30° = 1 2 , cos 30° = 3 2 , t g 30° = 3 3 , c t g 30° = 3 , sin 45° = 2 2 , cos 45° = 2 2 , t g 45° = 1 , ct g 45° = 1, sin 60° = 3 2, cos 45° = 1 2, tg 45° = 3, c tg 45° = 3 3.

Mari kita masukkan nilai-nilai ini ke dalam tabel dan beri nama tabel nilai dasar sinus, cosinus, tangen, dan kotangen.

Tabel nilai dasar sinus, cosinus, garis singgung dan kotangen

α ° 0 30 45 60 90
dosa α 0 1 2 2 2 3 2 1
karena α 1 3 2 2 2 1 2 0
tg α 0 3 3 1 3 tidak terdefinisi
ctg α tidak terdefinisi 3 1 3 3 0
α, r a d i a n 0 π 6 π 4 π 3 π 2

Salah satu sifat penting fungsi trigonometri adalah periodisitas. Berdasarkan sifat ini, tabel ini dapat diperluas menggunakan rumus reduksi. Di bawah ini kami sajikan tabel lengkap nilai fungsi trigonometri utama untuk sudut 0, 30, 60, ... , 120, 135, 150, 180, ... , 360 derajat (0, π 6, π 3 , π 2, ... , 2 π radian).

Tabel sinus, cosinus, garis singgung dan kotangen

α ° 0 30 45 60 90 120 135 150 180 210 225 240 270 300 315 330 360
dosa α 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0
karena α 1 3 2 2 2 1 2 0 - 1 2 - 2 2 - 3 2 - 1 - 3 2 - 2 2 - 1 2 0 1 2 2 2 3 2 1
tg α 0 3 3 1 3 - - 1 - 3 3 0 0 3 3 1 3 - - 3 - 1 0
ctg α - 3 1 3 3 0 - 3 3 - 1 - 3 - 3 1 3 3 0 - 3 3 - 1 - 3 -
α, r a d i a n 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π 7 π 6 5 π 4 4 π 3 3 π 2 5 π 3 7 π 4 11 π 6

Periodisitas sinus, kosinus, tangen, dan kotangen memungkinkan Anda memperluas tabel ini ke nilai sudut yang besar. Nilai-nilai yang dikumpulkan dalam tabel paling sering digunakan saat memecahkan masalah, jadi disarankan untuk menghafalnya.

Cara menggunakan tabel nilai dasar fungsi trigonometri

Prinsip penggunaan tabel nilai sinus, cosinus, garis singgung, dan kotangen jelas pada tingkat intuitif. Perpotongan baris dan kolom memberikan nilai fungsi untuk sudut tertentu.

Contoh. Cara menggunakan tabel sinus, cosinus, tangen dan kotangen

Kita perlu mencari tahu berapa sin 7 π 6 itu

Kami menemukan kolom dalam tabel yang nilai sel terakhirnya adalah 7 π 6 radian - sama dengan 210 derajat. Kemudian kita pilih suku tabel yang menyajikan nilai sinus. Di perpotongan baris dan kolom kita menemukan nilai yang diinginkan:

sin 7 π 6 = - 1 2

meja Bradis

Tabel Bradis memungkinkan Anda menghitung nilai sinus, cosinus, tangen atau kotangen dengan akurasi 4 tempat desimal tanpa menggunakan teknologi komputer. Ini semacam pengganti kalkulator teknik.

Referensi

Vladimir Modestovich Bradis (1890 - 1975) - guru matematikawan Soviet, sejak 1954 menjadi anggota Akademi Ilmu Pedagogis Uni Soviet. Tabel logaritma empat digit dan besaran trigonometri natural yang dikembangkan oleh Bradis pertama kali diterbitkan pada tahun 1921.

Pertama, kami menyajikan tabel Bradis untuk sinus dan cosinus. Ini memungkinkan Anda menghitung secara akurat nilai perkiraan fungsi-fungsi ini untuk sudut yang mengandung bilangan bulat derajat dan menit. Kolom paling kiri pada tabel mewakili derajat, dan baris atas mewakili menit. Perhatikan bahwa semua nilai sudut tabel Bradis adalah kelipatan enam menit.

Tabel Bradis untuk sinus dan cosinus

dosa 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" karena 1" 2" 3"
0.0000 90°
0.0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87° 3 6 9
0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86° 3 6 9
0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0.0872 85° 3 6 9
0.0872 0889 0906 0924 0941 0958 0976 0993 1011 1028 1045 84° 3 6 9
1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83° 3 6 9
1219 1236 1253 1271 1288 1305 1323 1340 1357 1374 1392 82° 3 6 9
1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81° 3 6 9
1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 0.1736 80° 3 6 9
10° 0.1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 3 6 9
11° 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78° 3 6 9
12° 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77° 3 6 9
13° 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76° 3 6 8
14° 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 0.2588 75° 3 6 8
15° 0.2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 3 6 8
16° 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73° 3 6 8
17° 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72° 3 6 8
18° 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71° 3 6 8
19° 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 0.3420 70° 3 5 8
20° 0.3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 3 5 8
21° 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68° 3 5 8
22° 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67° 3 5 8
23° 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66° 3 5 8
24° 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 0.4226 65° 3 5 8
25° 0.4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 3 5 8
26° 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63° 3 5 8
27° 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62° 3 5 8
28° 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61° 3 5 8
29° 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 0.5000 60° 3 5 8
30° 0.5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 3 5 8
31° 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 58° 2 5 7
32° 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57° 2 5 7
33° 5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 5592 56° 2 5 7
34° 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 0.5736 55° 2 5 7
35° 0.5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 0.5878 54° 2 5 7
36° 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53° 2 5 7
37° 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52° 2 5 7
38° 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51° 2 5 7
39° 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 0.6428 50° 2 4 7
40° 0.6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 2 4 7
41° 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48° 2 4 7
42° 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47° 2 4 6
43° 6820 6833 6845 6858 6871 6884 6896 8909 6921 6934 6947 46° 2 4 6
44° 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 0.7071 45° 2 4 6
45° 0.7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 2 4 6
46° 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43° 2 4 6
47° 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42° 2 4 6
48° 7431 7443 7455 7466 7478 7490 7501 7513 7524 7536 7547 41° 2 4 6
49° 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 0.7660 40° 2 4 6
50° 0.7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 2 4 6
51° 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38° 2 4 5
52° 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37° 2 4 5
53° 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36° 2 3 5
54° 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 0.8192 35° 2 3 5
55° 0.8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 2 3 5
56° 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33° 2 3 5
57° 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32° 2 3 5
58° 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31° 2 3 5
59° 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 0.8660 30° 1 3 4
60° 0.8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 1 3 4
61° 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28° 1 3 4
62° 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27° 1 3 4
63° 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26° 1 3 4
64° 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 0.9063 25° 1 3 4
65° 0.9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 9135 24° 1 2 4
66° 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23° 1 2 3
67° 9205 9212 9219 9225 9232 9239 9245 9252 9259 9256 9272 22° 1 2 3
68° 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21° 1 2 3
69° 9336 9342 9348 9354 9361 9367 9373 9379 9383 9391 0.9397 20° 1 2 3
70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 0.9455 19° 1 2 3
71° 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18° 1 2 3
72° 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17° 1 2 3
73° 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16° 1 2 2
74° 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 0.9659 15° 1 2 2
75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 1 1 2
76° 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13° 1 1 2
77° 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12° 1 1 2
78° 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11° 1 1 2
79° 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 0.9848 10° 1 1 2
80° 0.9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 0 1 1
81° 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 0 1 1
82° 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 0 1 1
83° 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 0 1 1
84° 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 0 1 1
85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 0 0 1
86° 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 0 0 0
87° 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 0 0 0
88° 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 0.9998 0 0 0
89° 9998 9999 9999 9999 9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0 0
90° 1.0000
dosa 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" karena 1" 2" 3"

Untuk mencari nilai sinus dan cosinus sudut yang tidak disajikan dalam tabel, perlu menggunakan koreksi.

Sekarang kami menyajikan tabel Bradis untuk garis singgung dan kotangen. Ini berisi nilai garis singgung sudut dari 0 hingga 76 derajat, dan kotangen sudut dari 14 hingga 90 derajat.

Tabel Bradis untuk garis singgung dan kotangen

tg 0" 6" 12" 18" 24" 30" 36" 42" 48" 54" 60" ctg 1" 2" 3"
0 90°
0,000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 3 6 9
0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88° 3 6 9
0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87° 3 6 9
0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86° 3 6 9
0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0,0875 85° 3 6 9
0,0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 3 6 9
1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83° 3 6 9
1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82° 3 6 9
1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81° 3 6 9
1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 0,1763 80° 3 6 9
10° 0,1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 3 6 9
11° 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78° 3 6 9
12° 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77° 3 6 9
13° 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76° 3 6 9
14° 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 0,2679 75° 3 6 9
15° 0,2679 2698 2717 2736 2754 2773 2792 2811 2830 2849 2867 74° 3 6 9
16° 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73° 3 6 9
17° 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72° 3 6 10
18° 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71° 3 6 10
19° 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 0,3640 70° 3 7 10
20° 0,3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 3 7 10
21° 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68° 3 7 10
22° 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67° 3 7 10
23° 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66° 3 7 10
24° 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 0,4663 65° 4 7 11
25° 0,4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 4 7 11
26° 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63° 4 7 11
27° 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62° 4 7 11
28° 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61° 4 8 11
29° 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 0,5774 60° 4 8 12
30° 0,5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 4 8 12
31° 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58° 4 8 12
32° 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57° 4 8 12
33° 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56° 4 8 13
34° 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 0,7002 55° 4 9 13
35° 0,7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 4 8 13
36° 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53° 5 9 14°
37° 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52° 5 9 14
38° 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 51° 5 9 14
39° 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 0,8391 50° 5 10 15
40° 0,8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 0,8693 49° 5 10 15
41° 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48° 5 10 16
42° 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47° 6 11 16
43° 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 0,9657 46° 6 11 17
44° 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1,0000 45° 6 11 17
45° 1,0000 0035 0070 0105 0141 0176 0212 0247 0283 0319 0355 44° 6 12 18
46° 0355 0392 0428 0464 0501 0538 0575 0612 0649 0686 0724 43° 6 12 18
47° 0724 0761 0799 0837 0875 0913 0951 0990 1028 1067 1106 42° 6 13 19
48° 1106 1145 1184 1224 1263 1303 1343 1383 1423 1463 1504 41° 7 13 20
49° 1504 1544 1585 1626 1667 1708 1750 1792 1833 1875 1,1918 40° 7 14 21
50° 1,1918 1960 2002 2045 2088 2131 2174 2218 2261 2305 2349 39° 7 14 22
51° 2349 2393 2437 2482 2527 2572 2617 2662 2708 2753 2799 38° 8 15 23
52° 2799 2846 2892 2938 2985 3032 3079 3127 3175 3222 3270 37° 8 16 24
53° 3270 3319 3367 3416 3465 3514 3564 3613 3663 3713 3764 36° 8 16 25
54° 3764 3814 3865 3916 3968 4019 4071 4124 4176 4229 1,4281 35° 9 17 26
55° 1,4281 4335 4388 4442 4496 4550 4605 4659 4715 4770 4826 34° 9 18 27
56° 4826 4882 4938 4994 5051 5108 5166 5224 5282 5340 5399 33° 10 19 29
57° 5399 5458 5517 5577 5637 5697 5757 5818 5880 5941 6003 32° 10 20 30
58° 6003 6066 6128 6191 6255 6319 6383 6447 6512 6577 6643 31° 11 21 32
59° 6643 6709 6775 6842 6909 6977 7045 7113 7182 7251 1,7321 30° 11 23 34
60° 1,732 1,739 1,746 1,753 1,760 1,767 1,775 1,782 1,789 1,797 1,804 29° 1 2 4
61° 1,804 1,811 1,819 1,827 1,834 1,842 1,849 1,857 1,865 1,873 1,881 28° 1 3 4
62° 1,881 1,889 1,897 1,905 1,913 1,921 1,929 1,937 1,946 1,954 1,963 27° 1 3 4
63° 1,963 1,971 1,980 1,988 1,997 2,006 2,014 2,023 2,032 2,041 2,05 26° 1 3 4
64° 2,050 2,059 2,069 2,078 2,087 2,097 2,106 2,116 2,125 2,135 2,145 25° 2 3 5
65° 2,145 2,154 2,164 2,174 2,184 2,194 2,204 2,215 2,225 2,236 2,246 24° 2 3 5
66° 2,246 2,257 2,267 2,278 2,289 2,3 2,311 2,322 2,333 2,344 2,356 23° 2 4 5
67° 2,356 2,367 2,379 2,391 2,402 2,414 2,426 2,438 2,450 2,463 2,475 22° 2 4 6
68° 2,475 2,488 2,5 2,513 2,526 2,539 2,552 2,565 2,578 2,592 2,605 21° 2 4 6
69° 2,605 2,619 2,633 2,646 2,66 2,675 2,689 2,703 2,718 2,733 2,747 20° 2 5 7
70° 2,747 2,762 2,778 2,793 2,808 2,824 2,840 2,856 2,872 2,888 2,904 19° 3 5 8
71° 2,904 2,921 2,937 2,954 2,971 2,989 3,006 3,024 3,042 3,06 3,078 18° 3 6 9
72° 3,078 3,096 3,115 3,133 3,152 3,172 3,191 3,211 3,230 3,251 3,271 17° 3 6 10
73° 3,271 3,291 3,312 3,333 3,354 3,376 3 7 10
3,398 3,42 3,442 3,465 3,487 16° 4 7 11
74° 3,487 3,511 3,534 3,558 3,582 3,606 4 8 12
3,630 3,655 3,681 3,706 3,732 15° 4 8 13
75° 3,732 3,758 3,785 3,812 3,839 3,867 4 9 13
3,895 3,923 3,952 3,981 4,011 14° 5 10 14
tg 60" 54" 48" 42" 36" 30" 24" 18" 12" 6" 0" ctg 1" 2" 3"

Cara menggunakan tabel Bradis

Perhatikan tabel Bradis untuk sinus dan cosinus. Segala sesuatu yang berhubungan dengan sinus ada di atas dan kiri. Jika kita membutuhkan cosinus, lihat sisi kanan bawah tabel.

Untuk mencari nilai sinus suatu sudut, Anda perlu mencari perpotongan baris yang berisi jumlah derajat yang diperlukan di sel paling kiri dan kolom yang berisi jumlah menit yang diperlukan di sel atas.

Jika nilai sudut pastinya tidak ada dalam tabel Bradis, kami melakukan koreksi. Koreksi untuk satu, dua dan tiga menit diberikan di kolom paling kanan tabel. Untuk mencari nilai sinus suatu sudut yang tidak ada dalam tabel, kita mencari nilai yang paling dekat dengannya. Setelah ini, kita menambah atau mengurangi koreksi yang sesuai dengan selisih sudut.

Jika kita mencari sinus sudut yang lebih besar dari 90 derajat, pertama-tama kita perlu menggunakan rumus reduksi, baru kemudian tabel Bradis.

Contoh. Cara menggunakan tabel Bradis

Katakanlah kita perlu mencari sinus sudut 17°44". Dengan menggunakan tabel, kita mencari nilai sinus 17°42" dan menambahkan koreksi dua menit ke nilainya:

17°44" - 17°42" = 2" (perlu koreksi) sin 17°44" = 0. 3040+0. 0006 = 0 . 3046

Prinsip bekerja dengan cosinus, garis singgung dan kotangen serupa. Namun, penting untuk mengingat tanda amandemen tersebut.

Penting!

Saat menghitung nilai sinus, koreksinya bertanda positif, dan saat menghitung kosinus, koreksinya harus diambil dengan tanda negatif.

Jika Anda melihat kesalahan pada teks, silakan sorot dan tekan Ctrl+Enter