Rumus n dari barisan aritmatika. Bagaimana cara mencari barisan aritmatika? Contoh deret aritmatika dengan solusi


Ya, ya: deret aritmatika bukan mainan untuk Anda :)

Nah, teman-teman, jika Anda membaca teks ini, maka bukti tutup internal memberi tahu saya bahwa Anda masih belum tahu apa itu barisan aritmatika, tetapi Anda benar-benar (tidak, seperti ini: SOOOO!) ingin tahu. Karena itu, saya tidak akan menyiksa Anda dengan perkenalan yang panjang dan akan segera turun ke bisnis.

Untuk memulai, beberapa contoh. Pertimbangkan beberapa set angka:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Apa kesamaan dari semua set ini? Sekilas, tidak ada apa-apa. Tapi sebenarnya ada sesuatu. Yaitu: setiap elemen berikutnya berbeda dari yang sebelumnya dengan nomor yang sama.

Hakim untuk diri sendiri. Set pertama hanya angka berurutan, masing-masing lebih banyak dari yang sebelumnya. Dalam kasus kedua, perbedaan antara angka yang berdekatan sudah sama dengan lima, tetapi perbedaan ini masih konstan. Dalam kasus ketiga, ada akar secara umum. Namun, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, sedangkan $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, mis. dalam hal ini setiap elemen berikutnya hanya bertambah $\sqrt(2)$ (dan jangan takut bahwa angka ini tidak rasional).

Jadi: semua barisan seperti itu disebut deret aritmatika. Mari kita berikan definisi yang ketat:

Definisi. Barisan bilangan yang setiap bilangan berikutnya berbeda dari bilangan sebelumnya dengan jumlah yang sama persis disebut barisan aritmatika. Jumlah di mana angka-angka itu berbeda disebut selisih perkembangan dan paling sering dilambangkan dengan huruf $d$.

Notasi: $\left(((a)_(n)) \right)$ adalah progresi itu sendiri, $d$ adalah selisihnya.

Dan hanya beberapa komentar penting. Pertama, kemajuan dianggap hanya tertib urutan angka: mereka diizinkan untuk dibaca secara ketat sesuai urutan penulisannya - dan tidak ada yang lain. Anda tidak dapat mengatur ulang atau menukar nomor.

Kedua, barisan itu sendiri bisa berhingga atau tak terhingga. Misalnya, himpunan (1; 2; 3) jelas merupakan barisan aritmatika berhingga. Tetapi jika Anda menulis sesuatu seperti (1; 2; 3; 4; ...) - ini sudah merupakan perkembangan yang tak terbatas. Elipsis setelah empat, seolah-olah, mengisyaratkan bahwa cukup banyak angka yang melangkah lebih jauh. Banyak sekali, misalnya. :)

Saya juga ingin mencatat bahwa progresi meningkat dan menurun. Kami telah melihat peningkatan yang - set yang sama (1; 2; 3; 4; ...). Berikut adalah contoh progresi yang menurun:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Oke, oke: contoh terakhir mungkin tampak terlalu rumit. Tapi sisanya, saya pikir, Anda mengerti. Oleh karena itu, kami memperkenalkan definisi baru:

Definisi. Deret aritmatika disebut:

  1. meningkat jika setiap elemen berikutnya lebih besar dari yang sebelumnya;
  2. menurun, jika, sebaliknya, setiap elemen berikutnya lebih kecil dari yang sebelumnya.

Selain itu, ada yang disebut urutan "stasioner" - mereka terdiri dari nomor berulang yang sama. Misalnya, (3; 3; 3; ...).

Hanya satu pertanyaan yang tersisa: bagaimana membedakan perkembangan yang meningkat dari yang menurun? Untungnya, semuanya di sini hanya bergantung pada tanda angka $d$, mis. perbedaan perkembangan:

  1. Jika $d \gt 0$, maka progresnya meningkat;
  2. Jika $d \lt 0$, maka progresi jelas menurun;
  3. Akhirnya, ada kasus $d=0$ — dalam kasus ini seluruh perkembangan direduksi menjadi urutan stasioner dari angka identik: (1; 1; 1; 1; ...), dll.

Mari kita coba hitung selisih $d$ untuk ketiga progresi menurun di atas. Untuk melakukan ini, cukup dengan mengambil dua elemen yang berdekatan (misalnya, yang pertama dan kedua) dan kurangi angka di sebelah kiri dari angka di sebelah kanan. Ini akan terlihat seperti ini:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Seperti yang Anda lihat, dalam ketiga kasus perbedaannya benar-benar negatif. Dan sekarang setelah kita kurang lebih mengetahui definisinya, saatnya untuk mencari tahu bagaimana progresi dijelaskan dan properti apa yang dimilikinya.

Anggota perkembangan dan formula berulang

Karena elemen dari barisan kita tidak dapat dipertukarkan, mereka dapat diberi nomor:

\[\kiri(((a)_(n)) \kanan)=\kiri\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \Baik\)\]

Elemen individu dari himpunan ini disebut anggota perkembangan. Mereka ditunjukkan dengan cara ini dengan bantuan nomor: anggota pertama, anggota kedua, dan seterusnya.

Selain itu, seperti yang sudah kita ketahui, anggota perkembangan yang bertetangga terkait dengan rumus:

\[((a)_(n))-((a)_(n-1))=d\Panah kanan ((a)_(n))=((a)_(n-1))+d \]

Singkatnya, untuk menemukan suku ke $n$ dari perkembangan, Anda perlu mengetahui suku ke $n-1$ dan selisihnya $d$. Rumus seperti itu disebut berulang, karena dengan bantuannya Anda dapat menemukan nomor apa pun, hanya mengetahui yang sebelumnya (dan pada kenyataannya, semua yang sebelumnya). Ini sangat merepotkan, jadi ada rumus yang lebih rumit yang mengurangi perhitungan apa pun ke suku pertama dan selisihnya:

\[((a)_(n))=((a)_(1))+\kiri(n-1 \kanan)d\]

Anda mungkin pernah menemukan formula ini sebelumnya. Mereka suka memberikannya dalam segala macam buku referensi dan reshebnik. Dan dalam setiap buku teks yang masuk akal tentang matematika, itu adalah salah satu yang pertama.

Namun, saya sarankan Anda berlatih sedikit.

Tugas nomor 1. Tuliskan tiga suku pertama dari barisan aritmatika $\left(((a)_(n)) \right)$ jika $((a)_(1))=8,d=-5$.

Keputusan. Jadi, kita mengetahui suku pertama $((a)_(1))=8$ dan selisih perkembangan $d=-5$. Mari kita gunakan rumus yang baru saja diberikan dan substitusikan $n=1$, $n=2$ dan $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\kiri(1-1 \kanan)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\kiri(2-1 \kanan)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\kiri(3-1 \kanan)d=((a)_(1))+2d=8-10= -2. \\ \end(sejajarkan)\]

Jawaban: (8; 3; -2)

Itu saja! Perhatikan bahwa perkembangan kami menurun.

Tentu saja, $n=1$ tidak dapat disubstitusikan - kita sudah mengetahui suku pertamanya. Namun, dengan mengganti unit, kami memastikan bahwa bahkan untuk suku pertama, rumus kami berfungsi. Dalam kasus lain, semuanya bermuara pada aritmatika dangkal.

Tugas nomor 2. Tulislah tiga suku pertama suatu barisan aritmatika jika suku ketujuhnya adalah 40 dan suku ketujuh belasnya adalah 50.

Keputusan. Kami menulis kondisi masalah dalam istilah biasa:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Baik.\]

Saya memberi tanda sistem karena persyaratan ini harus dipenuhi secara bersamaan. Dan sekarang kita perhatikan bahwa jika kita mengurangi persamaan pertama dari persamaan kedua (kita memiliki hak untuk melakukan ini, karena kita memiliki sistem), kita mendapatkan ini:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(sejajarkan)\]

Sama seperti itu, kami menemukan perbedaan perkembangan! Tetap menggantikan nomor yang ditemukan di salah satu persamaan sistem. Misalnya, pada yang pertama:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \akhir(matriks)\]

Sekarang, mengetahui suku pertama dan perbedaannya, tinggal mencari suku kedua dan ketiga:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(sejajarkan)\]

Siap! Masalah terpecahkan.

Jawaban: (-34; -35; -36)

Perhatikan sifat aneh dari perkembangan yang kita temukan: jika kita mengambil suku ke $n$ dan $m$ dan mengurangkannya satu sama lain, maka kita mendapatkan selisih perkembangan dikalikan dengan bilangan $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \kiri(n-m \kanan)\]

Properti sederhana namun sangat berguna yang harus Anda ketahui - dengan bantuannya, Anda dapat secara signifikan mempercepat solusi dari banyak masalah perkembangan. Berikut adalah contoh utama dari ini:

Tugas nomor 3. Suku kelima dari barisan aritmatika adalah 8,4 dan suku kesepuluhnya adalah 14,4. Temukan suku kelima belas dari deret ini.

Keputusan. Karena $((a)_(5))=8.4$, $((a)_(10))=14.4$, dan kita perlu mencari $((a)_(15))$, kita perhatikan sebagai berikut:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(sejajarkan)\]

Tetapi dengan syarat $((a)_(10))-((a)_(5))=14.4-8.4=6$, jadi $5d=6$, dari mana kita mendapatkan:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(sejajarkan)\]

Jawaban: 20.4

Itu saja! Kami tidak perlu menyusun sistem persamaan apa pun dan menghitung suku pertama dan selisihnya - semuanya diputuskan hanya dalam beberapa baris.

Sekarang mari kita pertimbangkan jenis masalah lain - pencarian anggota progresi yang negatif dan positif. Bukan rahasia lagi bahwa jika perkembangannya meningkat, sementara suku pertamanya negatif, maka cepat atau lambat suku-suku positif akan muncul di dalamnya. Dan sebaliknya: syarat dari suatu progresi yang menurun cepat atau lambat akan menjadi negatif.

Pada saat yang sama, jauh dari selalu mungkin untuk menemukan momen ini "di dahi", secara berurutan memilah-milah elemen. Seringkali, masalah dirancang sedemikian rupa sehingga tanpa mengetahui rumusnya, perhitungan akan memakan waktu beberapa lembar - kami hanya akan tertidur sampai kami menemukan jawabannya. Oleh karena itu, kami akan mencoba menyelesaikan masalah ini dengan lebih cepat.

Tugas nomor 4. Berapa banyak suku negatif dalam deret aritmatika -38.5; -35,8; …?

Keputusan. Jadi, $((a)_(1))=-38.5$, $((a)_(2))=-35,8$, dari mana kita segera menemukan perbedaannya:

Perhatikan bahwa perbedaannya positif, sehingga progresnya meningkat. Suku pertama negatif, jadi memang suatu saat kita akan menemukan bilangan positif. Satu-satunya pertanyaan adalah kapan ini akan terjadi.

Mari kita coba mencari tahu: berapa lama (yaitu, sampai berapa bilangan asli $n$) negativitas istilah dipertahankan:

\[\begin(align) & ((a)_(n)) \lt 0\Panah kanan ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \benar. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Panah kanan ((n)_(\max ))=15. \\ \end(sejajarkan)\]

Baris terakhir membutuhkan klarifikasi. Jadi kita tahu bahwa $n \lt 15\frac(7)(27)$. Di sisi lain, hanya nilai bilangan bulat dari angka yang cocok untuk kita (selain itu: $n\in \mathbb(N)$), jadi angka terbesar yang diizinkan adalah tepat $n=15$, dan tidak ada kasus 16.

Tugas nomor 5. Dalam deret aritmatika $(()_(5))=-150,(()_(6))=-147$. Temukan jumlah suku positif pertama dari deret ini.

Ini akan menjadi masalah yang sama persis dengan yang sebelumnya, tetapi kita tidak tahu $((a)_(1))$. Tetapi suku-suku bertetangganya diketahui: $((a)_(5))$ dan $((a)_(6))$, sehingga kita dapat dengan mudah menemukan perbedaan perkembangan:

Selain itu, mari kita coba mengungkapkan suku kelima dalam hal yang pertama dan perbedaannya menggunakan rumus standar:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(sejajarkan)\]

Sekarang kita lanjutkan dengan analogi dengan masalah sebelumnya. Kami mencari tahu pada titik mana dalam urutan angka positif kami akan muncul:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Panah kanan ((n)_(\min ))=56. \\ \end(sejajarkan)\]

Solusi bilangan bulat minimum dari pertidaksamaan ini adalah bilangan 56.

Harap dicatat bahwa dalam tugas terakhir semuanya direduksi menjadi ketidaksetaraan yang ketat, jadi opsi $n=55$ tidak cocok untuk kita.

Sekarang kita telah belajar bagaimana memecahkan masalah sederhana, mari beralih ke masalah yang lebih kompleks. Tapi pertama-tama, mari kita pelajari properti progresi aritmatika lain yang sangat berguna, yang akan menghemat banyak waktu dan sel yang tidak sama di masa depan. :)

Rata-rata aritmatika dan indentasi yang sama

Pertimbangkan beberapa suku berurutan dari deret aritmatika yang meningkat $\left(((a)_(n)) \right)$. Mari kita coba menandainya pada garis bilangan:

Anggota perkembangan aritmatika pada garis bilangan

Saya secara khusus mencatat anggota arbitrer $((a)_(n-3)),...,((a)_(n+3))$, dan bukan $((a)_(1)) , \ ((a)_(2)),\ ((a)_(3))$ dll. Karena aturan, yang sekarang akan saya beri tahu Anda, berfungsi sama untuk "segmen" apa pun.

Dan aturannya sangat sederhana. Mari kita ingat rumus rekursif dan menuliskannya untuk semua anggota yang ditandai:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(sejajarkan)\]

Namun, persamaan ini dapat ditulis ulang secara berbeda:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(sejajarkan)\]

Nah, jadi apa? Tetapi fakta bahwa suku $((a)_(n-1))$ dan $((a)_(n+1))$ terletak pada jarak yang sama dari $((a)_(n)) $ . Dan jarak ini sama dengan $d$. Hal yang sama dapat dikatakan tentang istilah $((a)_(n-2))$ dan $((a)_(n+2))$ - mereka juga dihapus dari $((a)_(n) )$ dengan jarak yang sama sama dengan $2d$. Anda dapat melanjutkan tanpa batas, tetapi gambar menggambarkan artinya dengan baik


Anggota perkembangan terletak pada jarak yang sama dari pusat

Apa artinya ini untuk kita? Ini berarti Anda dapat menemukan $((a)_(n))$ jika bilangan tetangga diketahui:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Kami telah menyimpulkan pernyataan yang luar biasa: setiap anggota deret aritmatika sama dengan rata-rata aritmatika dari anggota tetangga! Selain itu, kita dapat menyimpang dari $((a)_(n))$ kita ke kiri dan ke kanan bukan dengan satu langkah, tetapi dengan $k$ langkah — dan tetap saja rumusnya akan benar:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Itu. kita dapat dengan mudah menemukan beberapa $((a)_(150))$ jika kita mengetahui $((a)_(100))$ dan $((a)_(200))$, karena $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Sepintas, tampaknya fakta ini tidak memberi kita sesuatu yang berguna. Namun, dalam praktiknya, banyak tugas khusus "dipertajam" untuk penggunaan mean aritmatika. Lihatlah:

Tugas nomor 6. Temukan semua nilai $x$ sehingga bilangan $-6((x)^(2))$, $x+1$ dan $14+4((x)^(2))$ adalah anggota berurutan dari deret aritmatika (dalam urutan tertentu).

Keputusan. Karena bilangan-bilangan ini adalah anggota dari suatu deret, kondisi rata-rata aritmatika dipenuhi untuk mereka: elemen pusat $x+1$ dapat dinyatakan dalam elemen tetangga:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(sejajarkan)\]

Hasilnya adalah persamaan kuadrat klasik. Akarnya: $x=2$ dan $x=-3$ adalah jawabannya.

Jawaban: -3; 2.

Tugas nomor 7. Temukan nilai $$ sedemikian rupa sehingga angka $-1;4-3;(()^(2))+1$ membentuk deret aritmatika (dalam urutan itu).

Keputusan. Sekali lagi, kami menyatakan suku tengah dalam bentuk rata-rata aritmatika dari suku-suku tetangga:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\kanan.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(sejajarkan)\]

persamaan kuadrat lainnya. Dan lagi dua akar: $x=6$ dan $x=1$.

Jawaban 1; 6.

Jika dalam proses penyelesaian masalah Anda mendapatkan beberapa angka brutal, atau Anda tidak sepenuhnya yakin akan kebenaran jawaban yang ditemukan, maka ada trik luar biasa yang memungkinkan Anda untuk memeriksa: apakah kami menyelesaikan masalah dengan benar?

Katakanlah dalam soal 6 kita mendapat jawaban -3 dan 2. Bagaimana kita bisa memastikan bahwa jawaban-jawaban ini benar? Mari kita pasang ke kondisi aslinya dan lihat apa yang terjadi. Biarkan saya mengingatkan Anda bahwa kami memiliki tiga angka ($-6(()^(2))$, $+1$ dan $14+4(()^(2))$), yang harus membentuk deret aritmatika. Pengganti $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(sejajarkan)\]

Kami mendapat angka -54; 2; 50 yang berbeda dengan 52 tidak diragukan lagi merupakan perkembangan aritmatika. Hal yang sama terjadi untuk $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(sejajarkan)\]

Sekali lagi kemajuan, tetapi dengan perbedaan 27. Dengan demikian, masalah diselesaikan dengan benar. Mereka yang ingin dapat memeriksa tugas kedua mereka sendiri, tetapi saya akan segera mengatakan: semuanya juga benar di sana.

Secara umum, saat memecahkan masalah terakhir, kami menemukan fakta menarik lainnya yang juga perlu diingat:

Jika tiga angka sedemikian rupa sehingga yang kedua adalah rata-rata dari yang pertama dan terakhir, maka angka-angka ini membentuk deret aritmatika.

Di masa depan, memahami pernyataan ini akan memungkinkan kita untuk benar-benar "membangun" progresi yang diperlukan berdasarkan kondisi masalah. Tetapi sebelum kita terlibat dalam "konstruksi" seperti itu, kita harus memperhatikan satu fakta lagi, yang secara langsung mengikuti dari apa yang telah dipertimbangkan.

Pengelompokan dan jumlah elemen

Mari kita kembali ke garis bilangan lagi. Kami mencatat ada beberapa anggota perkembangan, di antaranya, mungkin. bernilai banyak anggota lain:

6 elemen yang ditandai pada garis bilangan

Mari kita coba menyatakan "ekor kiri" dalam bentuk $((a)_(n))$ dan $d$, dan "ekor kanan" dalam $((a)_(k))$ dan $ d$. Ini sangat sederhana:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(sejajarkan)\]

Sekarang perhatikan bahwa jumlah berikut adalah sama:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(sejajarkan)\]

Sederhananya, jika kita menganggap sebagai awal dua elemen perkembangan, yang totalnya sama dengan beberapa angka $S$, dan kemudian kita mulai melangkah dari elemen-elemen ini ke arah yang berlawanan (saling menuju atau sebaliknya untuk menjauh), kemudian jumlah elemen yang akan kita temukan juga akan sama$S$. Ini dapat direpresentasikan secara grafis:


Indentasi yang sama memberikan jumlah yang sama

Memahami fakta ini akan memungkinkan kita untuk memecahkan masalah dengan tingkat kompleksitas yang lebih tinggi secara fundamental daripada yang kita bahas di atas. Misalnya, ini:

Tugas nomor 8. Tentukan selisih suatu barisan aritmatika yang suku pertamanya adalah 66, dan hasil kali suku kedua dan kedua belas adalah yang terkecil.

Keputusan. Mari kita tuliskan semua yang kita ketahui:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(sejajarkan)\]

Jadi, kita tidak tahu perbedaan perkembangan $d$. Sebenarnya, seluruh solusi akan dibangun di sekitar perbedaan, karena produk $((a)_(2))\cdot ((a)_(12))$ dapat ditulis ulang sebagai berikut:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\kiri(66+d \kanan)\cdot \kiri(66+11d \kanan)= \\ & =11 \cdot \kiri(d+66 \kanan)\cdot \left(d+6 \kanan). \end(sejajarkan)\]

Bagi mereka yang ada di tangki: Saya telah mengambil faktor umum 11 dari braket kedua. Jadi, hasil kali yang diinginkan adalah fungsi kuadrat terhadap variabel $d$. Oleh karena itu, perhatikan fungsi $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - grafiknya akan menjadi parabola dengan cabang ke atas, karena jika kita membuka kurung, kita mendapatkan:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Seperti yang Anda lihat, koefisien dengan suku tertinggi adalah 11 - ini adalah bilangan positif, jadi kita benar-benar berurusan dengan parabola dengan cabang ke atas:


grafik fungsi kuadrat - parabola

Harap diperhatikan: parabola ini mengambil nilai minimumnya pada titik puncaknya dengan absis $((d)_(0))$. Tentu saja, kita dapat menghitung absis ini sesuai dengan skema standar (ada rumus $((d)_(0))=(-b)/(2a)\;$), tetapi akan jauh lebih masuk akal untuk perhatikan bahwa simpul yang diinginkan terletak pada simetri sumbu parabola, sehingga titik $((d)_(0))$ berjarak sama dari akar persamaan $f\left(d \kanan)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(sejajarkan)\]

Itu sebabnya saya tidak terburu-buru untuk membuka kurung: dalam bentuk aslinya, akarnya sangat, sangat mudah ditemukan. Oleh karena itu, absis sama dengan rata-rata aritmatika dari angka 66 dan 6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Apa yang memberi kita nomor yang ditemukan? Dengan itu, produk yang diperlukan mengambil nilai terkecil (omong-omong, kami tidak menghitung $((y)_(\min ))$ - ini tidak diperlukan dari kami). Pada saat yang sama, angka ini adalah perbedaan dari perkembangan awal, yaitu. kami menemukan jawabannya. :)

Jawaban: -36

Tugas nomor 9. Masukkan tiga angka di antara angka $-\frac(1)(2)$ dan $-\frac(1)(6)$ sehingga bersama dengan angka-angka yang diberikan, mereka membentuk barisan aritmatika.

Keputusan. Padahal, kita perlu membuat urutan lima angka, dengan angka pertama dan terakhir sudah diketahui. Tunjukkan angka yang hilang dengan variabel $x$, $y$ dan $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \kanan\ )\]

Perhatikan bahwa angka $y$ adalah "tengah" dari barisan kita - angka ini berjarak sama dari angka $x$ dan $z$, dan dari angka $-\frac(1)(2)$ dan $-\frac (1)( 6)$. Dan jika pada saat ini kita tidak bisa mendapatkan $y$ dari angka $x$ dan $z$, maka situasinya berbeda dengan akhir perkembangannya. Ingat mean aritmatika:

Sekarang, mengetahui $y$, kita akan menemukan angka yang tersisa. Perhatikan bahwa $x$ terletak di antara $-\frac(1)(2)$ dan $y=-\frac(1)(3)$ baru saja ditemukan. Jadi

Berdebat sama, kami menemukan nomor yang tersisa:

Siap! Kami menemukan ketiga nomor tersebut. Mari kita tuliskan dalam jawaban dalam urutan di mana mereka harus disisipkan di antara angka-angka aslinya.

Jawaban: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Tugas nomor 10. Di antara bilangan 2 dan 42, sisipkan beberapa bilangan yang bersama-sama dengan bilangan yang diberikan membentuk barisan aritmatika, jika diketahui jumlah bilangan pertama, kedua, dan terakhir yang disisipkan adalah 56.

Keputusan. Tugas yang bahkan lebih sulit, yang, bagaimanapun, diselesaikan dengan cara yang sama seperti yang sebelumnya - melalui rata-rata aritmatika. Masalahnya adalah kita tidak tahu persis berapa banyak angka yang harus dimasukkan. Oleh karena itu, untuk kepastian, kami berasumsi bahwa setelah memasukkan akan ada tepat $n$ angka, dan yang pertama adalah 2, dan yang terakhir adalah 42. Dalam hal ini, deret aritmatika yang diinginkan dapat direpresentasikan sebagai:

\[\kiri(((a)_(n)) \kanan)=\kiri\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \kanan\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Akan tetapi, perhatikan bahwa bilangan $((a)_(2))$ dan $((a)_(n-1))$ diperoleh dari bilangan 2 dan 42 yang berdiri di tepi dengan satu langkah ke arah satu sama lain , yaitu . ke tengah urutan. Dan ini berarti bahwa

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Tapi kemudian ekspresi di atas dapat ditulis ulang seperti ini:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \kiri(((a)_(2))+((a)_(n-1)) \kanan)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(sejajarkan)\]

Mengetahui $((a)_(3))$ dan $((a)_(1))$, kita dapat dengan mudah menemukan perbedaan perkembangan:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\kiri(3-1 \kanan)\cdot d=2d; \\ & 2d=10\Panah kanan d=5. \\ \end(sejajarkan)\]

Tetap hanya untuk menemukan anggota yang tersisa:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(sejajarkan)\]

Jadi, sudah pada langkah ke-9 kita akan sampai di ujung kiri urutan - angka 42. Secara total, hanya 7 angka yang harus dimasukkan: 7; 12; 17; 22; 27; 32; 37.

Jawaban: 7; 12; 17; 22; 27; 32; 37

Tugas teks dengan progres

Sebagai kesimpulan, saya ingin mempertimbangkan beberapa masalah yang relatif sederhana. Sesederhana itu: bagi sebagian besar siswa yang belajar matematika di sekolah dan belum membaca apa yang tertulis di atas, tugas-tugas ini mungkin tampak seperti isyarat. Namun demikian, justru tugas-tugas seperti itulah yang ditemukan di OGE dan USE dalam matematika, jadi saya sarankan Anda membiasakan diri dengan mereka.

Tugas nomor 11. Tim memproduksi 62 bagian di bulan Januari, dan di setiap bulan berikutnya mereka memproduksi 14 bagian lebih banyak dari yang sebelumnya. Berapa banyak suku cadang yang diproduksi brigade pada bulan November?

Keputusan. Jelas, jumlah bagian, yang dilukis berdasarkan bulan, akan menjadi deret aritmatika yang meningkat. Dan:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

November adalah bulan ke-11 dalam setahun, jadi kita perlu mencari $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Oleh karena itu, 202 suku cadang akan diproduksi pada November.

Tugas nomor 12. Lokakarya penjilidan buku menjilid 216 buku pada bulan Januari, dan pada setiap bulan berikutnya ia menjilid 4 buku lebih banyak dari yang sebelumnya. Berapa banyak buku yang dijilid lokakarya pada bulan Desember?

Keputusan. Semua sama:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Desember adalah bulan ke-12 terakhir dalam setahun, jadi kami mencari $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Inilah jawabannya - 260 buku akan dijilid pada bulan Desember.

Nah, jika Anda telah membaca sejauh ini, saya segera mengucapkan selamat kepada Anda: Anda telah berhasil menyelesaikan "kursus petarung muda" dalam progresi aritmatika. Kita dapat dengan aman melanjutkan ke pelajaran berikutnya, di mana kita akan mempelajari rumus penjumlahan perkembangan, serta konsekuensi penting dan sangat berguna darinya.

Jenis pelajaran: mempelajari materi baru.

Tujuan Pelajaran:

  • perluasan dan pendalaman gagasan siswa tentang tugas yang diselesaikan menggunakan deret aritmatika; organisasi aktivitas pencarian siswa ketika menurunkan rumus untuk jumlah n anggota pertama dari deret aritmatika;
  • pengembangan keterampilan untuk secara mandiri memperoleh pengetahuan baru, menggunakan pengetahuan yang sudah diperoleh untuk mencapai tugas;
  • perkembangan keinginan dan kebutuhan untuk menggeneralisasi fakta yang diperoleh, perkembangan kemandirian.

Tugas:

  • menggeneralisasi dan mensistematisasikan pengetahuan yang ada tentang topik "Perkembangan aritmatika";
  • turunkan rumus untuk menghitung jumlah n anggota pertama dari deret aritmatika;
  • mengajarkan bagaimana menerapkan rumus yang diperoleh dalam memecahkan berbagai masalah;
  • menarik perhatian siswa pada prosedur untuk menemukan nilai ekspresi numerik.

Peralatan:

  • kartu dengan tugas untuk bekerja dalam kelompok dan berpasangan;
  • kertas evaluasi;
  • presentasi"Perkembangan aritmatika".

I. Aktualisasi pengetahuan dasar.

1. Bekerja mandiri berpasangan.

pilihan pertama:

Menentukan barisan aritmatika. Tuliskan rumus rekursif yang mendefinisikan deret aritmatika. Berikan contoh barisan aritmatika dan tunjukkan perbedaannya.

opsi ke-2:

Tuliskan rumus suku ke-n dari barisan aritmatika. Tentukan suku ke-100 suatu barisan aritmatika ( sebuah}: 2, 5, 8 …
Pada saat ini, dua siswa di bagian belakang papan sedang mempersiapkan jawaban untuk pertanyaan yang sama.
Siswa mengevaluasi pekerjaan pasangannya dengan membandingkannya dengan papan tulis. (Leaflet dengan jawaban diserahkan).

2. Momen permainan.

Latihan 1.

Guru. Saya menyusun beberapa perkembangan aritmatika. Ajukan hanya dua pertanyaan kepada saya sehingga setelah jawaban Anda dapat dengan cepat menyebutkan anggota ke-7 dari perkembangan ini. (1, 3, 5, 7, 9, 11, 13, 15…)

Pertanyaan dari siswa.

  1. Apa suku keenam dari kemajuan dan apa perbedaannya?
  2. Apa suku kedelapan dari perkembangan dan apa perbedaannya?

Jika tidak ada pertanyaan lagi, maka guru dapat merangsang mereka - "larangan" pada d (selisih), yaitu tidak boleh bertanya apa perbedaannya. Anda dapat mengajukan pertanyaan: apa suku ke-6 dari perkembangan dan apa suku ke-8 dari perkembangan?

Tugas 2.

Ada 20 angka yang tertulis di papan tulis: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Guru berdiri membelakangi papan tulis. Siswa menyebutkan nomor dari nomor tersebut, dan guru segera memanggil nomor itu sendiri. Jelaskan bagaimana saya bisa melakukannya?

Guru mengingat rumus suku ke-n a n \u003d 3n - 2 dan, dengan mengganti nilai n yang diberikan, temukan nilai yang sesuai sebuah .

II. Pernyataan tugas pendidikan.

Saya mengusulkan untuk memecahkan masalah lama yang berasal dari milenium ke-2 SM, yang ditemukan dalam papirus Mesir.

Tugas:“Katakanlah kepadamu: bagilah 10 takaran jelai kepada 10 orang, maka selisih antara setiap orang dan tetangganya adalah 1/8 takaran.”

  • Bagaimana masalah ini berhubungan dengan topik deret aritmatika? (Setiap orang berikutnya mendapat 1/8 lebih banyak, jadi selisihnya adalah d=1/8, 10 orang, jadi n=10.)
  • Menurutmu apa arti angka 10? (Jumlah semua anggota perkembangan.)
  • Apa lagi yang perlu Anda ketahui agar mudah dan sederhana membagi jelai sesuai dengan kondisi masalahnya? (Suku pertama dari progresi.)

Tujuan pelajaran- memperoleh ketergantungan jumlah suku perkembangan pada jumlah mereka, suku pertama dan perbedaan, dan memeriksa apakah masalah diselesaikan dengan benar di zaman kuno.

Sebelum menurunkan rumus, mari kita lihat bagaimana orang Mesir kuno memecahkan masalah.

Dan mereka menyelesaikannya seperti ini:

1) 10 ukuran: 10 = 1 ukuran - rata-rata berbagi;
2) 1 takaran = 2 takaran - digandakan rata-rata Bagikan.
dua kali lipat rata-rata bagiannya adalah jumlah bagian dari orang ke-5 dan ke-6.
3) 2 takaran - 1/8 takaran = 1 7/8 takaran - dua kali bagian orang kelima.
4) 1 7/8: 2 = 5/16 - bagian kelima; dan seterusnya, Anda dapat menemukan bagian dari setiap orang sebelumnya dan berikutnya.

Kami mendapatkan urutannya:

AKU AKU AKU. Solusi dari tugas.

1. Bekerja dalam kelompok

kelompok 1: Tentukan jumlah 20 bilangan asli berurutan: S 20 \u003d (20 + 1) 10 \u003d 210.

Secara umum

kelompok II: Temukan jumlah bilangan asli dari 1 hingga 100 (Legenda Little Gauss).

S 100 \u003d (1 + 100) 50 \u003d 5050

Kesimpulan:

kelompok III: Tentukan jumlah bilangan asli dari 1 hingga 21.

Solusi: 1+21=2+20=3+19=4+18…

Kesimpulan:

kelompok IV: Tentukan jumlah bilangan asli dari 1 sampai 101.

Kesimpulan:

Metode pemecahan masalah yang dipertimbangkan ini disebut "metode Gauss".

2. Setiap kelompok mempresentasikan solusi masalah di papan tulis.

3. Generalisasi solusi yang diusulkan untuk deret aritmatika arbitrer:

a 1 , a 2 , a 3 ,…, a n-2 , a n-1 , a n .
S n \u003d a 1 + a 2 + a 3 + a 4 + ... + a n-3 + a n-2 + a n-1 + a n.

Kami menemukan jumlah ini dengan berdebat serupa:

4. Sudahkah kita menyelesaikan tugas?(Ya.)

IV. Pemahaman utama dan penerapan rumus-rumus yang diperoleh dalam memecahkan masalah.

1. Memeriksa solusi masalah lama dengan rumus.

2. Penerapan rumus dalam menyelesaikan berbagai masalah.

3. Latihan untuk pembentukan kemampuan menerapkan rumus dalam memecahkan masalah.

A) Nomor 613

Diberikan :( dan N) - deret aritmatika;

(a n): 1, 2, 3, ..., 1500

Mencari: S 1500

Keputusan: , dan 1 = 1, dan 1500 = 1500,

B) Diberikan: ( dan N) - deret aritmatika;
(dan n): 1, 2, 3, ...
S n = 210

Mencari: n
Keputusan:

V. Pekerjaan mandiri dengan verifikasi timbal balik.

Denis pergi bekerja sebagai kurir. Pada bulan pertama, gajinya 200 rubel, di setiap bulan berikutnya meningkat 30 rubel. Berapa penghasilannya dalam setahun?

Diberikan :( dan N) - deret aritmatika;
a 1 = 200, d=30, n=12
Mencari: S 12
Keputusan:

Jawaban: Denis menerima 4.380 rubel untuk tahun ini.

VI. Instruksi pekerjaan rumah.

  1. hal 4.3 - pelajari turunan dari rumus.
  2. №№ 585, 623 .
  3. Buatlah masalah yang akan diselesaikan dengan menggunakan rumus jumlah n suku pertama suatu deret aritmatika.

VII. Menyimpulkan pelajaran.

1. Lembar skor

2. Lanjutkan kalimatnya

  • Hari ini di kelas saya belajar...
  • Rumus yang dipelajari...
  • saya pikir itu…

3. Dapatkah Anda menemukan jumlah angka dari 1 hingga 500? Metode apa yang akan Anda gunakan untuk menyelesaikan masalah ini?

Bibliografi.

1. Aljabar, kelas 9. Buku teks untuk lembaga pendidikan. Ed. G.V. Dorofeeva. Moskow: Pencerahan, 2009.

Ketika mempelajari aljabar di sekolah menengah (kelas 9), salah satu topik penting adalah studi tentang barisan numerik, yang meliputi progresi - geometris dan aritmatika. Pada artikel ini, kami akan mempertimbangkan perkembangan aritmatika dan contoh dengan solusi.

Apa itu barisan aritmatika?

Untuk memahami hal ini, perlu diberikan definisi tentang perkembangan yang sedang dibahas, serta memberikan rumus-rumus dasar yang akan digunakan lebih lanjut dalam memecahkan masalah.

Deret aritmatika atau aljabar adalah seperangkat bilangan rasional yang teratur, yang masing-masing anggotanya berbeda dari yang sebelumnya dengan jumlah yang konstan. Nilai ini disebut selisih. Artinya, mengetahui anggota deret angka yang berurutan dan perbedaannya, Anda dapat memulihkan seluruh deret aritmatika.

Mari kita ambil contoh. Barisan bilangan selanjutnya adalah barisan aritmatika: 4, 8, 12, 16, ..., karena selisihnya dalam hal ini adalah 4 (8 - 4 = 12 - 8 = 16 - 12). Tetapi himpunan angka 3, 5, 8, 12, 17 tidak dapat lagi dikaitkan dengan jenis perkembangan yang sedang dipertimbangkan, karena perbedaannya bukan nilai konstan (5 - 3 8 - 5 12 - 8 17 - 12).

Rumus Penting

Kami sekarang memberikan rumus dasar yang akan diperlukan untuk menyelesaikan masalah menggunakan deret aritmatika. Misalkan a n menyatakan anggota ke-n dari barisan, di mana n adalah bilangan bulat. Perbedaannya dilambangkan dengan huruf latin d. Maka ekspresi berikut ini benar:

  1. Untuk menentukan nilai suku ke-n, rumusnya cocok: a n \u003d (n-1) * d + a 1.
  2. Untuk menentukan jumlah n suku pertama: S n = (a n + a 1)*n/2.

Untuk memahami setiap contoh deret aritmatika dengan solusi di kelas 9, cukup mengingat dua rumus ini, karena masalah jenis apa pun dibangun berdasarkan penggunaannya. Juga, jangan lupa bahwa perbedaan perkembangan ditentukan oleh rumus: d = a n - a n-1 .

Contoh #1: Menemukan Anggota Tidak Dikenal

Kami memberikan contoh sederhana dari deret aritmatika dan rumus yang harus digunakan untuk menyelesaikannya.

Biarkan urutan 10, 8, 6, 4, ... diberikan, perlu untuk menemukan lima suku di dalamnya.

Sudah mengikuti dari kondisi masalah bahwa 4 suku pertama diketahui. Kelima dapat didefinisikan dalam dua cara:

  1. Mari kita hitung selisihnya terlebih dahulu. Kami memiliki: d = 8 - 10 = -2. Demikian pula, seseorang dapat mengambil dua istilah lain yang berdiri bersebelahan. Misalnya, d = 4 - 6 = -2. Karena diketahui bahwa d \u003d a n - a n-1, maka d \u003d a 5 - a 4, dari mana kita mendapatkan: a 5 \u003d a 4 + d. Kami mengganti nilai yang diketahui: a 5 = 4 + (-2) = 2.
  2. Cara kedua juga membutuhkan pengetahuan tentang selisih dari progresi yang bersangkutan, jadi Anda harus menentukannya terlebih dahulu, seperti gambar di atas (d = -2). Diketahui suku pertama a 1 = 10, kita gunakan rumus bilangan n barisan tersebut. Kami memiliki: a n \u003d (n - 1) * d + a 1 \u003d (n - 1) * (-2) + 10 \u003d 12 - 2 * n. Mengganti n = 5 ke dalam ekspresi terakhir, kita mendapatkan: a 5 = 12-2 * 5 = 2.

Seperti yang Anda lihat, kedua solusi menghasilkan hasil yang sama. Perhatikan bahwa dalam contoh ini perbedaan d dari progresi adalah negatif. Barisan demikian disebut menurun karena setiap suku yang berurutan lebih kecil dari suku sebelumnya.

Contoh #2: perbedaan perkembangan

Sekarang mari kita sedikit memperumit tugas, berikan contoh caranya

Diketahui bahwa pada beberapa suku ke-1 sama dengan 6, dan suku ke-7 sama dengan 18. Perlu dicari selisihnya dan mengembalikan barisan ini ke suku ke-7.

Mari gunakan rumus untuk menentukan suku yang tidak diketahui: a n = (n - 1) * d + a 1 . Kami mengganti data yang diketahui dari kondisi ke dalamnya, yaitu angka a 1 dan a 7, kami memiliki: 18 \u003d 6 + 6 * d. Dari ekspresi ini, Anda dapat dengan mudah menghitung selisihnya: d = (18 - 6) / 6 = 2. Jadi, bagian pertama dari soal telah terjawab.

Untuk mengembalikan barisan ke anggota ke-7, Anda harus menggunakan definisi deret aljabar, yaitu, a 2 = a 1 + d, a 3 = a 2 + d, dan seterusnya. Hasilnya, kami mengembalikan seluruh urutan: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 dan 7 = 18.

Contoh #3: membuat kemajuan

Mari kita semakin memperumit kondisi masalah. Sekarang Anda perlu menjawab pertanyaan tentang bagaimana menemukan deret aritmatika. Contoh berikut dapat diberikan: dua angka diberikan, misalnya, 4 dan 5. Perlu untuk membuat deret aljabar sehingga tiga suku lagi ditempatkan di antara ini.

Sebelum mulai memecahkan masalah ini, perlu dipahami tempat yang akan ditempati oleh angka-angka yang diberikan dalam perkembangan di masa depan. Karena akan ada tiga suku lagi di antara mereka, maka 1 \u003d -4 dan 5 \u003d 5. Setelah menetapkan ini, kami melanjutkan ke tugas yang mirip dengan yang sebelumnya. Sekali lagi, untuk suku ke-n, kami menggunakan rumus, kami mendapatkan: a 5 \u003d a 1 + 4 * d. Dari: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25. Di sini selisihnya bukan bilangan bulat, melainkan bilangan rasional, sehingga rumus deret aljabar tetap sama.

Sekarang mari tambahkan perbedaan yang ditemukan ke 1 dan pulihkan anggota progresi yang hilang. Kami mendapatkan: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 \u003d 2,75 + 2,25 \u003d 5, yang sesuai dengan kondisi masalah.

Contoh #4: Anggota pertama dari progresi

Kami terus memberikan contoh deret aritmatika dengan solusi. Pada semua soal sebelumnya, bilangan pertama dari deret aljabar diketahui. Sekarang pertimbangkan masalah dari jenis yang berbeda: biarkan dua angka diberikan, di mana a 15 = 50 dan a 43 = 37. Penting untuk menemukan dari nomor berapa urutan ini dimulai.

Rumus yang telah digunakan sejauh ini mengasumsikan pengetahuan tentang a 1 dan d. Tidak ada yang diketahui tentang angka-angka ini dalam kondisi masalah. Namun demikian, mari kita tulis ekspresi untuk setiap istilah yang informasinya kita miliki: a 15 = a 1 + 14 * d dan a 43 = a 1 + 42 * d. Kami mendapat dua persamaan di mana ada 2 besaran yang tidak diketahui (a 1 dan d). Ini berarti bahwa masalahnya direduksi menjadi penyelesaian sistem persamaan linier.

Sistem yang ditentukan paling mudah untuk diselesaikan jika Anda mengekspresikan 1 dalam setiap persamaan, dan kemudian membandingkan ekspresi yang dihasilkan. Persamaan pertama: a 1 = a 15 - 14 * d = 50 - 14 * d; persamaan kedua: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Menyamakan ekspresi ini, kita mendapatkan: 50 - 14 * d \u003d 37 - 42 * d, dari mana perbedaannya d \u003d (37 - 50) / (42 - 14) \u003d - 0,644 (hanya 3 tempat desimal yang diberikan).

Mengetahui d, Anda dapat menggunakan salah satu dari 2 ekspresi di atas untuk 1 . Misalnya, pertama: a 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0,464) \u003d 56.496.

Jika ada keraguan tentang hasilnya, Anda dapat memeriksanya, misalnya, menentukan anggota ke-43 dari perkembangan, yang ditentukan dalam kondisi. Kami mendapatkan: a 43 \u003d a 1 + 42 * d \u003d 56,496 + 42 * (- 0,464) \u003d 37,008. Kesalahan kecil disebabkan oleh fakta bahwa pembulatan ke seperseribu digunakan dalam perhitungan.

Contoh #5: Jumlah

Sekarang mari kita lihat beberapa contoh dengan solusi untuk jumlah deret aritmatika.

Biarkan deret angka dari bentuk berikut diberikan: 1, 2, 3, 4, ...,. Bagaimana cara menghitung jumlah 100 dari angka-angka ini?

Berkat perkembangan teknologi komputer, masalah ini dapat diselesaikan, yaitu menjumlahkan semua angka secara berurutan, yang akan dilakukan komputer segera setelah seseorang menekan tombol Enter. Namun, masalah tersebut dapat diselesaikan secara mental jika Anda memperhatikan bahwa deret angka yang disajikan adalah deret aljabar, dan selisihnya adalah 1. Menerapkan rumus untuk jumlah, kita mendapatkan: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Sangat mengherankan untuk dicatat bahwa masalah ini disebut "Gaussian", karena pada awal abad ke-18 orang Jerman yang terkenal, yang masih berusia 10 tahun, mampu menyelesaikannya dalam pikirannya dalam beberapa detik. Anak laki-laki itu tidak mengetahui rumus jumlah suatu deret aljabar, tetapi dia memperhatikan bahwa jika Anda menambahkan pasangan angka yang terletak di tepi barisan, Anda selalu mendapatkan hasil yang sama, yaitu, 1 + 100 = 2 + 99 = 3 + 98 = ..., dan karena jumlah ini akan tepat 50 (100 / 2), maka untuk mendapatkan jawaban yang benar, cukup dengan mengalikan 50 dengan 101.

Contoh #6: jumlah suku dari n ke m

Contoh tipikal lain dari jumlah deret aritmatika adalah sebagai berikut: diberikan serangkaian angka: 3, 7, 11, 15, ..., Anda perlu menemukan jumlah sukunya dari 8 hingga 14.

Masalahnya diselesaikan dengan dua cara. Yang pertama melibatkan menemukan istilah yang tidak diketahui dari 8 hingga 14, dan kemudian menjumlahkannya secara berurutan. Karena ada beberapa istilah, metode ini tidak cukup melelahkan. Namun demikian, diusulkan untuk memecahkan masalah ini dengan metode kedua, yang lebih universal.

Idenya adalah untuk mendapatkan rumus untuk jumlah deret aljabar antara suku m dan n, di mana n > m adalah bilangan bulat. Untuk kedua kasus, kami menulis dua ekspresi untuk jumlah:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Karena n > m, jelaslah bahwa jumlah 2 termasuk yang pertama. Kesimpulan terakhir berarti bahwa jika kita mengambil perbedaan antara jumlah-jumlah ini, dan menambahkan istilah a m padanya (dalam kasus mengambil perbedaan, itu dikurangi dari jumlah S n), maka kita mendapatkan jawaban yang diperlukan untuk masalah ini. Kami memiliki: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). Hal ini diperlukan untuk mengganti formula untuk n dan a m ke dalam ekspresi ini. Maka diperoleh: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Rumus yang dihasilkan agak rumit, namun, jumlah S mn hanya bergantung pada n, m, a 1 dan d. Dalam kasus kami, a 1 = 3, d = 4, n = 14, m = 8. Mensubstitusikan angka-angka ini, kita mendapatkan: S mn = 301.

Seperti dapat dilihat dari solusi di atas, semua masalah didasarkan pada pengetahuan tentang ekspresi suku ke-n dan rumus jumlah himpunan suku pertama. Sebelum Anda mulai memecahkan salah satu masalah ini, Anda disarankan untuk membaca kondisinya dengan cermat, memahami dengan jelas apa yang ingin Anda temukan, dan baru kemudian melanjutkan dengan solusinya.

Tip lainnya adalah berusaha untuk kesederhanaan, yaitu, jika Anda dapat menjawab pertanyaan tanpa menggunakan perhitungan matematika yang rumit, maka Anda perlu melakukan hal itu, karena dalam hal ini kemungkinan membuat kesalahan lebih kecil. Misalnya, dalam contoh deret aritmatika dengan solusi No. 6, seseorang dapat berhenti pada rumus S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, dan pisahkan tugas umum menjadi subtugas terpisah (dalam hal ini, pertama-tama temukan istilah a n dan a m).

Jika ada keraguan tentang hasil yang diperoleh, disarankan untuk memeriksanya, seperti yang dilakukan pada beberapa contoh yang diberikan. Bagaimana menemukan deret aritmatika, temukan. Setelah Anda mengetahuinya, itu tidak terlalu sulit.


Misalnya, barisan \(2\); \(5\); \(delapan\); \(sebelas\); \(14\)… adalah deret aritmatika, karena setiap elemen berikutnya berbeda dari yang sebelumnya dengan tiga (dapat diperoleh dari yang sebelumnya dengan menambahkan tiga):

Dalam deret ini, selisih \(d\) adalah positif (sama dengan \(3\)), dan oleh karena itu setiap suku berikutnya lebih besar dari suku sebelumnya. Perkembangan seperti itu disebut meningkat.

Namun, \(d\) juga bisa berupa bilangan negatif. Misalnya, dalam deret aritmatika \(16\); \(sepuluh\); \(4\); \(-2\); \(-8\)… perbedaan perkembangan \(d\) sama dengan minus enam.

Dan dalam hal ini, setiap elemen berikutnya akan lebih kecil dari yang sebelumnya. Perkembangan ini disebut menurun.

Notasi deret aritmatika

Kemajuan dilambangkan dengan huruf Latin kecil.

Bilangan yang membentuk deret disebut anggota(atau elemen).

Mereka dilambangkan dengan huruf yang sama dengan deret aritmatika, tetapi dengan indeks numerik yang sama dengan nomor elemen secara berurutan.

Misalnya, barisan aritmatika \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) terdiri dari elemen \(a_1=2\); \(a_2=5\); \(a_3=8\) dan seterusnya.

Dengan kata lain, untuk progresi \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Menyelesaikan masalah pada deret aritmatika

Pada prinsipnya, informasi di atas sudah cukup untuk menyelesaikan hampir semua masalah pada deret aritmatika (termasuk yang ditawarkan di OGE).

Contoh (OG). Deret aritmatika diberikan oleh kondisi \(b_1=7; d=4\). Temukan \(b_5\).
Keputusan:

Menjawab: \(b_5=23\)

Contoh (OG). Tiga suku pertama dari suatu barisan aritmatika diberikan: \(62; 49; 36…\) Temukan nilai dari suku negatif pertama dari barisan ini..
Keputusan:

Kami diberi elemen pertama dari barisan dan tahu bahwa itu adalah deret aritmatika. Artinya, setiap elemen berbeda dari elemen tetangga dengan nomor yang sama. Cari tahu yang mana dengan mengurangkan elemen sebelumnya dari elemen berikutnya: \(d=49-62=-13\).

Sekarang kita dapat mengembalikan perkembangan kita ke elemen yang diinginkan (negatif pertama).

Siap. Anda dapat menulis jawaban.

Menjawab: \(-3\)

Contoh (OG). Beberapa elemen berurutan dari deret aritmatika diberikan: \(...5; x; 10; 12,5...\) Temukan nilai elemen yang dilambangkan dengan huruf \(x\).
Keputusan:


Untuk mencari \(x\), kita perlu mengetahui seberapa besar perbedaan elemen berikutnya dari elemen sebelumnya, dengan kata lain, perbedaan progresi. Mari kita cari dari dua elemen tetangga yang diketahui: \(d=12.5-10=2.5\).

Dan sekarang kami menemukan apa yang kami cari tanpa masalah: \(x=5+2.5=7.5\).


Siap. Anda dapat menulis jawaban.

Menjawab: \(7,5\).

Contoh (OG). Deret aritmatika diberikan oleh kondisi berikut: \(a_1=-11\); \(a_(n+1)=a_n+5\) Temukan jumlah enam suku pertama dari deret ini.
Keputusan:

Kita perlu mencari jumlah enam suku pertama dari perkembangan tersebut. Tapi kita tidak tahu artinya, kita hanya diberikan elemen pertama. Oleh karena itu, pertama-tama kami menghitung nilainya secara bergantian, menggunakan yang diberikan kepada kami:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Dan setelah menghitung enam elemen yang kita butuhkan, kita menemukan jumlah mereka.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Jumlah yang diminta telah ditemukan.

Menjawab: \(S_6=9\).

Contoh (OG). Dalam deret aritmatika \(a_(12)=23\); \(a_(16)=51\). Temukan perbedaan dari perkembangan ini.
Keputusan:

Menjawab: \(d=7\).

Rumus Kemajuan Aritmatika Penting

Seperti yang Anda lihat, banyak masalah deret aritmatika dapat diselesaikan hanya dengan memahami hal utama - bahwa deret aritmatika adalah rantai angka, dan setiap elemen berikutnya dalam rantai ini diperoleh dengan menambahkan angka yang sama ke yang sebelumnya (perbedaannya dari kemajuan).

Namun, terkadang ada situasi di mana sangat tidak nyaman untuk menyelesaikan "di dahi". Misalnya, bayangkan bahwa dalam contoh pertama, kita tidak perlu menemukan elemen kelima \(b_5\), tetapi tiga ratus delapan puluh enam \(b_(386)\). Apa itu, kita \ (385 \) kali menambahkan empat? Atau bayangkan bahwa dalam contoh kedua dari belakang, Anda perlu menemukan jumlah dari tujuh puluh tiga elemen pertama. Menghitungnya membingungkan...

Oleh karena itu, dalam kasus seperti itu, mereka tidak memecahkan "di dahi", tetapi menggunakan rumus khusus yang diturunkan untuk deret aritmatika. Dan yang utama adalah rumus suku ke-n dari deret dan rumus jumlah \(n\) suku pertama.

Rumus untuk anggota ke \(n\): \(a_n=a_1+(n-1)d\), dengan \(a_1\) adalah anggota pertama dari perkembangan;
\(n\) – jumlah elemen yang dibutuhkan;
\(a_n\) adalah anggota perkembangan dengan nomor \(n\).


Rumus ini memungkinkan kita untuk dengan cepat menemukan setidaknya tiga ratus, bahkan elemen sepersejuta, hanya mengetahui yang pertama dan perbedaan perkembangan.

Contoh. Deret aritmatika diberikan oleh kondisi: \(b_1=-159\); \(d=8,2\). Temukan \(b_(246)\).
Keputusan:

Menjawab: \(b_(246)=1850\).

Rumus jumlah n suku pertama adalah: \(S_n=\frac(a_1+a_n)(2) \cdot n\), di mana



\(a_n\) adalah suku terakhir yang dijumlahkan;


Contoh (OG). Deret aritmatika diberikan oleh kondisi \(a_n=3.4n-0.6\). Temukan jumlah suku \(25\) pertama dari deret ini.
Keputusan:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Untuk menghitung jumlah dua puluh lima elemen pertama, kita perlu mengetahui nilai suku pertama dan kedua puluh lima.
Kemajuan kita diberikan oleh rumus suku ke-n tergantung pada jumlahnya (lihat detail). Mari kita hitung elemen pertama dengan mengganti \(n\) dengan satu.

\(n=1;\) \(a_1=3,4 1-0,6=2,8\)

Sekarang mari kita cari suku kedua puluh lima dengan mengganti dua puluh lima sebagai ganti \(n\).

\(n=25;\) \(a_(25)=3,4 25-0,6=84,4\)

Nah, sekarang kami menghitung jumlah yang dibutuhkan tanpa masalah.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Jawabannya sudah siap.

Menjawab: \(S_(25)=1090\).

Untuk jumlah \(n\) suku pertama, Anda bisa mendapatkan rumus lain: Anda hanya perlu \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) alih-alih \(a_n\) gantikan dengan rumus \(a_n=a_1+(n-1)d\). Kita mendapatkan:

Rumus jumlah n suku pertama adalah: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), di mana

\(S_n\) – jumlah yang diperlukan \(n\) dari elemen pertama;
\(a_1\) adalah suku pertama yang dijumlahkan;
\(d\) – perbedaan perkembangan;
\(n\) - jumlah elemen dalam jumlah.

Contoh. Temukan jumlah suku \(33\)-ex pertama dari deret aritmatika: \(17\); \(15,5\); \(empat belas\)…
Keputusan:

Menjawab: \(S_(33)=-231\).

Masalah perkembangan aritmatika yang lebih kompleks

Sekarang Anda memiliki semua informasi yang Anda butuhkan untuk menyelesaikan hampir semua masalah deret aritmatika. Mari selesaikan topik dengan mempertimbangkan masalah di mana Anda tidak hanya perlu menerapkan rumus, tetapi juga berpikir sedikit (dalam matematika, ini bisa berguna )

Contoh (OG). Temukan jumlah semua suku negatif dari perkembangan: \(-19.3\); \(-sembilan belas\); \(-18.7\)…
Keputusan:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Tugasnya sangat mirip dengan yang sebelumnya. Kita mulai memecahkan dengan cara yang sama: pertama kita temukan \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Sekarang kita akan mengganti \(d\) ke dalam rumus untuk jumlah ... dan di sini muncul nuansa kecil - kita tidak tahu \(n\). Dengan kata lain, kita tidak tahu berapa banyak istilah yang perlu ditambahkan. Bagaimana cara mengetahuinya? Mari kita berpikir. Kami akan berhenti menambahkan elemen ketika kami sampai ke elemen positif pertama. Artinya, Anda perlu mengetahui jumlah elemen ini. Bagaimana? Mari kita tuliskan rumus untuk menghitung setiap elemen dari deret aritmatika: \(a_n=a_1+(n-1)d\) untuk kasus kita.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

Kita perlu \(a_n\) lebih besar dari nol. Mari kita cari tahu apa \(n\) ini akan terjadi.

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|:0.3\)

Kami membagi kedua sisi pertidaksamaan dengan \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Kami mentransfer minus satu, tidak lupa mengubah tanda

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Komputasi...

\(n>65.333…\)

…dan ternyata elemen positif pertama memiliki bilangan \(66\). Dengan demikian, negatif terakhir memiliki \(n=65\). Untuk jaga-jaga, mari kita periksa.

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

Jadi, kita perlu menambahkan elemen \(65\) pertama.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

Jawabannya sudah siap.

Menjawab: \(S_(65)=-630.5\).

Contoh (OG). Deret aritmatika diberikan oleh kondisi: \(a_1=-33\); \(a_(n+1)=a_n+4\). Cari jumlah dari \(26\)th ke \(42\) elemen inklusif.
Keputusan:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Dalam soal ini, Anda juga perlu mencari jumlah elemen, tetapi tidak mulai dari yang pertama, tetapi dari \(26\)th. Kami tidak memiliki formula untuk ini. Bagaimana memutuskan?
Mudah - untuk mendapatkan jumlah dari \(26\)th ke \(42\)th, Anda harus terlebih dahulu menemukan jumlah dari \(1\)th ke \(42\)th, dan kemudian kurangi jumlah dari yang pertama ke \ (25 \) (lihat gambar).


Untuk perkembangan kita \(a_1=-33\), dan selisih \(d=4\) (bagaimanapun juga, kita menambahkan empat ke elemen sebelumnya untuk menemukan elemen berikutnya). Mengetahui hal ini, kami menemukan jumlah elemen \(42\)-uh pertama.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Sekarang jumlah elemen ke-\(25\) pertama.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Dan akhirnya, kami menghitung jawabannya.

\(S=S_(42)-S_(25)=2058-375=1683\)

Menjawab: \(S=1683\).

Untuk deret aritmatika, ada beberapa rumus lagi yang belum kami bahas dalam artikel ini karena kegunaan praktisnya yang rendah. Namun, Anda dapat dengan mudah menemukannya.

Apa inti dari rumus tersebut?

Rumus ini memungkinkan Anda untuk menemukan setiap DENGAN NOMORNYA" n" .

Tentu saja, Anda perlu tahu istilah pertama sebuah 1 dan perbedaan perkembangan d, nah, tanpa parameter ini, Anda tidak dapat menuliskan perkembangan tertentu.

Tidaklah cukup untuk menghafal (atau menipu) rumus ini. Penting untuk mengasimilasi esensinya dan menerapkan formula dalam berbagai tugas. Ya, dan jangan lupa di waktu yang tepat ya…) Bagaimana tidak lupa- Aku tidak tahu. Dan di sini bagaimana cara mengingat Jika perlu, saya akan memberi Anda petunjuk. Bagi mereka yang menguasai pelajaran sampai akhir.)

Jadi, mari kita berurusan dengan rumus anggota ke-n dari deret aritmatika.

Apa rumus secara umum - kami bayangkan.) Apa itu deret aritmatika, nomor anggota, perbedaan progresi - dinyatakan dengan jelas dalam pelajaran sebelumnya. Lihatlah jika Anda belum membacanya. Semuanya sederhana di sana. Masih mencari tahu apa anggota ke-n.

Kemajuan secara umum dapat ditulis sebagai serangkaian angka:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

sebuah 1- menunjukkan suku pertama dari deret aritmatika, sebuah 3- anggota ketiga sebuah 4- keempat, dan seterusnya. Jika kita tertarik dengan suku kelima, misalkan kita bekerja dengan sebuah 5, jika seratus dua puluh - dari 120.

Bagaimana mendefinisikan secara umum setiap anggota deret aritmatika, s setiap nomor? Sangat sederhana! Seperti ini:

sebuah

Itulah apa itu anggota ke-n dari deret aritmatika. Di bawah huruf n semua nomor anggota disembunyikan sekaligus: 1, 2, 3, 4, dan seterusnya.

Dan apa yang diberikan catatan seperti itu kepada kita? Bayangkan saja, alih-alih angka, mereka menulis surat ...

Notasi ini memberi kita alat yang ampuh untuk bekerja dengan progresi aritmatika. Menggunakan notasi sebuah, kita dapat dengan cepat menemukan setiap anggota setiap perkembangan aritmatika. Dan banyak tugas yang harus diselesaikan secara bertahap. Anda akan melihat lebih jauh.

Dalam rumus anggota ke-n dari deret aritmatika:

a n = a 1 + (n-1)d

sebuah 1- anggota pertama dari perkembangan aritmatika;

n- nomor anggota.

Rumus tersebut menghubungkan parameter kunci dari setiap perkembangan: sebuah ; sebuah 1 ; d dan n. Di sekitar parameter ini, semua teka-teki berputar dalam perkembangan.

Rumus suku ke-n juga dapat digunakan untuk menulis progresi tertentu. Misalnya, dalam masalah dapat dikatakan bahwa perkembangan diberikan oleh kondisi:

a n = 5 + (n-1) 2.

Masalah seperti itu bahkan bisa membingungkan ... Tidak ada seri, tidak ada perbedaan ... Tapi, membandingkan kondisi dengan rumus, mudah untuk mengetahui bahwa dalam perkembangan ini a 1 \u003d 5, dan d \u003d 2.

Dan itu bisa lebih marah!) Jika kita mengambil kondisi yang sama: a n = 5 + (n-1) 2, ya, buka kurung dan berikan yang serupa? Kami mendapatkan formula baru:

an = 3 + 2n.

Ini Hanya tidak umum, tetapi untuk perkembangan tertentu. Di sinilah letak perangkapnya. Beberapa orang berpikir bahwa suku pertama adalah tiga. Meskipun pada kenyataannya anggota pertama adalah lima ... Sedikit lebih rendah kami akan bekerja dengan formula yang dimodifikasi.

Dalam tugas untuk kemajuan, ada notasi lain - n+1. Ini adalah, Anda dapat menebaknya, istilah "n ditambah yang pertama" dari perkembangan. Artinya sederhana dan tidak berbahaya.) Ini adalah anggota perkembangan, yang jumlahnya lebih besar dari angka n per satu. Misalnya, jika dalam beberapa masalah kita ambil untuk sebuah suku kelima, maka n+1 akan menjadi anggota keenam. Dll.

Paling sering sebutan n+1 terjadi dalam rumus rekursif. Jangan takut dengan kata yang mengerikan ini!) Ini hanyalah cara untuk mengekspresikan suku dari deret aritmatika melalui yang sebelumnya. Misalkan kita diberikan deret aritmatika dalam bentuk ini, menggunakan rumus berulang:

a n+1 = a n +3

a2 = a1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Yang keempat - melalui yang ketiga, yang kelima - hingga yang keempat, dan seterusnya. Dan bagaimana cara menghitung segera, ucapkan suku kedua puluh, 20? Tapi tidak mungkin!) Meskipun suku ke-19 tidak diketahui, suku ke-20 tidak dapat dihitung. Inilah perbedaan mendasar antara rumus rekursif dan rumus suku ke-n. Rekursif hanya bekerja melalui sebelumnya suku, dan rumus suku ke-n - melalui pertama dan mengizinkan langsung temukan anggota mana pun dengan nomornya. Tidak menghitung seluruh rangkaian angka secara berurutan.

Dalam deret aritmatika, rumus rekursif dapat dengan mudah diubah menjadi rumus biasa. Hitung sepasang suku berurutan, hitung selisihnya d, temukan, jika perlu, suku pertama sebuah 1, tulis rumus dalam bentuk biasa, dan kerjakan. Di GIA, tugas seperti itu sering ditemukan.

Penerapan rumus anggota ke-n dari deret aritmatika.

Pertama, mari kita lihat aplikasi langsung dari rumus tersebut. Di akhir pelajaran sebelumnya ada masalah:

Diberikan barisan aritmatika (a n). Temukan 121 jika a 1 =3 dan d=1/6.

Soal ini dapat diselesaikan tanpa rumus apapun, hanya berdasarkan arti dari deret aritmatika. Tambah, ya tambah... Satu atau dua jam.)

Dan menurut rumusnya, solusinya akan memakan waktu kurang dari satu menit. Anda dapat mengatur waktunya.) Kami memutuskan.

Kondisi menyediakan semua data untuk menggunakan rumus: a 1 \u003d 3, d \u003d 1/6. Masih harus dilihat apa n. Tidak masalah! Kita perlu menemukan 121. Di sini kami menulis:

Mohon perhatian! Alih-alih indeks n nomor tertentu muncul: 121. Yang cukup logis.) Kami tertarik pada anggota deret aritmatika nomor seratus dua puluh satu. Ini akan menjadi milik kita n. Ini dia artinya n= 121 selanjutnya kita substitusikan ke dalam rumus, dalam kurung. Substitusikan semua angka dalam rumus dan hitung:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

Itu saja. Secepatnya seseorang dapat menemukan lima ratus sepuluh anggota, dan seribu tiga, apa saja. Kami menempatkan sebagai gantinya n nomor yang diinginkan dalam indeks surat " sebuah" dan dalam tanda kurung, dan kami pertimbangkan.

Biarkan saya mengingatkan Anda esensinya: formula ini memungkinkan Anda untuk menemukan setiap suku dari barisan aritmatika DENGAN NOMORNYA" n" .

Mari selesaikan masalah dengan lebih cerdas. Katakanlah kita memiliki masalah berikut:

Tentukan suku pertama barisan aritmatika (a n) jika a 17 = -2; d=-0,5.

Jika Anda mengalami kesulitan, saya akan menyarankan langkah pertama. Tuliskan rumus suku ke-n dari barisan aritmatika! Ya ya. Tulis tangan, tepat di buku catatan Anda:

a n = a 1 + (n-1)d

Dan sekarang, dengan melihat huruf-huruf dalam rumus, kami memahami data apa yang kami miliki dan apa yang hilang? Tersedia d=-0,5, ada anggota ketujuh belas ... Semuanya? Jika Anda berpikir itu saja, maka Anda tidak dapat menyelesaikan masalah, ya ...

Kami juga memiliki nomor n! dalam kondisi a 17 =-2 tersembunyi dua pilihan. Ini adalah nilai anggota ketujuh belas (-2) dan nomornya (17). Itu. n=17."Hal kecil" ini sering melewati kepala, dan tanpanya, (tanpa "hal kecil", bukan kepala!) Masalahnya tidak dapat diselesaikan. Meskipun ... dan tanpa kepala juga.)

Sekarang kita bisa dengan bodohnya mengganti data kita ke dalam rumus:

a 17 \u003d a 1 + (17-1) (-0,5)

Oh ya, 17 kita tahu itu -2. Oke, mari kita masukkan ke dalam:

-2 \u003d a 1 + (17-1) (-0,5)

Itu, pada dasarnya, adalah semua. Tetap mengungkapkan suku pertama deret aritmatika dari rumus, dan menghitung. Anda mendapatkan jawabannya: a1 = 6.

Teknik seperti itu - menulis formula dan hanya mengganti data yang diketahui - banyak membantu dalam tugas-tugas sederhana. Yah, tentu saja, Anda harus dapat mengekspresikan variabel dari rumus, tetapi apa yang harus dilakukan!? Tanpa keterampilan ini, matematika tidak dapat dipelajari sama sekali ...

Masalah populer lainnya:

Tentukan selisih dari barisan aritmatika (a n) jika a 1 =2; a 15 = 12.

Apa yang kita lakukan? Anda akan terkejut, kami menulis rumusnya!)

a n = a 1 + (n-1)d

Pertimbangkan apa yang kita ketahui: a 1 = 2; a 15 = 12; dan (sorotan khusus!) n=15. Jangan ragu untuk mengganti dalam rumus:

12=2 + (15-1)d

Mari kita lakukan aritmatika.)

12=2 + 14d

d=10/14 = 5/7

Ini adalah jawaban yang benar.

Jadi, tugas a n , a 1 dan d diputuskan. Masih belajar bagaimana menemukan nomornya:

Bilangan 99 adalah anggota deret aritmatika (a n), di mana a 1 = 12; d=3. Temukan nomor anggota ini.

Kami mengganti jumlah yang diketahui ke dalam rumus suku ke-n:

a n = 12 + (n-1) 3

Sekilas, ada dua besaran yang tidak diketahui di sini: sebuah n dan n. Tetapi sebuah adalah beberapa anggota perkembangan dengan nomor n... Dan anggota perkembangan ini yang kita kenal! Ini 99. Kami tidak tahu nomornya. n, jadi nomor ini juga perlu ditemukan. Substitusikan suku perkembangan 99 ke dalam rumus:

99 = 12 + (n-1) 3

Kami mengungkapkan dari rumus n, kami pikir. Kami mendapatkan jawabannya: n=30.

Dan sekarang masalah pada topik yang sama, tetapi lebih kreatif):

Tentukan apakah bilangan 117 merupakan anggota barisan aritmatika (a n):

-3,6; -2,4; -1,2 ...

Mari kita menulis rumus lagi. Apa, tidak ada pilihan? Hm... Kenapa kita butuh mata?) Apakah kita melihat anggota pertama dari progresi? Kami melihat. Ini adalah -3.6. Anda dapat dengan aman menulis: a 1 \u003d -3.6. Perbedaan d dapat ditentukan dari seri? Sangat mudah jika Anda tahu apa perbedaan dari deret aritmatika:

d = -2.4 - (-3.6) = 1.2

Ya, kami melakukan hal yang paling sederhana. Masih berurusan dengan nomor yang tidak dikenal n dan bilangan 117 yang tidak bisa dipahami. Pada soal sebelumnya, paling tidak diketahui bahwa yang diberikan adalah suku dari barisan tersebut. Tapi di sini kita bahkan tidak tahu itu ... Bagaimana menjadi!? Nah, bagaimana menjadi, bagaimana menjadi ... Nyalakan kemampuan kreatif Anda!)

Kami memperkirakan bahwa 117 adalah, setelah semua, anggota kemajuan kami. Dengan nomor tak dikenal n. Dan, seperti pada soal sebelumnya, mari kita coba mencari nomor ini. Itu. kami menulis rumus (ya-ya!)) dan mengganti nomor kami:

117 = -3,6 + (n-1) 1,2

Sekali lagi kami ungkapkan dari rumusn, kami menghitung dan mendapatkan:

Ups! Nomornya ternyata pecahan! Seratus satu setengah. Dan bilangan pecahan dalam progresi tidak bisa. Kesimpulan apa yang kita tarik? Ya! Nomor 117 tidak anggota kemajuan kami. Itu adalah suatu tempat antara anggota 101 dan 102. Jika jumlahnya ternyata alami, mis. bilangan bulat positif, maka nomor tersebut akan menjadi anggota perkembangan dengan nomor yang ditemukan. Dan dalam kasus kami, jawaban untuk masalahnya adalah: tidak.

Tugas berdasarkan versi nyata GIA:

Deret aritmatika diberikan oleh kondisi:

a n \u003d -4 + 6.8n

Tentukan suku pertama dan suku kesepuluh dari deret tersebut.

Di sini perkembangan diatur dengan cara yang tidak biasa. Semacam formula ... Itu terjadi.) Namun, formula ini (seperti yang saya tulis di atas) - juga rumus anggota ke-n dari deret aritmatika! Dia juga mengizinkan temukan anggota perkembangan dengan nomornya.

Kami mencari anggota pertama. Yang berpikir. bahwa suku pertama dikurangi empat, adalah kesalahan fatal!) Karena rumus dalam soal dimodifikasi. Suku pertama dari barisan aritmatika di dalamnya tersembunyi. Tidak ada, kita akan menemukannya sekarang.)

Sama seperti pada tugas sebelumnya, kami mengganti n=1 ke dalam rumus ini:

a 1 \u003d -4 + 6,8 1 \u003d 2,8

Di Sini! Suku pertama adalah 2,8, bukan -4!

Demikian pula, kami mencari suku kesepuluh:

a 10 \u003d -4 + 6,8 10 \u003d 64

Itu saja.

Dan sekarang, bagi mereka yang telah membaca hingga baris ini, bonus yang dijanjikan.)

Misalkan, dalam situasi pertempuran yang sulit dari GIA atau Ujian Negara Terpadu, Anda lupa rumus yang berguna dari anggota ke-n dari perkembangan aritmatika. Sesuatu muncul dalam pikiran, tetapi entah bagaimana tidak pasti ... Apakah n di sana, atau n+1, atau t-1... Bagaimana menjadi!?

Tenang! Rumus ini mudah diturunkan. Tidak terlalu ketat, tapi pasti cukup untuk kepercayaan diri dan keputusan yang tepat!) Sebagai kesimpulan, cukup untuk mengingat arti dasar dari deret aritmatika dan memiliki beberapa menit waktu. Anda hanya perlu menggambar. Untuk kejelasan.

Kami menggambar sumbu numerik dan menandai yang pertama di atasnya. kedua, ketiga, dst. anggota. Dan perhatikan perbedaannya d antar anggota. Seperti ini:

Kami melihat gambar dan berpikir: apa yang sama dengan istilah kedua? Kedua satu d:

sebuah 2 = a 1 + 1 d

Apa istilah ketiga? Ketiga suku sama dengan suku pertama ditambah dua d.

sebuah 3 = a 1 + 2 d

Apakah kamu mendapatkannya? Saya tidak menempatkan beberapa kata dalam huruf tebal untuk apa-apa. Oke, satu langkah lagi.)

Apa istilah keempat? Keempat suku sama dengan suku pertama ditambah tiga d.

sebuah 4 = a 1 + 3 d

Saatnya menyadari bahwa jumlah kesenjangan, yaitu. d, selalu satu kurang dari jumlah anggota yang Anda cari n. Artinya, sampai nomor n, jumlah celah akan n-1. Jadi, rumusnya adalah (tidak ada opsi!):

a n = a 1 + (n-1)d

Secara umum, gambar visual sangat membantu dalam memecahkan banyak masalah dalam matematika. Jangan abaikan gambar. Tetapi jika sulit untuk menggambar, maka ... hanya rumus!) Selain itu, rumus suku ke-n memungkinkan Anda untuk menghubungkan seluruh gudang senjata matematika yang kuat ke solusi - persamaan, ketidaksetaraan, sistem, dll. Anda tidak dapat menempatkan gambar dalam persamaan ...

Tugas untuk keputusan independen.

Untuk pemanasan:

1. Dalam deret aritmatika (a n) a 2 =3; a 5 \u003d 5.1. Temukan 3 .

Petunjuk: sesuai dengan gambar, masalahnya diselesaikan dalam 20 detik ... Menurut rumus, ternyata lebih sulit. Tetapi untuk menguasai rumus, itu lebih berguna.) Dalam Bagian 555, masalah ini diselesaikan baik dengan gambar maupun dengan rumus. Rasakan perbedaan nya!)

Dan ini bukan lagi pemanasan.)

2. Dalam deret aritmatika (a n) a 85 \u003d 19.1; a 236 =49, 3. Carilah 3 .

Apa, keengganan untuk menggambar?) Masih! Lebih enak di rumus ya...

3. Deret aritmatika diberikan oleh kondisi:a 1 \u003d -5,5; a n+1 = a n +0,5. Temukan suku keseratus dua puluh lima dari deret ini.

Dalam tugas ini, perkembangan diberikan secara berulang. Tapi menghitung sampai suku ke seratus dua puluh lima... Tidak semua orang bisa melakukan hal seperti itu.) Tapi rumus suku ke-n ada dalam kekuatan semua orang!

4. Diberikan barisan aritmatika (a n):

-148; -143,8; -139,6; -135,4, .....

Tentukan jumlah suku positif terkecil dari deret tersebut.

5. Sesuai dengan kondisi tugas 4, temukan jumlah anggota positif terkecil dan negatif terbesar dari perkembangan.

6. Hasil kali suku kelima dan kedua belas dari suatu deret aritmatika meningkat adalah -2,5, dan jumlah suku ketiga dan kesebelas adalah nol. Temukan 14 .

Bukan tugas termudah, ya ...) Di sini metode "di jari" tidak akan berfungsi. Anda harus menulis rumus dan menyelesaikan persamaan.

Jawaban (berantakan):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Telah terjadi? Itu bagus!)

Tidak semuanya berhasil? Itu terjadi. Omong-omong, dalam tugas terakhir ada satu poin halus. Perhatian saat membaca masalah akan diperlukan. Dan logika.

Solusi untuk semua masalah ini dibahas secara rinci di Bagian 555. Dan elemen fantasi untuk keempat, dan momen halus untuk keenam, dan pendekatan umum untuk memecahkan masalah apa pun untuk rumus suku ke-n - semuanya dilukis. Menyarankan.

Jika Anda menyukai situs ini...

Omong-omong, saya punya beberapa situs yang lebih menarik untuk Anda.)

Anda dapat berlatih memecahkan contoh dan mengetahui level Anda. Pengujian dengan verifikasi instan. Belajar - dengan penuh minat!)

Anda bisa berkenalan dengan fungsi dan turunannya.