ការពឹងផ្អែកនៃស៊ីនុសលើកូស៊ីនុស។ លក្ខណៈសម្បត្តិនៃស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់នៃមុំមួយ។

សាខាមួយនៃគណិតវិទ្យាដែលសិស្សសាលាប្រឈមមុខនឹងការលំបាកខ្លាំងបំផុតគឺត្រីកោណមាត្រ។ គ្មានឆ្ងល់ទេ៖ ដើម្បីស្ទាត់ជំនាញផ្នែកនេះដោយសេរី អ្នកត្រូវការការគិតតាមលំហ សមត្ថភាពក្នុងការស្វែងរកស៊ីនុស កូស៊ីនុស តង់សង់ កូតង់សង់ដោយប្រើរូបមន្ត សម្រួលកន្សោម និងអាចប្រើលេខ pi ក្នុងការគណនា។ លើសពីនេះ អ្នកត្រូវអាចអនុវត្តត្រីកោណមាត្រនៅពេលធ្វើការបញ្ជាក់ទ្រឹស្តីបទ ហើយនេះទាមទារទាំងការចងចាំគណិតវិទ្យាដែលបានអភិវឌ្ឍ ឬសមត្ថភាពក្នុងការកាត់បន្ថយខ្សែសង្វាក់តក្កវិជ្ជាស្មុគស្មាញ។

ប្រភពដើមនៃត្រីកោណមាត្រ

ការស្គាល់វិទ្យាសាស្រ្តនេះគួរតែចាប់ផ្តើមជាមួយនឹងនិយមន័យនៃស៊ីនុស កូស៊ីនុស និងតង់សង់នៃមុំ ប៉ុន្តែដំបូងអ្នកត្រូវស្វែងយល់ថាតើត្រីកោណមាត្រធ្វើអ្វីជាទូទៅ។

តាមប្រវត្តិសាស្ត្រ ត្រីកោណកែងគឺជាវត្ថុសំខាន់នៃការសិក្សានៅក្នុងផ្នែកនៃវិទ្យាសាស្ត្រគណិតវិទ្យានេះ។ វត្តមាននៃមុំ 90 ដឺក្រេធ្វើឱ្យវាអាចអនុវត្តប្រតិបត្តិការផ្សេងៗដែលអនុញ្ញាតឱ្យមនុស្សម្នាក់កំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រទាំងអស់នៃតួលេខដែលកំពុងពិចារណាដោយប្រើជ្រុងពីរនិងមុំមួយឬមុំពីរនិងម្ខាង។ កាលពីមុន មនុស្សបានកត់សម្គាល់គំរូនេះហើយចាប់ផ្តើមប្រើប្រាស់វាយ៉ាងសកម្មក្នុងការសាងសង់អគារ ការធ្វើនាវាចរណ៍ តារាសាស្ត្រ និងសូម្បីតែសិល្បៈ។

ដំណាក់កាលដំបូង

ដំបូងឡើយ មនុស្សបាននិយាយអំពីទំនាក់ទំនងនៃមុំ និងជ្រុងទាំងស្រុងលើឧទាហរណ៍នៃត្រីកោណកែង។ បន្ទាប់មករូបមន្តពិសេសត្រូវបានគេរកឃើញដែលធ្វើឱ្យវាអាចពង្រីកព្រំដែននៃការប្រើប្រាស់នៅក្នុងជីវិតប្រចាំថ្ងៃនៃផ្នែកនៃគណិតវិទ្យានេះ។

ការសិក្សាអំពីត្រីកោណមាត្រនៅសាលាថ្ងៃនេះចាប់ផ្តើមដោយត្រីកោណមុំខាងស្តាំ បន្ទាប់មកចំណេះដឹងដែលទទួលបានត្រូវបានប្រើប្រាស់ដោយសិស្សផ្នែករូបវិទ្យា និងការដោះស្រាយសមីការត្រីកោណមាត្រអរូបី ការងារដែលចាប់ផ្តើមនៅវិទ្យាល័យ។

ត្រីកោណមាត្រស្វ៊ែរ

ក្រោយមក នៅពេលដែលវិទ្យាសាស្ត្រឈានដល់កម្រិតបន្ទាប់នៃការអភិវឌ្ឍន៍ រូបមន្តដែលមានស៊ីនុស កូស៊ីនុស តង់សង់ កូតង់សង់ បានចាប់ផ្តើមប្រើក្នុងធរណីមាត្រស្វ៊ែរ ដែលច្បាប់ផ្សេងៗត្រូវបានអនុវត្ត ហើយផលបូកនៃមុំក្នុងត្រីកោណតែងតែលើសពី 180 ដឺក្រេ។ ផ្នែកនេះមិនត្រូវបានសិក្សានៅសាលាទេ ប៉ុន្តែចាំបាច់ត្រូវដឹងអំពីអត្ថិភាពរបស់វា យ៉ាងហោចណាស់ដោយសារតែផ្ទៃផែនដី និងផ្ទៃនៃភពផ្សេងទៀតគឺប៉ោង ដែលមានន័យថាការសម្គាល់ផ្ទៃណាមួយនឹងមានរាងដូចធ្នូ។ លំហបីវិមាត្រ។

យកពិភពលោកនិងខ្សែស្រឡាយ។ ភ្ជាប់ខ្សែស្រឡាយទៅនឹងចំណុចពីរណាមួយនៅលើផែនដីដើម្បីឱ្យវាតឹង។ យកចិត្តទុកដាក់ - វាទទួលបានរូបរាងនៃធ្នូ។ វាគឺជាមួយនឹងទម្រង់បែបនោះ ដែលធរណីមាត្រស្វ៊ែរ ដែលត្រូវបានប្រើនៅក្នុង geodesy តារាសាស្ត្រ និងទ្រឹស្ដី និងវាលអនុវត្តផ្សេងទៀត ដោះស្រាយ។

ត្រីកោណកែង

ដោយបានសិក្សាបន្តិចអំពីវិធីនៃការប្រើប្រាស់ត្រីកោណមាត្រ យើងត្រលប់ទៅត្រីកោណមាត្រមូលដ្ឋានវិញ ដើម្បីស្វែងយល់បន្ថែមថាតើស៊ីនុស កូស៊ីនុស តង់សង់ជាអ្វី ការគណនាអ្វីខ្លះដែលអាចត្រូវបានអនុវត្តដោយប្រើជំនួយរបស់ពួកគេ និងរូបមន្តអ្វីខ្លះដែលត្រូវប្រើ។

ជំហានដំបូងគឺស្វែងយល់ពីគោលគំនិតដែលទាក់ទងនឹងត្រីកោណកែង។ ទីមួយអ៊ីប៉ូតេនុសគឺជាផ្នែកម្ខាងទល់មុខមុំ 90 ដឺក្រេ។ នាងគឺវែងបំផុត។ យើងចាំបានថា យោងទៅតាមទ្រឹស្តីបទពីថាហ្គ័រ តម្លៃលេខរបស់វាគឺស្មើនឹងឫសនៃផលបូកនៃការ៉េនៃភាគីទាំងពីរផ្សេងទៀត។

ឧទាហរណ៍ ប្រសិនបើភាគីទាំងពីរមាន 3 និង 4 សង់ទីម៉ែត្ររៀងគ្នានោះ ប្រវែងនៃអ៊ីប៉ូតេនុសនឹងមាន 5 សង់ទីម៉ែត្រ។ ដោយវិធីនេះជនជាតិអេស៊ីបបុរាណបានដឹងអំពីរឿងនេះប្រហែលបួនពាន់កន្លះឆ្នាំមុន។

ជ្រុងពីរដែលនៅសេសសល់ដែលបង្កើតជាមុំខាងស្តាំត្រូវបានគេហៅថាជើង។ លើសពីនេះទៀតយើងត្រូវចងចាំថាផលបូកនៃមុំនៅក្នុងត្រីកោណនៅក្នុងប្រព័ន្ធកូអរដោនេចតុកោណគឺ 180 ដឺក្រេ។

និយមន័យ

ជាចុងក្រោយ ជាមួយនឹងការយល់ដឹងដ៏រឹងមាំនៃមូលដ្ឋានធរណីមាត្រ យើងអាចងាកទៅរកនិយមន័យនៃស៊ីនុស កូស៊ីនុស និងតង់សង់នៃមុំមួយ។

ស៊ីនុស​នៃ​មុំ​មួយ​គឺ​ជា​សមាមាត្រ​នៃ​ជើង​ទល់​មុខ (ឧ. ចំហៀង​ទល់​មុខ​មុំ​ដែល​ចង់​បាន) ទៅ​អ៊ីប៉ូតេនុស។ កូស៊ីនុសនៃមុំមួយ គឺជាសមាមាត្រនៃជើងដែលនៅជាប់នឹងអ៊ីប៉ូតេនុស។

សូមចាំថា ស៊ីនុស និងកូស៊ីនុស មិនអាចធំជាងមួយបានទេ! ហេតុអ្វី? ដោយសារអ៊ីប៉ូតេនុសតាមលំនាំដើមគឺវែងជាងគេ។ មិនថាជើងវែងប៉ុណ្ណាទេ វានឹងខ្លីជាងអ៊ីប៉ូតេនុស ដែលមានន័យថាសមាមាត្ររបស់ពួកគេនឹងតែងតែតិចជាងមួយ។ ដូច្នេះ ប្រសិនបើអ្នកទទួលបានស៊ីនុស ឬកូស៊ីនុសដែលមានតម្លៃធំជាង 1 ក្នុងចម្លើយចំពោះបញ្ហា សូមរកមើលកំហុសក្នុងការគណនា ឬការវែកញែក។ ចម្លើយ​នេះ​ច្បាស់​ជា​ខុស។

ទីបំផុតតង់សង់នៃមុំគឺជាសមាមាត្រនៃជ្រុងម្ខាងទៅម្ខាងដែលនៅជាប់គ្នា។ លទ្ធផលដូចគ្នានឹងផ្តល់ឱ្យការបែងចែកស៊ីនុសដោយកូស៊ីនុស។ មើល៖ ស្របតាមរូបមន្ត យើងបែងចែកប្រវែងចំហៀងដោយអ៊ីប៉ូតេនុស បន្ទាប់មកយើងចែកនឹងប្រវែងនៃចំហៀងទីពីរ ហើយគុណនឹងអ៊ីប៉ូតេនុស។ ដូច្នេះ យើងទទួលបានសមាមាត្រដូចគ្នានឹងនិយមន័យនៃតង់សង់។

កូតង់សង់រៀងគ្នាគឺជាសមាមាត្រនៃផ្នែកដែលនៅជាប់នឹងជ្រុងទៅម្ខាង។ យើងទទួលបានលទ្ធផលដូចគ្នាដោយបែងចែកឯកតាដោយតង់សង់។

ដូច្នេះ យើងបានពិចារណានិយមន័យនៃស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់ ហើយយើងអាចដោះស្រាយជាមួយរូបមន្ត។

រូបមន្តសាមញ្ញបំផុត។

នៅក្នុងត្រីកោណមាត្រ គេមិនអាចធ្វើដោយគ្មានរូបមន្តបានទេ - របៀបស្វែងរកស៊ីនុស កូស៊ីនុស តង់សង់ កូតង់សង់ដោយគ្មានពួកវា? ហើយនេះគឺពិតជាអ្វីដែលត្រូវបានទាមទារនៅពេលដោះស្រាយបញ្ហា។

រូបមន្តដំបូងដែលអ្នកត្រូវដឹងនៅពេលចាប់ផ្តើមសិក្សាត្រីកោណមាត្រនិយាយថាផលបូកនៃការ៉េនៃស៊ីនុស និងកូស៊ីនុសនៃមុំគឺស្មើនឹងមួយ។ រូបមន្តនេះគឺជាផលវិបាកផ្ទាល់នៃទ្រឹស្តីបទពីថាហ្គោរ ប៉ុន្តែវាចំណេញពេលវេលា ប្រសិនបើអ្នកចង់ដឹងពីតម្លៃនៃមុំ មិនមែនចំហៀងទេ។

សិស្សជាច្រើនមិនអាចចាំរូបមន្តទីពីរដែលមានប្រជាប្រិយភាពខ្លាំងផងដែរនៅពេលដោះស្រាយបញ្ហាសាលា៖ ផលបូកនៃមួយ និងការ៉េនៃតង់សង់នៃមុំគឺស្មើនឹងមួយចែកនឹងការ៉េនៃកូស៊ីនុសនៃមុំ។ សូមក្រឡេកមើលឱ្យដិតដល់៖ បន្ទាប់ពីទាំងអស់ នេះគឺជាសេចក្តីថ្លែងការណ៍ដូចគ្នានឹងនៅក្នុងរូបមន្តដំបូងដែរ មានតែភាគីទាំងពីរនៃអត្តសញ្ញាណប៉ុណ្ណោះត្រូវបានបែងចែកដោយការ៉េនៃកូស៊ីនុស។ វាប្រែថាប្រតិបត្តិការគណិតវិទ្យាសាមញ្ញធ្វើឱ្យរូបមន្តត្រីកោណមាត្រមិនអាចស្គាល់បានទាំងស្រុង។ ចងចាំ៖ ដោយដឹងថាស៊ីនុស កូស៊ីនុស តង់ហ្សង់ និងកូតង់សង់ជាអ្វី ច្បាប់បំប្លែង និងរូបមន្តមូលដ្ឋានមួយចំនួន អ្នកអាចទាញយករូបមន្តស្មុគ្រស្មាញបន្ថែមទៀតដែលត្រូវការនៅលើសន្លឹកក្រដាសនៅពេលណាក៏បានដោយឯករាជ្យ។

រូបមន្តមុំទ្វេ និងការបន្ថែមអាគុយម៉ង់

រូបមន្តពីរទៀតដែលអ្នកត្រូវរៀនគឺទាក់ទងទៅនឹងតម្លៃនៃស៊ីនុស និងកូស៊ីនុស សម្រាប់ផលបូក និងភាពខុសគ្នានៃមុំ។ ពួកគេត្រូវបានបង្ហាញនៅក្នុងរូបភាពខាងក្រោម។ សូមចំណាំថា នៅក្នុងករណីទីមួយ ស៊ីនុស និងកូស៊ីនុសត្រូវបានគុណទាំងពីរដង ហើយនៅក្នុងទីពីរ ផលិតផលជាគូនៃស៊ីនុស និងកូស៊ីនុសត្រូវបានបន្ថែម។

វាក៏មានរូបមន្តដែលភ្ជាប់ជាមួយអាគុយម៉ង់មុំទ្វេផងដែរ។ ពួកវាត្រូវបានចេញទាំងស្រុងពីវត្ថុមុនៗ - ជាការអនុវត្ត ព្យាយាមយកវាដោយខ្លួនឯង ដោយយកមុំអាល់ហ្វាស្មើនឹងមុំបេតា។

ជាចុងក្រោយ សូមចំណាំថារូបមន្តមុំទ្វេអាចត្រូវបានបំប្លែងទៅជាកម្រិតស៊ីនុស កូស៊ីនុស តង់ហ្សង់អាល់ហ្វា។

ទ្រឹស្តីបទ

ទ្រឹស្តីបទសំខាន់ពីរនៅក្នុងត្រីកោណមាត្រមូលដ្ឋានគឺទ្រឹស្តីបទស៊ីនុស និងទ្រឹស្តីបទកូស៊ីនុស។ ដោយមានជំនួយពីទ្រឹស្ដីទាំងនេះ អ្នកអាចយល់បានយ៉ាងងាយស្រួលពីរបៀបស្វែងរកស៊ីនុស កូស៊ីនុស និងតង់សង់ ហើយដូច្នេះផ្ទៃនៃតួរលេខ និងទំហំនៃផ្នែកនីមួយៗ។ល។

ទ្រឹស្តីបទស៊ីនុសចែងថា ជាលទ្ធផលនៃការបែងចែកប្រវែងនៃជ្រុងនីមួយៗនៃត្រីកោណដោយតម្លៃនៃមុំផ្ទុយ យើងទទួលបានលេខដូចគ្នា។ ជាងនេះទៅទៀត លេខនេះនឹងស្មើនឹងពីរកាំនៃរង្វង់មូល ពោលគឺរង្វង់ដែលមានចំណុចទាំងអស់នៃត្រីកោណដែលបានផ្តល់ឱ្យ។

ទ្រឹស្ដី​កូស៊ីនុស​ធ្វើ​ជា​ទូទៅ​ទ្រឹស្តីបទ​ពីតាហ្គោរ ដោយ​បញ្ចាំង​វា​ទៅ​លើ​ត្រីកោណ​ណាមួយ។ វាប្រែថាពីផលបូកនៃការ៉េនៃភាគីទាំងពីរដកផលិតផលរបស់ពួកគេគុណនឹងកូស៊ីនុសទ្វេនៃមុំដែលនៅជាប់នឹងពួកគេ - តម្លៃលទ្ធផលនឹងស្មើនឹងការ៉េនៃជ្រុងទីបី។ ដូច្នេះ ទ្រឹស្តីបទពីថាហ្គោរ ប្រែថាជាករណីពិសេសនៃទ្រឹស្តីបទកូស៊ីនុស។

កំហុសដោយសារតែការមិនយកចិត្តទុកដាក់

សូម្បីតែដឹងថាស៊ីនុស កូស៊ីនុស និងតង់សង់ជាអ្វីក៏ដោយ ក៏វាងាយស្រួលក្នុងការធ្វើខុស ដោយសារការខ្វះស្មារតី ឬកំហុសក្នុងការគណនាសាមញ្ញបំផុត។ ដើម្បីជៀសវាងកំហុសឆ្គងបែបនេះសូមឱ្យយើងស្គាល់អ្នកដែលពេញនិយមបំផុត។

ដំបូង អ្នកមិនគួរបំប្លែងប្រភាគធម្មតាទៅជាទសភាគទេ រហូតដល់លទ្ធផលចុងក្រោយត្រូវបានទទួល - អ្នកអាចទុកចំលើយជាប្រភាគធម្មតាបាន លុះត្រាតែលក្ខខណ្ឌចែងផ្សេងពីនេះ។ ការផ្លាស់ប្តូរបែបនេះមិនអាចត្រូវបានគេហៅថាជាកំហុសនោះទេ ប៉ុន្តែវាគួរតែត្រូវបានចងចាំថានៅដំណាក់កាលនីមួយៗនៃបញ្ហា ឫសគល់ថ្មីអាចលេចឡើង ដែលយោងទៅតាមគំនិតរបស់អ្នកនិពន្ធគួរតែត្រូវបានកាត់បន្ថយ។ ក្នុងករណីនេះអ្នកនឹងខ្ជះខ្ជាយពេលវេលាលើប្រតិបត្តិការគណិតវិទ្យាដែលមិនចាំបាច់។ នេះជាការពិតជាពិសេសសម្រាប់តម្លៃដូចជាឫសនៃបីឬពីរព្រោះវាកើតឡើងនៅក្នុងភារកិច្ចនៅគ្រប់ជំហាន។ ដូចគ្នានេះដែរអនុវត្តចំពោះការបង្គត់លេខ "អាក្រក់" ។

លើសពីនេះ សូមចំណាំថា ទ្រឹស្តីបទកូស៊ីនុសអនុវត្តចំពោះត្រីកោណណាមួយ ប៉ុន្តែមិនមែនទ្រឹស្តីបទពីថាហ្គោរៀនទេ! ប្រសិនបើអ្នកភ្លេចដកពីរដងនៃផលគុណនៃជ្រុងគុណនឹងកូស៊ីនុសនៃមុំរវាងពួកវា នោះអ្នកនឹងមិនត្រឹមតែទទួលបានលទ្ធផលខុសទាំងស្រុងប៉ុណ្ណោះទេ ប៉ុន្តែថែមទាំងបង្ហាញពីការយល់ខុសទាំងស្រុងនៃប្រធានបទផងដែរ។ នេះគឺអាក្រក់ជាងកំហុសដែលមិនយកចិត្តទុកដាក់។

ទីបី កុំច្រឡំតម្លៃសម្រាប់មុំ 30 និង 60 ដឺក្រេសម្រាប់ស៊ីនុស កូស៊ីនុស តង់ហ្សង់ កូតង់សង់។ ចងចាំតម្លៃទាំងនេះ ពីព្រោះស៊ីនុសនៃ 30 ដឺក្រេគឺស្មើនឹងកូស៊ីនុសនៃ 60 ហើយច្រាសមកវិញ។ វាងាយស្រួលក្នុងការលាយបញ្ចូលគ្នា ជាលទ្ធផលដែលអ្នកនឹងទទួលបានលទ្ធផលខុសដោយជៀសមិនរួច។

ការដាក់ពាក្យ

សិស្សជាច្រើនមិនប្រញាប់ប្រញាល់ចាប់ផ្តើមសិក្សាត្រីកោណមាត្រទេ ព្រោះពួកគេមិនយល់ពីអត្ថន័យដែលបានអនុវត្តរបស់វា។ តើស៊ីនុស កូស៊ីនុស តង់សង់សម្រាប់វិស្វករ ឬតារាវិទូគឺជាអ្វី? ទាំងនេះគឺជាគំនិតអរគុណដែលអ្នកអាចគណនាចម្ងាយទៅផ្កាយឆ្ងាយ ទស្សន៍ទាយការធ្លាក់នៃអាចម៍ផ្កាយ បញ្ជូនការស៊ើបអង្កេតទៅភពផ្សេង។ បើគ្មានពួកគេទេ វាមិនអាចទៅរួចទេក្នុងការសាងសង់អាគារ រចនាឡាន គណនាបន្ទុកលើផ្ទៃ ឬគន្លងរបស់វត្ថុ។ ហើយទាំងនេះគ្រាន់តែជាឧទាហរណ៍ជាក់ស្តែងបំផុត! យ៉ាងណាមិញ ត្រីកោណមាត្រ​ក្នុង​ទម្រង់​មួយ​ឬ​មួយ​ផ្សេង​ទៀត​ត្រូវ​បាន​ប្រើ​នៅ​គ្រប់​ទីកន្លែង ចាប់ពី​តន្ត្រី​ដល់​ថ្នាំ។

ទីបំផុត

ដូច្នេះអ្នកគឺជាស៊ីនុស កូស៊ីនុស តង់សង់។ អ្នកអាចប្រើពួកវាក្នុងការគណនា និងដោះស្រាយបញ្ហាសាលាដោយជោគជ័យ។

ខ្លឹមសារទាំងមូលនៃត្រីកោណមាត្រពុះកញ្ជ្រោលទៅការពិតដែលថាប៉ារ៉ាម៉ែត្រមិនស្គាល់ត្រូវតែត្រូវបានគណនាពីប៉ារ៉ាម៉ែត្រដែលគេស្គាល់នៃត្រីកោណ។ មានប៉ារ៉ាម៉ែត្រសរុបចំនួនប្រាំមួយ: ប្រវែងនៃជ្រុងបីនិងទំហំនៃមុំបី។ ភាពខុសគ្នាទាំងស្រុងនៅក្នុងកិច្ចការគឺស្ថិតនៅក្នុងការពិតដែលថាទិន្នន័យបញ្ចូលផ្សេងៗគ្នាត្រូវបានផ្តល់ឱ្យ។

របៀបស្វែងរកស៊ីនុស កូស៊ីនុស តង់សង់ដោយផ្អែកលើប្រវែងជើង ឬអ៊ីប៉ូតេនុស អ្នកដឹងហើយឥឡូវនេះ។ ដោយសារពាក្យទាំងនេះមានន័យថាគ្មានអ្វីលើសពីសមាមាត្រទេ ហើយសមាមាត្រគឺជាប្រភាគ គោលដៅសំខាន់នៃបញ្ហាត្រីកោណមាត្រគឺស្វែងរកឫសគល់នៃសមីការធម្មតា ឬប្រព័ន្ធសមីការ។ ហើយនៅទីនេះអ្នកនឹងត្រូវបានជួយដោយគណិតវិទ្យាសាលាធម្មតា។

ត្រីកោណមាត្រ​គឺជា​ផ្នែក​មួយ​នៃ​គណិតវិទ្យា​ដែល​សិក្សា​ពី​អនុគមន៍​ត្រីកោណមាត្រ​ និង​ការ​ប្រើប្រាស់​វា​ក្នុង​ធរណីមាត្រ។ ការអភិវឌ្ឍនៃត្រីកោណមាត្របានចាប់ផ្តើមនៅក្នុងសម័យនៃប្រទេសក្រិកបុរាណ។ ក្នុងអំឡុងយុគសម័យកណ្តាល អ្នកវិទ្យាសាស្ត្រមកពីមជ្ឈិមបូព៌ា និងឥណ្ឌាបានចូលរួមចំណែកយ៉ាងសំខាន់ក្នុងការអភិវឌ្ឍន៍វិទ្យាសាស្ត្រនេះ។

អត្ថបទនេះត្រូវបានឧទ្ទិសដល់គោលគំនិតជាមូលដ្ឋាន និងនិយមន័យនៃត្រីកោណមាត្រ។ វាពិភាក្សាអំពីនិយមន័យនៃអនុគមន៍ត្រីកោណមាត្រសំខាន់ៗ៖ ស៊ីនុស កូស៊ីនុស តង់ហ្សង់ និងកូតង់សង់។ អត្ថន័យរបស់ពួកគេនៅក្នុងបរិបទនៃធរណីមាត្រត្រូវបានពន្យល់និងបង្ហាញ។

Yandex.RTB R-A-339285-1

ដំបូង និយមន័យនៃអនុគមន៍ត្រីកោណមាត្រ ដែលអាគុយម៉ង់ជាមុំត្រូវបានបង្ហាញតាមរយៈសមាមាត្រនៃជ្រុងនៃត្រីកោណកែងមួយ។

និយមន័យនៃអនុគមន៍ត្រីកោណមាត្រ

ស៊ីនុសនៃមុំមួយ (sin α) គឺជាសមាមាត្រនៃជើងទល់មុខមុំនេះទៅនឹងអ៊ីប៉ូតេនុស។

កូស៊ីនុសនៃមុំ (cos α) គឺជាសមាមាត្រនៃជើងដែលនៅជាប់នឹងអ៊ីប៉ូតេនុស។

តង់សង់នៃមុំ (t g α) គឺជាសមាមាត្រនៃជើងទល់មុខទៅម្ខាង។

កូតង់សង់នៃមុំ (c t g α) គឺជាសមាមាត្រនៃជើងដែលនៅជាប់នឹងម្ខាង។

និយមន័យទាំងនេះត្រូវបានផ្តល់សម្រាប់មុំស្រួចនៃត្រីកោណកែង!

ចូរយើងផ្តល់ជាឧទាហរណ៍មួយ។

នៅក្នុងត្រីកោណ ABC ដែលមានមុំខាងស្តាំ C ស៊ីនុសនៃមុំ A គឺស្មើនឹងសមាមាត្រនៃជើង BC ទៅអ៊ីប៉ូតេនុស AB ។

និយមន័យនៃស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់ ធ្វើឱ្យវាអាចគណនាតម្លៃនៃមុខងារទាំងនេះពីប្រវែងដែលគេស្គាល់នៃជ្រុងនៃត្រីកោណមួយ។

សំខាន់ត្រូវចាំ!

ជួរនៃតម្លៃស៊ីនុស និងកូស៊ីនុស៖ ពី -1 ដល់ 1។ ម្យ៉ាងវិញទៀត ស៊ីនុស និងកូស៊ីនុសយកតម្លៃពី -1 ដល់ 1។ ជួរនៃតម្លៃតង់ហ្សង់ និងកូតង់សង់ គឺជាបន្ទាត់លេខទាំងមូល ពោលគឺទាំងនេះ មុខងារអាចយកតម្លៃណាមួយ។

និយមន័យដែលបានផ្តល់ឱ្យខាងលើសំដៅទៅលើមុំស្រួចស្រាវ។ នៅក្នុងត្រីកោណមាត្រ គោលគំនិតនៃមុំបង្វិលត្រូវបានណែនាំ តម្លៃដែលខុសពីមុំស្រួច គឺមិនត្រូវបានកំណត់ដោយស៊ុមពី 0 ទៅ 90 ដឺក្រេទេ។ មុំបង្វិលគិតជាដឺក្រេ ឬរ៉ាដ្យង់ត្រូវបានបង្ហាញដោយចំនួនពិតណាមួយពី - ∞ ទៅ + ∞ ។

ក្នុងបរិបទនេះ គេអាចកំណត់ស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់នៃមុំនៃរ៉ិចទ័រតាមអំពើចិត្ត។ ស្រមៃមើលរង្វង់ឯកតាដែលផ្តោតលើប្រភពដើមនៃប្រព័ន្ធកូអរដោនេ Cartesian ។

ចំណុចចាប់ផ្តើម A ដែលមានកូអរដោណេ (1 , 0) បង្វិលជុំវិញចំណុចកណ្តាលនៃរង្វង់ឯកតាដោយមុំ α ហើយទៅចំណុច A 1 ។ និយមន័យត្រូវបានផ្តល់តាមរយៈកូអរដោនេនៃចំនុច A 1 (x, y) ។

ស៊ីនុស (អំពើបាប) នៃមុំបង្វិល

ស៊ីនុស​នៃ​មុំ​បង្វិល α គឺ​ជា​លំដាប់​នៃ​ចំណុច A 1 (x, y) ។ sinα = y

កូស៊ីនុស (cos) នៃមុំបង្វិល

កូស៊ីនុសនៃមុំបង្វិល α គឺជា abscissa នៃចំនុច A 1 (x, y) ។ cos α = x

តង់សង់ (tg) នៃមុំបង្វិល

តង់សង់នៃមុំបង្វិល α គឺជាសមាមាត្រនៃការចាត់តាំងនៃចំណុច A 1 (x, y) ទៅ abscissa របស់វា។ t g α = y x

កូតង់សង់ (ctg) នៃមុំបង្វិល

កូតង់សង់នៃមុំបង្វិល α គឺជាសមាមាត្រនៃ abscissa នៃចំណុច A 1 (x, y) ទៅនឹងការចាត់តាំងរបស់វា។ c t g α = x y

ស៊ីនុស និងកូស៊ីនុស ត្រូវបានកំណត់សម្រាប់មុំនៃការបង្វិលណាមួយ។ នេះគឺជាឡូជីខលពីព្រោះ abscissa និង ordinate នៃចំណុចបន្ទាប់ពីការបង្វិលអាចត្រូវបានកំណត់នៅមុំណាមួយ។ ស្ថានភាពគឺខុសគ្នាជាមួយតង់សង់ និងកូតង់សង់។ តង់សង់​មិន​ត្រូវ​បាន​កំណត់​នៅ​ពេល​ដែល​ចំណុច​បន្ទាប់​ពី​ការ​បង្វិល​ទៅ​កាន់​ចំណុច​សូន្យ abscissa (0 , 1) និង (0 , - 1) ។ ក្នុងករណីបែបនេះ កន្សោមសម្រាប់តង់សង់ t g α = y x មិនសមហេតុផលទេព្រោះវាមានការបែងចែកដោយសូន្យ។ ស្ថានភាពគឺស្រដៀងគ្នាជាមួយកូតង់សង់។ ភាពខុសប្លែកគ្នានោះគឺថា កូតង់សង់មិនត្រូវបានកំណត់ក្នុងករណីដែលការចាត់តាំងនៃចំណុចបាត់។

សំខាន់ត្រូវចាំ!

ស៊ីនុស និងកូស៊ីនុស ត្រូវបានកំណត់សម្រាប់មុំណាមួយ α ។

តង់សង់ត្រូវបានកំណត់សម្រាប់គ្រប់មុំ លើកលែងតែ α = 90° + 180° k, k ∈ Z (α = π 2 + π k , k ∈ Z)

កូតង់សង់ត្រូវបានកំណត់សម្រាប់គ្រប់មុំ លើកលែងតែ α = 180° k, k ∈ Z (α = π k, k ∈ Z)

នៅពេលដោះស្រាយឧទាហរណ៍ជាក់ស្តែងកុំនិយាយថា "ស៊ីនុសនៃមុំបង្វិលα" ។ ពាក្យ "មុំនៃការបង្វិល" ត្រូវបានលុបចោលយ៉ាងសាមញ្ញ ដោយបញ្ជាក់ថា ពីបរិបទ វាគឺច្បាស់ណាស់នូវអ្វីដែលជាហានិភ័យ។

លេខ

ចុះ​និយមន័យ​ស៊ីនុស កូស៊ីនុស តង់សង់ និង​កូតង់សង់​នៃ​ចំនួន​មួយ ហើយ​មិន​មែន​ជា​មុំ​បង្វិល?

ស៊ីនុស កូស៊ីនុស តង់សង់ កូតង់សង់នៃចំនួនមួយ។

ស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់នៃចំនួនមួយ។ tលេខមួយត្រូវបានហៅ ដែលស្មើនឹងស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់ក្នុង tរ៉ាដ្យង់។

ឧទាហរណ៍ស៊ីនុសនៃ 10 πគឺស្មើនឹងស៊ីនុសនៃមុំបង្វិលនៃ 10 π rad ។

មានវិធីសាស្រ្តមួយផ្សេងទៀតចំពោះនិយមន័យនៃស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់នៃចំនួនមួយ។ ចូរយើងពិចារណាវាឱ្យកាន់តែលម្អិត។

លេខពិតណាមួយ។ tចំណុចមួយនៅលើរង្វង់ឯកតាត្រូវបានដាក់នៅក្នុងការឆ្លើយឆ្លងជាមួយចំណុចកណ្តាលនៅប្រភពដើមនៃប្រព័ន្ធកូអរដោនេ Cartesian ចតុកោណ។ ស៊ីនុស កូស៊ីនុស តង់សង់ និង​កូតង់សង់​ត្រូវ​បាន​កំណត់​ក្នុង​លក្ខខណ្ឌ​នៃ​កូអរដោនេ​នៃ​ចំណុច​នេះ។

ចំណុចចាប់ផ្តើមនៅលើរង្វង់គឺចំណុច A ដែលមានកូអរដោនេ (1 , 0) ។

លេខវិជ្ជមាន t

លេខអវិជ្ជមាន tត្រូវ​នឹង​ចំណុច​ដែល​ចំណុច​ចាប់​ផ្តើម​នឹង​ផ្លាស់ទី ប្រសិន​បើ​វា​រំកិល​ច្រាស​ទ្រនិច​នាឡិកា​ជុំវិញ​រង្វង់ ហើយ​ឆ្លងកាត់​ផ្លូវ t ។

ឥឡូវនេះការតភ្ជាប់រវាងលេខ និងចំណុចនៅលើរង្វង់ត្រូវបានបង្កើតឡើង យើងបន្តទៅនិយមន័យនៃស៊ីនុស កូស៊ីនុស តង់ហ្សង់ និងកូតង់សង់។

Sine (អំពើបាប) នៃលេខ t

ស៊ីនុសនៃចំនួនមួយ។ t- តម្រៀបចំនុចនៃរង្វង់ឯកតាដែលត្រូវនឹងលេខ t. sin t = y

កូស៊ីនុស (cos) នៃ t

កូស៊ីនុសនៃចំនួនមួយ។ t- abscissa នៃចំណុចនៃរង្វង់ឯកតាដែលត្រូវគ្នានឹងលេខ t. cos t = x

តង់សង់ (tg) នៃ t

តង់សង់នៃលេខមួយ។ t- សមាមាត្រនៃការចាត់តាំងទៅ abscissa នៃចំណុចនៃរង្វង់ឯកតាដែលត្រូវគ្នាទៅនឹងលេខ t. t g t = y x = sin t cos t

និយមន័យចុងក្រោយគឺស្របនឹង និងមិនផ្ទុយនឹងនិយមន័យដែលបានផ្តល់ឱ្យនៅដើមផ្នែកនេះទេ។ ចង្អុលលើរង្វង់ដែលត្រូវនឹងលេខ t, ស្របពេលជាមួយនឹងចំណុចដែលចំណុចចាប់ផ្តើមឆ្លងកាត់បន្ទាប់ពីបត់តាមមុំ tរ៉ាដ្យង់។

អនុគមន៍ត្រីកោណមាត្រនៃអាគុយម៉ង់មុំ និងលេខ

តម្លៃនីមួយៗនៃមុំ α ត្រូវគ្នាទៅនឹងតម្លៃជាក់លាក់នៃស៊ីនុស និងកូស៊ីនុសនៃមុំនេះ។ ដូចមុំទាំងអស់ α ក្រៅពី α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) ត្រូវគ្នាទៅនឹងតម្លៃជាក់លាក់នៃតង់សង់។ កូតង់សង់ ដូចដែលបានរៀបរាប់ខាងលើ ត្រូវបានកំណត់សម្រាប់ α ទាំងអស់ លើកលែងតែ α = 180 ° k , k ∈ Z (α = π k , k ∈ Z ) ។

យើងអាចនិយាយបានថា sin α , cos α , t g α , c t g α គឺជាមុខងារនៃមុំអាល់ហ្វា ឬមុខងារនៃអាគុយម៉ង់មុំ។

ដូចគ្នានេះដែរ គេអាចនិយាយអំពីស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់ ជាមុខងារនៃអាគុយម៉ង់លេខ។ រាល់ចំនួនពិត tត្រូវគ្នាទៅនឹងតម្លៃជាក់លាក់នៃស៊ីនុស ឬកូស៊ីនុសនៃចំនួនមួយ។ t. លេខទាំងអស់ក្រៅពី π 2 + π · k , k ∈ Z ត្រូវគ្នាទៅនឹងតម្លៃនៃតង់សង់។ កូតង់សង់ត្រូវបានកំណត់ស្រដៀងគ្នាសម្រាប់លេខទាំងអស់ លើកលែងតែ π · k , k ∈ Z ។

មុខងារជាមូលដ្ឋាននៃត្រីកោណមាត្រ

ស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់ គឺជាអនុគមន៍ត្រីកោណមាត្រមូលដ្ឋាន។

ជាធម្មតាវាច្បាស់ពីបរិបទដែលអាគុយម៉ង់នៃអនុគមន៍ត្រីកោណមាត្រ (អាគុយម៉ង់ជ្រុង ឬអាគុយម៉ង់លេខ) ដែលយើងកំពុងដោះស្រាយ។

ចូរយើងត្រឡប់ទៅទិន្នន័យនៅដើមដំបូងនៃនិយមន័យ និងមុំអាល់ហ្វា ដែលស្ថិតនៅក្នុងចន្លោះពី 0 ទៅ 90 ដឺក្រេ។ និយមន័យត្រីកោណមាត្រនៃស៊ីនុស កូស៊ីនុស តង់សង់ និងកូតង់សង់គឺស្ថិតនៅក្នុងការព្រមព្រៀងពេញលេញជាមួយនឹងនិយមន័យធរណីមាត្រដែលបានផ្តល់ដោយសមាមាត្រនៃជ្រុងនៃត្រីកោណកែងមួយ។ សូមបង្ហាញវា។

យក​រង្វង់​ឯកតា​ដែល​ដាក់​កណ្តាល​លើ​ប្រព័ន្ធ​កូអរដោណេ​រាង​ចតុកោណ។ ចូរយើងបង្វិលចំណុចចាប់ផ្តើម A (1, 0) ដោយមុំរហូតដល់ 90 ដឺក្រេ ហើយគូរពីចំនុចលទ្ធផល A 1 (x, y) កាត់កែងទៅអ័ក្ស x ។ នៅក្នុងត្រីកោណកែងលទ្ធផលមុំ A 1 O H ស្មើនឹងមុំបង្វិល α ប្រវែងជើង O H គឺស្មើនឹង abscissa នៃចំនុច A 1 (x, y) ។ ប្រវែងនៃជើងទល់មុខជ្រុងគឺស្មើនឹងការចាត់តាំងនៃចំនុច A 1 (x, y) ហើយប្រវែងនៃអ៊ីប៉ូតេនុសគឺស្មើនឹងមួយ ព្រោះវាជាកាំនៃរង្វង់ឯកតា។

អនុលោមតាមនិយមន័យពីធរណីមាត្រ ស៊ីនុសនៃមុំ α គឺស្មើនឹងសមាមាត្រនៃជើងទល់មុខទៅនឹងអ៊ីប៉ូតេនុស។

sin α \u003d A 1 H O A 1 \u003d y 1 \u003d y

នេះមានន័យថានិយមន័យនៃស៊ីនុសនៃមុំស្រួចនៅក្នុងត្រីកោណខាងស្តាំតាមរយៈសមាមាត្រគឺស្មើនឹងនិយមន័យនៃស៊ីនុសនៃមុំបង្វិលα ដោយអាល់ហ្វាស្ថិតនៅចន្លោះពី 0 ទៅ 90 ដឺក្រេ។

ដូចគ្នានេះដែរ ការឆ្លើយឆ្លងនៃនិយមន័យអាចត្រូវបានបង្ហាញសម្រាប់កូស៊ីនុស តង់ហ្សង់ និងកូតង់សង់។

ប្រសិនបើអ្នកសម្គាល់ឃើញមានកំហុសនៅក្នុងអត្ថបទ សូមបន្លិចវា ហើយចុច Ctrl+Enter

1. អនុគមន៍ត្រីកោណមាត្រគឺជាអនុគមន៍បឋមដែលអាគុយម៉ង់គឺ ការចាក់ថ្នាំ. អនុគមន៍​ត្រីកោណមាត្រ​ពណ៌នា​អំពី​ទំនាក់ទំនង​រវាង​ជ្រុង និង​មុំ​ស្រួច​ក្នុង​ត្រីកោណ​ស្តាំ។ តំបន់នៃការអនុវត្តមុខងារត្រីកោណមាត្រគឺមានភាពចម្រុះណាស់។ ដូច្នេះ ជាឧទាហរណ៍ ដំណើរការតាមកាលកំណត់ណាមួយអាចត្រូវបានតំណាងថាជាផលបូកនៃអនុគមន៍ត្រីកោណមាត្រ (ស៊េរី Fourier)។ មុខងារទាំងនេះច្រើនតែលេចឡើងនៅពេលដោះស្រាយសមីការឌីផេរ៉ង់ស្យែល និងមុខងារ។

2. អនុគមន៍ត្រីកោណមាត្រមាន 6 មុខងារដូចខាងក្រោមៈ ប្រហោងឆ្អឹង, កូស៊ីនុស, តង់សង់,កូតង់សង់, វិនាទីនិង កូសេកង់. សម្រាប់មុខងារទាំងនេះនីមួយៗ មានអនុគមន៍ត្រីកោណមាត្របញ្ច្រាស។

3. វាងាយស្រួលក្នុងការណែនាំនិយមន័យធរណីមាត្រនៃអនុគមន៍ត្រីកោណមាត្រដោយប្រើ រង្វង់ឯកតា. រូបខាងក្រោមបង្ហាញពីរង្វង់ដែលមានកាំ r=1។ ចំណុច M (x, y) ត្រូវបានសម្គាល់នៅលើរង្វង់។ មុំរវាងកាំវ៉ិចទ័រ OM និងទិសដៅវិជ្ជមាននៃអ័ក្សអុកគឺα។

4. ប្រហោងឆ្អឹងមុំ α គឺជាសមាមាត្រនៃលំដាប់ y ​​នៃចំណុច M (x, y) ទៅកាំ r:
sinα=y/r.
ចាប់តាំងពី r = 1 នោះស៊ីនុសស្មើនឹងការចាត់តាំងនៃចំណុច M (x, y) ។

5. កូស៊ីនុសមុំ α គឺជាសមាមាត្រនៃ abscissa x នៃចំណុច M (x, y) ទៅកាំ r:
cosα=x/r

6. តង់សង់មុំ α គឺជាសមាមាត្រនៃការចាត់តាំង y នៃចំណុច M (x, y) ទៅ abscissa x របស់វា៖
tanα=y/x,x≠0

7. កូតង់សង់មុំ α គឺជាសមាមាត្រនៃ abscissa x នៃចំណុច M (x, y) ទៅនឹងការចាត់តាំង y របស់វា៖
cotα=x/y,y≠0

8. សេកានមុំ α គឺជាសមាមាត្រនៃកាំ r ទៅ abscissa x នៃចំនុច M(x,y):
secα=r/x=1/x,x≠0

9. កូសេកានមុំ α គឺជាសមាមាត្រនៃកាំ r ទៅនឹងចំនុច y នៃចំនុច M(x,y):
cscα=r/y=1/y,y≠0

10. នៅក្នុងរង្វង់ឯកតានៃការព្យាករ x, y ចំនុច M(x,y) និងកាំ r បង្កើតជាត្រីកោណមុំខាងស្តាំ ដែលក្នុងនោះ x,y ជាជើង ហើយ r ជាអ៊ីប៉ូតេនុស។ ដូច្នេះនិយមន័យខាងលើនៃអនុគមន៍ត្រីកោណមាត្រដែលអនុវត្តចំពោះត្រីកោណកែងត្រូវបានបង្កើតដូចខាងក្រោមៈ
ប្រហោងឆ្អឹងមុំ α គឺជាសមាមាត្រនៃជើងទល់មុខទៅនឹងអ៊ីប៉ូតេនុស។
កូស៊ីនុសមុំ α គឺជាសមាមាត្រនៃជើងដែលនៅជាប់នឹងអ៊ីប៉ូតេនុស។
តង់សង់មុំ α ត្រូវបានគេហៅថាជើងផ្ទុយទៅនឹងជើងដែលនៅជាប់គ្នា។
កូតង់សង់មុំ α ត្រូវបានគេហៅថាជើងដែលនៅជាប់នឹងទល់មុខ។
សេកានមុំ α គឺជាសមាមាត្រនៃអ៊ីប៉ូតេនុសទៅនឹងជើងដែលនៅជាប់គ្នា។
កូសេកានមុំ α គឺជាសមាមាត្រនៃអ៊ីប៉ូតេនុសទៅនឹងជើងទល់មុខ។

11. ក្រាហ្វមុខងារស៊ីនុស
y=sinx, domain: x∈R, domain: −1≤sinx≤1

12. ក្រាហ្វនៃអនុគមន៍កូស៊ីនុស
y=cosx, ដែន៖ x∈R, ជួរ៖ −1≤cosx≤1

13. ក្រាហ្វមុខងារតង់សង់
y=tanx, ដែន៖ x∈R,x≠(2k+1)π/2, ដែន៖ −∞

14. ក្រាហ្វនៃអនុគមន៍កូតង់សង់
y=cotx, ដែន៖ x∈R,x≠kπ, ដែន៖ −∞

15. ក្រាហ្វនៃអនុគមន៍សេកុង
y=secx, domain: x∈R,x≠(2k+1)π/2, domain: secx∈(−∞,−1]∪∪)