តើលោការីតជាអ្វី 2. លោការីត

(មកពីភាសាក្រិច λόγος - "ពាក្យ" "ទំនាក់ទំនង" និងἀριθμός - "លេខ") លេខ ដោយហេតុផល (កំណត់ហេតុ α ) ត្រូវបានគេហៅថាលេខបែបនេះ , និង = មួយ គនោះគឺ log α =និង b=aគឺសមមូល។ លោការីតមានន័យប្រសិនបើ a > 0, a ≠ 1, b > 0 ។

ក្នុង​ន័យ​ផ្សេងទៀត លោការីតលេខ ដោយហេតុផល បង្កើតជានិទស្សន្តដែលចំនួនត្រូវតែលើកឡើង ដើម្បីទទួលបានលេខ (លោការីតមានសម្រាប់តែលេខវិជ្ជមានប៉ុណ្ណោះ)។

ពីរូបមន្តនេះវាដូចខាងក្រោមថាការគណនា x = កំណត់ហេតុ α ស្មើនឹងការដោះស្រាយសមីការ a x = b ។

ឧទាហរណ៍:

កំណត់ហេតុ 2 8 = 3 ព្រោះ 8 = 2 3 ។

យើងកត់សំគាល់ថាការបង្កើតលោការីតដែលបានចង្អុលបង្ហាញធ្វើឱ្យវាអាចកំណត់បានភ្លាមៗ តម្លៃលោការីតនៅពេលដែលលេខនៅក្រោមសញ្ញាលោការីតគឺជាថាមពលជាក់លាក់នៃមូលដ្ឋាន។ ជាការពិតណាស់ ការបង្កើតលោការីត ធ្វើឱ្យវាអាចបង្ហាញអំពីភាពត្រឹមត្រូវថា ប្រសិនបើ b=a គបន្ទាប់មកលោការីតនៃលេខ ដោយហេតុផល ស្មើ ជាមួយ. វាក៏ច្បាស់ដែរថាប្រធានបទលោការីតមានទំនាក់ទំនងយ៉ាងជិតស្និទ្ធជាមួយប្រធានបទ កម្រិតនៃលេខ.

ការគណនាលោការីតគឺសំដៅលើ លោការីត. លោការីតគឺជាប្រតិបត្តិការគណិតវិទ្យានៃការទទួលយកលោការីត។ នៅពេលទទួលយកលោការីត ផលិតផលនៃកត្តាត្រូវបានបំលែងទៅជាផលបូកនៃពាក្យ។

សក្តានុពលគឺ​ជា​ប្រតិបត្តិការ​គណិតវិទ្យា​បញ្ច្រាស​ទៅ​លោការីត។ នៅពេលដែល potentiating មូលដ្ឋានដែលបានផ្តល់ឱ្យត្រូវបានលើកឡើងទៅអំណាចនៃកន្សោមដែល potentiation ត្រូវបានអនុវត្ត។ ក្នុងករណីនេះផលបូកនៃលក្ខខណ្ឌត្រូវបានបំលែងទៅជាផលិតផលនៃកត្តា។

ជាញឹកញយ លោការីតពិតដែលមានមូលដ្ឋាន 2 (គោលពីរ) អ៊ី អយល័រ លេខ អ៊ី ≈ 2.718 (លោការីតធម្មជាតិ) និង 10 (ទសភាគ) ត្រូវបានប្រើ។

នៅដំណាក់កាលនេះវាមានតម្លៃពិចារណា គំរូលោការីតកំណត់ហេតុ ៧ ២ , ln 5, lg0.0001 ។

ហើយធាតុ lg (-3), កំណត់ហេតុ -3 3.2, កំណត់ហេតុ -1 -4.3 មិនសមហេតុផលទេព្រោះដំបូងក្នុងចំណោមពួកគេលេខអវិជ្ជមានត្រូវបានដាក់នៅក្រោមសញ្ញានៃលោការីតនៅក្នុងទីពីរ - ចំនួនអវិជ្ជមាននៅក្នុង មូលដ្ឋាន និងទីបី - និងលេខអវិជ្ជមាននៅក្រោមសញ្ញាលោការីត និងឯកតាក្នុងមូលដ្ឋាន។

លក្ខខណ្ឌសម្រាប់កំណត់លោការីត។

វាមានតម្លៃពិចារណាដាច់ដោយឡែកពីលក្ខខណ្ឌ a> 0, a ≠ 1, b> 0 ។ និយមន័យលោការីត។ចូរយើងពិចារណាថាហេតុអ្វីបានជាការរឹតបន្តឹងទាំងនេះត្រូវបានយក។ វានឹងជួយយើងជាមួយនឹងសមភាពនៃទម្រង់ x = log α ដែលហៅថា អត្តសញ្ញាណលោការីតមូលដ្ឋាន ដែលធ្វើតាមដោយផ្ទាល់ពីនិយមន័យនៃលោការីតដែលបានផ្តល់ឱ្យខាងលើ។

យកលក្ខខណ្ឌ a≠1. ដោយសារមួយស្មើនឹងមួយទៅថាមពលណាមួយ នោះសមភាព x=log α អាចមានបានតែនៅពេលដែល b=1ប៉ុន្តែកំណត់ហេតុ 1 1 នឹងជាចំនួនពិតណាមួយ។ ដើម្បីលុបបំបាត់ភាពមិនច្បាស់លាស់នេះយើងយក a≠1.

ចូរយើងបញ្ជាក់ពីភាពចាំបាច់នៃលក្ខខណ្ឌ a>0. នៅ a=0យោងតាមការបង្កើតលោការីត អាចមានបានតែនៅពេលដែល b=0. ហើយបន្ទាប់មកតាម កំណត់ហេតុ 0 0អាចជាចំនួនពិតដែលមិនមែនជាសូន្យ ព្រោះសូន្យទៅថាមពលដែលមិនមែនជាសូន្យគឺសូន្យ។ ដើម្បីលុបបំបាត់ភាពមិនច្បាស់លាស់នេះលក្ខខណ្ឌ a≠0. ហើយ​នៅពេល​ដែល ក<0 យើងនឹងត្រូវបដិសេធការវិភាគនៃតម្លៃសមហេតុផល និងអសមហេតុផលនៃលោការីត ចាប់តាំងពីនិទស្សន្តដែលមាននិទស្សន្តសមហេតុផល និងអសមហេតុផលត្រូវបានកំណត់សម្រាប់តែមូលដ្ឋានមិនអវិជ្ជមានប៉ុណ្ណោះ។ វាគឺសម្រាប់ហេតុផលនេះដែលលក្ខខណ្ឌ a>0.

និងលក្ខខណ្ឌចុងក្រោយ b>0កើតចេញពីវិសមភាព a>0ចាប់តាំងពី x=log α និងតម្លៃនៃសញ្ញាបត្រដែលមានមូលដ្ឋានវិជ្ជមាន វិជ្ជមានជានិច្ច។

លក្ខណៈពិសេសនៃលោការីត។

លោការីតលក្ខណៈដោយឡែក លក្ខណៈដែលនាំឱ្យមានការប្រើប្រាស់យ៉ាងទូលំទូលាយរបស់ពួកគេ ដើម្បីជួយសម្រួលដល់ការគណនាដ៏លំបាក។ នៅក្នុងការផ្លាស់ប្តូរ "ទៅកាន់ពិភពលោកនៃលោការីត" គុណត្រូវបានបំលែងទៅជាការបូកដែលងាយស្រួលជាង ការបែងចែកទៅជាដក និងការកើនឡើងទៅជាថាមពល ហើយយកឬសត្រូវបានបំលែងទៅជាគុណ និងចែកដោយនិទស្សន្តរៀងៗខ្លួន។

ការបង្កើតលោការីត និងតារាងតម្លៃរបស់វា (សម្រាប់អនុគមន៍ត្រីកោណមាត្រ) ត្រូវបានបោះពុម្ពលើកដំបូងនៅឆ្នាំ 1614 ដោយគណិតវិទូជនជាតិស្កុតឡេន លោក John Napier ។ តារាងលោការីត ដែលពង្រីក និងលម្អិតដោយអ្នកវិទ្យាសាស្ត្រផ្សេងទៀត ត្រូវបានគេប្រើយ៉ាងទូលំទូលាយក្នុងការគណនាបែបវិទ្យាសាស្ត្រ និងវិស្វកម្ម ហើយនៅតែមានជាប់ទាក់ទងរហូតទាល់តែម៉ាស៊ីនគិតលេខអេឡិចត្រូនិក និងកុំព្យូទ័រចាប់ផ្តើមប្រើប្រាស់។


ការផ្តោតអារម្មណ៍នៃអត្ថបទនេះគឺ លោការីត. នៅទីនេះយើងនឹងផ្តល់និយមន័យនៃលោការីត បង្ហាញសញ្ញាណដែលទទួលយក ផ្តល់ឧទាហរណ៍នៃលោការីត និងនិយាយអំពីលោការីតធម្មជាតិ និងគោលដប់។ បន្ទាប់ពីនោះ សូមពិចារណាអំពីអត្តសញ្ញាណលោការីតជាមូលដ្ឋាន។

ការរុករកទំព័រ។

និយមន័យលោការីត

គោលគំនិតនៃលោការីតកើតឡើងនៅពេលដោះស្រាយបញ្ហាក្នុងន័យជាក់លាក់មួយបញ្ច្រាស នៅពេលដែលអ្នកត្រូវការស្វែងរកនិទស្សន្តពីតម្លៃដែលគេស្គាល់នៃដឺក្រេ និងមូលដ្ឋានដែលគេស្គាល់។

ប៉ុន្តែ​បុព្វកថា​គ្រប់គ្រាន់​ហើយ ដល់​ពេល​ឆ្លើយ​សំណួរ​ថា «​អ្វី​ទៅ​ជា​លោការីត​»​? ចូរយើងផ្តល់និយមន័យសមស្របមួយ។

និយមន័យ។

លោការីតនៃ b ទៅមូលដ្ឋាន aដែល a>0, a≠1 និង b>0 គឺជានិទស្សន្តដែលអ្នកត្រូវបង្កើនចំនួន a ដើម្បីទទួលបាន b ជាលទ្ធផល។

នៅដំណាក់កាលនេះ យើងកត់សំគាល់ថាពាក្យ "លោការីត" គួរតែលើកឡើងភ្លាមៗនូវសំណួរបន្ទាប់ពីរគឺ "លេខអ្វី" និង "នៅលើមូលដ្ឋានអ្វី" ។ ម្យ៉ាង​វិញ​ទៀត វា​មិន​មាន​លោការីត​ទេ ប៉ុន្តែ​មាន​តែ​លោការីត​នៃ​ចំនួន​ក្នុង​គោល​ខ្លះ​ប៉ុណ្ណោះ។

យើងនឹងណែនាំភ្លាមៗ សញ្ញាណលោការីត៖ លោការីត​នៃ​លេខ b ដល់​គោល a ជាធម្មតា​ត្រូវ​បាន​គេ​បង្ហាញ​ថា​ជា log a b ។ លោការីតនៃលេខ b ដល់គោល e និងលោការីតដល់គោល 10 មានការរចនាពិសេសរៀងៗខ្លួន lnb និង lgb រៀងៗខ្លួន ពោលគឺពួកគេសរសេរមិនមែនជាកំណត់ហេតុ e b ប៉ុន្តែ lnb និងមិនមែន log 10 b ប៉ុន្តែ lgb ។

ឥឡូវនេះអ្នកអាចនាំយក: .
និងកំណត់ត្រា មិនសមហេតុសមផលទេព្រោះដំបូងគេមានលេខអវិជ្ជមាននៅក្រោមសញ្ញាលោការីតហើយទីពីរ - លេខអវិជ្ជមាននៅក្នុងមូលដ្ឋាននិងទីបី - ទាំងលេខអវិជ្ជមាននៅក្រោមសញ្ញាលោការីតនិង ឯកតានៅក្នុងមូលដ្ឋាន។

ឥឡូវនេះសូមនិយាយអំពី ច្បាប់សម្រាប់អានលោការីត. កំណត់ហេតុធាតុ a b ត្រូវបានអានជា "លោការីតនៃ b ទៅមូលដ្ឋាន a" ។ ឧទាហរណ៍ log 2 3 គឺជាលោការីតពីបីដល់គោល 2 ហើយជាលោការីតនៃចំនួនគត់ពីរគោលពីរភាគបីនៃឫសការ៉េនៃប្រាំ។ លោការីតទៅមូលដ្ឋានអ៊ីត្រូវបានគេហៅថា លោការីតធម្មជាតិហើយសញ្ញាណ lnb ត្រូវបានអានថាជា "លោការីតធម្មជាតិនៃ ខ"។ ឧទាហរណ៍ ln7 គឺជាលោការីតធម្មជាតិនៃប្រាំពីរ ហើយយើងនឹងអានវាជាលោការីតធម្មជាតិនៃ pi ។ លោការីតដល់គោល ១០ ក៏មានឈ្មោះពិសេសដែរ - លោការីតទសភាគហើយសញ្ញាណ lgb ត្រូវបានអានជា "លោការីតទសភាគ ខ"។ ឧទាហរណ៍ lg1 គឺជាលោការីតទសភាគនៃមួយ ហើយ lg2.75 គឺជាលោការីតទសភាគនៃពីរចំនុចចិតសិបប្រាំរយ។

វាមានតម្លៃស្នាក់នៅដាច់ដោយឡែកពីគ្នាលើលក្ខខណ្ឌ a>0, a≠1 និង b>0 ដែលនិយមន័យនៃលោការីតត្រូវបានផ្តល់ឱ្យ។ អនុញ្ញាតឱ្យយើងពន្យល់ពីកន្លែងដែលការរឹតបន្តឹងទាំងនេះមកពី។ ដើម្បី​ធ្វើ​ដូច្នេះ យើង​នឹង​ត្រូវ​បាន​ជួយ​ដោយ​សមភាព​នៃ​ទម្រង់​ដែល​គេ​ហៅ​ថា ដែល​តាម​ពី​ក្រោយ​ដោយ​ផ្ទាល់​ពី​និយមន័យ​លោការីត​ដែល​បាន​ផ្ដល់​ឱ្យ​ខាង​លើ។

ចូរចាប់ផ្តើមជាមួយ a≠1 ។ ដោយសារមួយស្មើនឹងមួយទៅថាមពលណាមួយ នោះសមភាពអាចជាការពិតសម្រាប់ b=1 ប៉ុន្តែកំណត់ហេតុ 1 1 អាចជាចំនួនពិតណាមួយ។ ដើម្បីជៀសវាងភាពមិនច្បាស់លាស់នេះ a≠1 ត្រូវបានទទួលយក។

អនុញ្ញាតឱ្យយើងបញ្ជាក់ពីភាពយឺតយ៉ាវនៃលក្ខខណ្ឌ a> 0 ។ ជាមួយនឹង a=0 តាមនិយមន័យលោការីត យើងនឹងមានភាពស្មើគ្នា ដែលអាចធ្វើទៅបានតែជាមួយ b=0 ប៉ុណ្ណោះ។ ប៉ុន្តែបន្ទាប់មក log 0 0 អាចជាចំនួនពិតដែលមិនមែនជាសូន្យ ព្រោះថាសូន្យទៅថាមពលដែលមិនមែនជាសូន្យគឺសូន្យ។ ភាពមិនច្បាស់លាស់នេះអាចត្រូវបានជៀសវាងដោយលក្ខខណ្ឌ a≠0 ។ ហើយសម្រាប់ ក<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

ជាចុងក្រោយ លក្ខខណ្ឌ b>0 ធ្វើតាមវិសមភាព a>0 ចាប់តាំងពី ហើយតម្លៃនៃដឺក្រេដែលមានមូលដ្ឋានវិជ្ជមាន a គឺតែងតែវិជ្ជមាន។

នៅក្នុងការសន្និដ្ឋាននៃកថាខណ្ឌនេះ យើងនិយាយថា និយមន័យដែលបញ្ចេញសំឡេងនៃលោការីត អនុញ្ញាតឱ្យអ្នកចង្អុលបង្ហាញភ្លាមៗនូវតម្លៃរបស់លោការីត នៅពេលដែលលេខនៅក្រោមសញ្ញាលោការីតគឺជាកម្រិតជាក់លាក់នៃមូលដ្ឋាន។ ជាការពិតណាស់ និយមន័យនៃលោការីតអនុញ្ញាតឱ្យយើងអះអាងថា ប្រសិនបើ b=a p នោះលោការីតនៃចំនួន b ទៅគោល a គឺស្មើនឹង p ។ នោះគឺសមភាព log a p = p គឺពិត។ ឧទាហរណ៍ យើងដឹងថា 2 3 = 8 បន្ទាប់មក កំណត់ 2 8 = 3 ។ យើងនឹងនិយាយបន្ថែមទៀតអំពីរឿងនេះនៅក្នុងអត្ថបទ។

ជាមួយនឹងការអភិវឌ្ឍន៍សង្គម ភាពស្មុគ្រស្មាញនៃការផលិត គណិតវិទ្យាក៏បានអភិវឌ្ឍផងដែរ។ ចលនាពីសាមញ្ញទៅស្មុគស្មាញ។ ពីវិធីសាស្រ្តគណនេយ្យធម្មតានៃការបូក និងដក ជាមួយនឹងពាក្យដដែលៗ ពួកគេបានមកដល់គោលគំនិតនៃគុណ និងចែក។ ការកាត់បន្ថយនៃប្រតិបត្តិការម្តងហើយម្តងទៀតបានក្លាយទៅជាគំនិតនៃនិទស្សន្ត។ តារាងទីមួយនៃការពឹងផ្អែកនៃលេខនៅលើមូលដ្ឋាន និងចំនួននៃនិទស្សន្តត្រូវបានចងក្រងត្រឡប់មកវិញនៅក្នុងសតវត្សទី 8 ដោយគណិតវិទូឥណ្ឌា Varasena ។ ពីពួកគេ អ្នកអាចរាប់ពេលវេលានៃការកើតឡើងនៃលោការីត។

គ្រោងប្រវត្តិសាស្ត្រ

ការរស់ឡើងវិញនៃទ្វីបអឺរ៉ុបក្នុងសតវត្សទី 16 ក៏ជំរុញឱ្យមានការអភិវឌ្ឍន៍ផ្នែកមេកានិចផងដែរ។ ធ តម្រូវ​ឱ្យ​មាន​ចំនួន​ដ៏​ច្រើន​នៃ​ការ​គណនា​ទាក់ទង​នឹង​ការ​គុណ​និង​ចែក​លេខ​ច្រើន​ខ្ទង់។ តុបុរាណបានបម្រើយ៉ាងអស្ចារ្យ។ ពួកគេបានធ្វើឱ្យវាអាចធ្វើទៅបានដើម្បីជំនួសប្រតិបត្តិការស្មុគ្រស្មាញជាមួយនឹងអ្វីដែលសាមញ្ញជាង - ការបូកនិងដក។ ជំហានដ៏ធំមួយឆ្ពោះទៅមុខគឺជាស្នាដៃរបស់គណិតវិទូ Michael Stiefel ដែលបានបោះពុម្ពនៅឆ្នាំ 1544 ដែលគាត់បានដឹងពីគំនិតរបស់គណិតវិទូជាច្រើន។ នេះធ្វើឱ្យវាអាចប្រើតារាងមិនត្រឹមតែសម្រាប់ដឺក្រេក្នុងទម្រង់ជាលេខបឋមប៉ុណ្ណោះទេ ប៉ុន្តែថែមទាំងសម្រាប់ហេតុផលដែលបំពានផងដែរ។

នៅឆ្នាំ 1614 ជនជាតិស្កុតឡេនលោក John Napier បានបង្កើតគំនិតទាំងនេះជាលើកដំបូងបានណែនាំពាក្យថ្មី "លោការីតនៃចំនួនមួយ" ។ តារាងស្មុគស្មាញថ្មីត្រូវបានចងក្រងសម្រាប់គណនាលោការីតនៃស៊ីនុស និងកូស៊ីនុស ក៏ដូចជាតង់ហ្សង់។ នេះបានកាត់បន្ថយការងាររបស់តារាវិទូយ៉ាងខ្លាំង។

តារាងថ្មីបានចាប់ផ្តើមលេចឡើងដែលត្រូវបានប្រើដោយជោគជ័យដោយអ្នកវិទ្យាសាស្ត្រអស់រយៈពេលបីសតវត្សមកហើយ។ ពេលវេលាជាច្រើនបានកន្លងផុតទៅ មុនពេលប្រតិបត្តិការថ្មីនៅក្នុងពិជគណិតបានទទួលទម្រង់ដែលបានបញ្ចប់របស់វា។ លោការីតត្រូវបានកំណត់ ហើយលក្ខណៈសម្បត្តិរបស់វាត្រូវបានសិក្សា។

មានតែនៅក្នុងសតវត្សទី 20 ជាមួយនឹងការមកដល់នៃម៉ាស៊ីនគិតលេខនិងកុំព្យូទ័រមនុស្សជាតិបានបោះបង់ចោលតារាងបុរាណដែលបានដំណើរការដោយជោគជ័យពេញមួយសតវត្សទី 13 ។

សព្វថ្ងៃនេះយើងហៅលោការីតនៃ b ដើម្បីដាក់មូលដ្ឋាន a លេខ x ដែលជាអំណាចនៃ a ដើម្បីទទួលបានលេខ b ។ នេះត្រូវបានសរសេរជារូបមន្ត៖ x = log a(b) ។

ឧទាហរណ៍ កំណត់ហេតុ 3(9) នឹងស្មើនឹង 2។ វាច្បាស់ណាស់ប្រសិនបើអ្នកធ្វើតាមនិយមន័យ។ ប្រសិនបើយើងបង្កើន 3 ដល់កម្លាំង 2 យើងទទួលបាន 9 ។

ដូច្នេះ និយមន័យដែលបានបង្កើតដាក់កម្រិតតែមួយ លេខ a និង b ត្រូវតែពិតប្រាកដ។

ប្រភេទនៃលោការីត

និយមន័យបុរាណត្រូវបានគេហៅថា លោការីតពិត ហើយពិតជាដំណោះស្រាយចំពោះសមីការ a x = b ។ ជម្រើស a = 1 គឺ​បន្ទាត់​ព្រំដែន ហើយ​មិន​មាន​ការ​ចាប់​អារម្មណ៍។ ចំណាំ៖ 1 ដល់ថាមពលណាមួយគឺ 1 ។

តម្លៃពិតនៃលោការីតកំណត់បានលុះត្រាតែមូលដ្ឋាន និងអាគុយម៉ង់ធំជាង 0 ហើយមូលដ្ឋានមិនត្រូវស្មើនឹង 1 ។

កន្លែងពិសេសក្នុងវិស័យគណិតវិទ្យាលេងលោការីត ដែលនឹងត្រូវបានដាក់ឈ្មោះអាស្រ័យលើតម្លៃនៃមូលដ្ឋានរបស់ពួកគេ៖

ច្បាប់ និងការរឹតបន្តឹង

ទ្រព្យសម្បត្តិជាមូលដ្ឋាននៃលោការីតគឺជាច្បាប់៖ លោការីតនៃផលិតផលគឺស្មើនឹងផលបូកលោការីត។ log abp = log a(b) + log a(p)។

ជាវ៉ារ្យ៉ង់នៃសេចក្តីថ្លែងការណ៍នេះ វានឹងជា៖ log c (b/p) \u003d log c (b) - log c (p) អនុគមន៍ quotient គឺស្មើនឹងភាពខុសគ្នានៃមុខងារ។

វាងាយស្រួលមើលពីច្បាប់ពីរមុនដែល៖ log a(b p) = p * log a(b) ។

ទ្រព្យសម្បត្តិផ្សេងទៀតរួមមាន:

មតិយោបល់។ កុំធ្វើឱ្យមានកំហុសជាទូទៅ - លោការីតនៃផលបូកមិនស្មើនឹងផលបូកនៃលោការីត។

អស់ជាច្រើនសតវត្សមកហើយ ប្រតិបត្តិការស្វែងរកលោការីត គឺជាកិច្ចការដែលចំណាយពេលវេលាច្រើន។ គណិតវិទូបានប្រើរូបមន្តដ៏ល្បីនៃទ្រឹស្តីលោការីតនៃការពង្រីកទៅជាពហុនាម៖

ln (1 + x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ... + ((-1)^(n + 1))* ((x^n)/n) ដែល n ជាចំនួនធម្មជាតិធំជាង 1 ដែលកំណត់ភាពត្រឹមត្រូវនៃការគណនា។

លោការីតជាមួយមូលដ្ឋានផ្សេងទៀតត្រូវបានគណនាដោយប្រើទ្រឹស្តីបទលើការផ្លាស់ប្តូរពីមូលដ្ឋានមួយទៅមូលដ្ឋានមួយទៀត និងទ្រព្យសម្បត្តិនៃលោការីតនៃផលិតផល។

ចាប់តាំងពីវិធីសាស្រ្តនេះគឺ laborious ណាស់និង នៅពេលដោះស្រាយបញ្ហាជាក់ស្តែងពិបាកអនុវត្ត ពួកគេបានប្រើតារាងលោការីតដែលបានចងក្រងជាមុន ដែលបង្កើនល្បឿនការងារទាំងមូល។

ក្នុងករណីខ្លះ ក្រាហ្វដែលចងក្រងជាពិសេសនៃលោការីតត្រូវបានប្រើ ដែលផ្តល់ភាពត្រឹមត្រូវតិច ប៉ុន្តែបានបង្កើនល្បឿនយ៉ាងខ្លាំងក្នុងការស្វែងរកតម្លៃដែលចង់បាន។ ខ្សែកោងនៃអនុគមន៍ y = log a(x) ដែលបង្កើតឡើងនៅលើចំណុចជាច្រើន អនុញ្ញាតឱ្យប្រើបន្ទាត់ធម្មតាដើម្បីស្វែងរកតម្លៃនៃអនុគមន៍នៅចំណុចផ្សេងទៀត។ អស់រយៈពេលជាយូរមកហើយវិស្វករបានប្រើអ្វីដែលគេហៅថាក្រដាសក្រាហ្វសម្រាប់គោលបំណងទាំងនេះ។

នៅសតវត្សទី 17 លក្ខខណ្ឌគណនាអាណាឡូកជំនួយដំបូងបានលេចឡើងដែលនៅសតវត្សទី 19 បានទទួលទម្រង់បញ្ចប់។ ឧបករណ៍ដែលទទួលបានជោគជ័យបំផុតត្រូវបានគេហៅថាច្បាប់ស្លាយ។ ថ្វីបើមានភាពសាមញ្ញនៃឧបករណ៍ក៏ដោយ រូបរាងរបស់វាបានបង្កើនល្បឿនដំណើរការនៃការគណនាវិស្វកម្មទាំងអស់ ហើយនេះគឺពិបាកក្នុងការប៉ាន់ស្មានលើស។ បច្ចុប្បន្ននេះមានមនុស្សតិចណាស់ដែលស្គាល់ឧបករណ៍នេះ។

ការមកដល់នៃម៉ាស៊ីនគិតលេខ និងកុំព្យូទ័របានធ្វើឱ្យវាគ្មានប្រយោជន៍ក្នុងការប្រើប្រាស់ឧបករណ៍ផ្សេងទៀតណាមួយឡើយ។

សមីការ និងវិសមភាព

រូបមន្តខាងក្រោមត្រូវបានប្រើដើម្បីដោះស្រាយសមីការ និងវិសមភាពផ្សេងៗដោយប្រើលោការីត៖

  • ការផ្លាស់ប្តូរពីមូលដ្ឋានមួយទៅមូលដ្ឋានមួយទៀត៖ log a(b) = log c(b) / log c(a);
  • ជាលទ្ធផលនៃកំណែមុន៖ log a(b) = 1 / log b(a) ។

ដើម្បីដោះស្រាយវិសមភាព វាមានប្រយោជន៍ក្នុងការដឹង៖

  • តម្លៃនៃលោការីតនឹងមានភាពវិជ្ជមានលុះត្រាតែមូលដ្ឋាន និងអាគុយម៉ង់គឺធំជាង ឬតិចជាងមួយ; ប្រសិនបើយ៉ាងហោចណាស់លក្ខខណ្ឌមួយត្រូវបានបំពាន តម្លៃនៃលោការីតនឹងអវិជ្ជមាន។
  • ប្រសិនបើអនុគមន៍លោការីតត្រូវបានអនុវត្តទៅផ្នែកខាងស្តាំ និងខាងឆ្វេងនៃវិសមភាព ហើយមូលដ្ឋាននៃលោការីតគឺធំជាងមួយ នោះសញ្ញានៃវិសមភាពត្រូវបានរក្សាទុក។ បើមិនដូច្នោះទេវាផ្លាស់ប្តូរ។

ឧទាហរណ៍នៃកិច្ចការ

ពិចារណាជម្រើសជាច្រើនសម្រាប់ការប្រើប្រាស់លោការីត និងលក្ខណៈសម្បត្តិរបស់វា។ ឧទាហរណ៍ជាមួយនឹងការដោះស្រាយសមីការ៖

ពិចារណាជម្រើសនៃការដាក់លោការីតក្នុងកម្រិត:

  • កិច្ចការទី 3. គណនា 25^log 5(3)។ ដំណោះស្រាយ៖ ក្នុងលក្ខខណ្ឌនៃបញ្ហា ការសម្គាល់គឺស្រដៀងនឹងខាងក្រោម (5^2)^log5(3) ឬ 5^(2* log 5(3))។ តោះសរសេរវាខុសគ្នា៖ 5^log 5(3*2) ឬការ៉េនៃលេខដែលជាអាគុយម៉ង់មុខងារអាចត្រូវបានសរសេរជាការ៉េនៃអនុគមន៍ខ្លួនវា (5^log 5(3))^2។ ដោយប្រើលក្ខណសម្បត្តិលោការីត កន្សោមនេះគឺ 3^2 ។ ចម្លើយ៖ ជាលទ្ធផលនៃការគណនាយើងទទួលបាន ៩ ។

ការប្រើប្រាស់ជាក់ស្តែង

ក្នុងនាមជាឧបករណ៍គណិតវិទ្យាសុទ្ធសាធ វាហាក់បីដូចជានៅឆ្ងាយពីជីវិតពិត ដែលលោការីតភ្លាមៗទទួលបានសារៈសំខាន់ជាច្រើនក្នុងការពិពណ៌នាអំពីវត្ថុនៅក្នុងពិភពពិត។ វាពិបាកក្នុងការស្វែងរកវិទ្យាសាស្ត្រដែលវាមិនត្រូវបានប្រើ។ នេះអនុវត្តយ៉ាងពេញលេញមិនត្រឹមតែចំពោះធម្មជាតិប៉ុណ្ណោះទេ ថែមទាំងចំពោះវិស័យចំណេះដឹងរបស់មនុស្សផងដែរ។

ភាពអាស្រ័យលោការីត

នេះគឺជាឧទាហរណ៍មួយចំនួននៃភាពអាស្រ័យលេខ៖

មេកានិច និងរូបវិទ្យា

តាមប្រវត្តិសាស្ត្រ មេកានិក និងរូបវិទ្យាតែងតែបង្កើតដោយប្រើវិធីសាស្រ្តស្រាវជ្រាវគណិតវិទ្យា ហើយក្នុងពេលតែមួយបានបម្រើជាការលើកទឹកចិត្តសម្រាប់ការអភិវឌ្ឍន៍គណិតវិទ្យា រួមទាំងលោការីត។ ទ្រឹស្តីនៃច្បាប់រូបវិទ្យាភាគច្រើនត្រូវបានសរសេរជាភាសាគណិតវិទ្យា។ យើងផ្តល់ឧទាហរណ៍តែពីរនៃការពិពណ៌នាអំពីច្បាប់រូបវន្តដោយប្រើលោការីត។

វាគឺអាចធ្វើទៅបានដើម្បីដោះស្រាយបញ្ហានៃការគណនាបរិមាណស្មុគស្មាញដូចជាល្បឿននៃគ្រាប់រ៉ុក្កែតដោយប្រើរូបមន្ត Tsiolkovsky ដែលបានដាក់មូលដ្ឋានគ្រឹះសម្រាប់ទ្រឹស្តីនៃការរុករកអវកាស:

V = I * ln(M1/M2), កន្លែងណា

  • V គឺជាល្បឿនចុងក្រោយរបស់យន្តហោះ។
  • ខ្ញុំគឺជាកម្លាំងជំរុញជាក់លាក់នៃម៉ាស៊ីន។
  • M 1 គឺជាម៉ាស់ដំបូងនៃគ្រាប់រ៉ុក្កែត។
  • M 2 - ម៉ាស់ចុងក្រោយ។

ឧទាហរណ៍សំខាន់មួយទៀត- នេះគឺជាការប្រើប្រាស់នៅក្នុងរូបមន្តរបស់អ្នកវិទ្យាសាស្ត្រដ៏អស្ចារ្យម្នាក់ទៀតគឺ Max Planck ដែលបម្រើដើម្បីវាយតម្លៃស្ថានភាពលំនឹងនៅក្នុងទែរម៉ូឌីណាមិក។

S = k * ln (Ω), ដែលជាកន្លែងដែល

  • S គឺជាទ្រព្យសម្បត្តិនៃទែរម៉ូឌីណាមិក។
  • k គឺជាថេរ Boltzmann ។
  • Ω គឺជាទម្ងន់ស្ថិតិនៃរដ្ឋផ្សេងៗគ្នា។

គីមីវិទ្យា

មិនសូវច្បាស់ទេគឺការប្រើរូបមន្តក្នុងគីមីវិទ្យាដែលមានសមាមាត្រលោការីត។ នេះគ្រាន់តែជាឧទាហរណ៍ពីរប៉ុណ្ណោះ៖

  • សមីការ Nernst លក្ខខណ្ឌនៃសក្ដានុពល redox នៃមធ្យម ទាក់ទងនឹងសកម្មភាពនៃសារធាតុ និងលំនឹងថេរ។
  • ការគណនានៃថេរដូចជាសន្ទស្សន៍ autoprolysis និងអាស៊ីតនៃដំណោះស្រាយក៏មិនពេញលេញដែរបើគ្មានមុខងាររបស់យើង។

ចិត្តវិទ្យា និងជីវវិទ្យា

ហើយវាមិនអាចយល់បានទាំងស្រុងនូវអ្វីដែលចិត្តវិទ្យាទាក់ទងនឹងវា។ វាប្រែថាភាពខ្លាំងនៃអារម្មណ៍ត្រូវបានពិពណ៌នាយ៉ាងល្អដោយមុខងារនេះថាជាសមាមាត្របញ្ច្រាសនៃតម្លៃអាំងតង់ស៊ីតេរំញោចទៅនឹងតម្លៃអាំងតង់ស៊ីតេទាប។

បន្ទាប់​ពី​ឧទាហរណ៍​ខាង​លើ វា​លែង​មាន​ការ​ភ្ញាក់​ផ្អើល​ទៀត​ហើយ​ដែល​ប្រធានបទ​លោការីត​ក៏​ត្រូវ​បាន​គេ​ប្រើ​យ៉ាង​ទូលំទូលាយ​ក្នុង​ជីវវិទ្យា។ បរិមាណទាំងមូលអាចត្រូវបានសរសេរអំពីទម្រង់ជីវសាស្រ្តដែលត្រូវគ្នាទៅនឹងវង់លោការីត។

តំបន់ផ្សេងទៀត។

វាហាក់ដូចជាថាអត្ថិភាពនៃពិភពលោកគឺមិនអាចទៅរួចទេបើគ្មានទំនាក់ទំនងជាមួយមុខងារនេះ ហើយវាគ្រប់គ្រងច្បាប់ទាំងអស់។ ជាពិសេសនៅពេលដែលច្បាប់នៃធម្មជាតិត្រូវបានភ្ជាប់ជាមួយនឹងវឌ្ឍនភាពធរណីមាត្រ។ វាមានតម្លៃយោងទៅគេហទំព័រ MatProfi ហើយមានឧទាហរណ៍ជាច្រើននៅក្នុងផ្នែកនៃសកម្មភាពខាងក្រោម៖

បញ្ជីអាចគ្មានទីបញ្ចប់។ ដោយបានស្ទាត់ជំនាញច្បាប់ជាមូលដ្ឋាននៃមុខងារនេះ អ្នកអាចចូលទៅក្នុងពិភពនៃប្រាជ្ញាគ្មានកំណត់។

\(a^(b)=c\) \(\leftrightarrow\) \(\log_(a)(c)=b\)

ចូរពន្យល់វាឱ្យកាន់តែងាយស្រួល។ ឧទាហរណ៍ \(\log_(2)(8)\) គឺស្មើនឹងថាមពល \(2\) ត្រូវតែកើនឡើងដើម្បីទទួលបាន \(8\)។ ពីនេះវាច្បាស់ថា \(\log_(2)(8)=3\) ។

ឧទាហរណ៍:

\\(\log_(5)(25)=2\)

ដោយសារតែ \\(5^(2)=25\)

\(\log_(3)(81)=4\)

ដោយសារតែ \\(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

ដោយសារតែ \(2^(-5)=\)\(\frac(1)(32)\)

អាគុយម៉ង់ និងមូលដ្ឋាននៃលោការីត

លោការីតណាមួយមាន "កាយវិភាគសាស្ត្រ" ដូចខាងក្រោមៈ

អាគុយម៉ង់នៃលោការីតជាធម្មតាត្រូវបានសរសេរនៅកម្រិតរបស់វា ហើយមូលដ្ឋានត្រូវបានសរសេរជា subscript ខិតទៅជិតសញ្ញានៃលោការីត។ ហើយធាតុនេះត្រូវបានអានដូចនេះ: "លោការីតនៃម្ភៃប្រាំទៅមូលដ្ឋាននៃប្រាំ" ។

តើធ្វើដូចម្តេចដើម្បីគណនាលោការីត?

ដើម្បីគណនាលោការីត អ្នកត្រូវឆ្លើយសំណួរ៖ តើមូលដ្ឋានគួរលើកឡើងដល់កម្រិតណា ដើម្បីទទួលបានអាគុយម៉ង់?

ឧទាហរណ៍គណនាលោការីត៖ a) \(\log_(4)(16)\)b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

ក) តើអំណាចអ្វីត្រូវលើក \(4\) ដើម្បីទទួលបាន \(16\)? ជាក់ស្តែងទីពីរ។ ដូច្នេះ៖

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

គ) តើអំណាចមួយណាត្រូវលើក \(\ sqrt(5)\) ដើម្បីទទួលបាន \(1\)? ហើយ​កម្រិត​ណា​ដែល​ធ្វើ​ឲ្យ​លេខ​មួយ​ជា​ឯកតា? សូន្យ ពិតណាស់!

\(\log_(\sqrt(5))(1)=0\)

ឃ) តើថាមពលមួយណាត្រូវលើក \(\ sqrt(7)\) ដើម្បីទទួលបាន \(\sqrt(7)\)? នៅក្នុងទីមួយ - លេខណាមួយនៅក្នុងដឺក្រេទីមួយគឺស្មើនឹងខ្លួនវាផ្ទាល់។

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) តើអំណាចមួយណាត្រូវលើក \(3\) ដើម្បីទទួលបាន \(\ sqrt(3)\)? ពី​យើង​ដឹង​ថា​នោះ​ជា​អំណាច​ប្រភាគ ហើយ​ហេតុ​ដូច្នេះ​ហើយ​បាន​ជា​ឫស​ការ៉េ​ជា​អំណាច​នៃ \(\frac(1)(2)\) ។

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

ឧទាហរណ៍ ៖ គណនាលោការីត \(\log_(4\sqrt(2))(8)\)

ការសម្រេចចិត្ត :

\(\log_(4\sqrt(2))(8)=x\)

យើង​ត្រូវ​ស្វែង​រក​តម្លៃ​នៃ​លោការីត ចូរ​សម្គាល់​វា​ជា x ។ ឥឡូវនេះ ចូរយើងប្រើនិយមន័យនៃលោការីត៖
\(\log_(a)(c)=b\) \(\leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

តើតំណភ្ជាប់អ្វី \(4\sqrt(2)\) និង \(8\)? ពីរ ព្រោះលេខទាំងពីរអាចត្រូវបានតំណាងដោយពីរ៖
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

នៅខាងឆ្វេង យើងប្រើលក្ខណៈសម្បត្តិដឺក្រេ៖ \(a^(m)\cdot a^(n)=a^(m+n)\) និង \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

មូលដ្ឋានគឺស្មើគ្នា យើងបន្តទៅសមភាពនៃសូចនាករ

\\(\frac(5x)(2)\) \(=3\)


គុណផ្នែកទាំងពីរនៃសមីការដោយ \(\frac(2)(5)\)


ឫសលទ្ធផលគឺជាតម្លៃនៃលោការីត

ចម្លើយ ៖ \(\log_(4\sqrt(2))(8)=1,2\)

ហេតុអ្វីបានជាលោការីតត្រូវបានបង្កើត?

ដើម្បីយល់ពីនេះ ចូរយើងដោះស្រាយសមីការ៖ \(3^(x)=9\)។ គ្រាន់តែផ្គូផ្គង \(x\) ដើម្បីធ្វើឱ្យសមភាពដំណើរការ។ ជាការពិតណាស់ \(x=2\) ។

ឥឡូវដោះស្រាយសមីការ៖ \(3^(x)=8\) តើ x ស្មើនឹងអ្វី? ចំនុច​ហ្នឹង​ហើយ។

ភាពវៃឆ្លាតបំផុតនឹងនិយាយថា "X គឺតិចជាងពីរបន្តិច" ។ តើលេខនេះត្រូវសរសេរយ៉ាងដូចម្តេច? ដើម្បី​ឆ្លើយ​សំណួរ​នេះ ពួកគេ​បាន​បង្កើត​លោការីត។ សូមអរគុណដល់គាត់ ចម្លើយនៅទីនេះអាចសរសេរជា \(x=\log_(3)(8)\)។

ខ្ញុំចង់សង្កត់ធ្ងន់ថា \(\log_(3)(8)\) ក៏ដូចជា លោការីតណាមួយគ្រាន់តែជាលេខប៉ុណ្ណោះ។. បាទ វាមើលទៅមិនធម្មតា ប៉ុន្តែវាខ្លី។ ព្រោះ​បើ​យើង​ចង់​សរសេរ​វា​ជា​ទសភាគ វា​នឹង​មើល​ទៅ​ដូច​នេះ៖ \(1.892789260714.....\)

ឧទាហរណ៍ ៖ ដោះស្រាយសមីការ \(4^(5x-4)=10\)

ការសម្រេចចិត្ត :

\\(4^(5x-4)=10\)

\(4^(5x-4)\) និង \(10\) មិនអាចកាត់បន្ថយទៅមូលដ្ឋានតែមួយបានទេ។ ដូច្នេះនៅទីនេះអ្នកមិនអាចធ្វើបានដោយគ្មានលោការីតទេ។

ចូរយើងប្រើនិយមន័យនៃលោការីត៖
\(a^(b)=c\) \(\leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

ត្រឡប់សមីការដូច្នេះ x នៅខាងឆ្វេង

\(5x-4=\log_(4)(10)\)

មុនយើង។ ផ្លាស់ទី \(4\) ទៅខាងស្តាំ។

ហើយកុំខ្លាចលោការីត ចាត់ទុកវាដូចជាលេខធម្មតា។

\(5x=\log_(4)(10)+4\)

ចែកសមីការដោយ 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


នេះគឺជាឫសរបស់យើង។ បាទ វាមើលទៅមិនធម្មតា ប៉ុន្តែចម្លើយមិនត្រូវបានជ្រើសរើសទេ។

ចម្លើយ ៖ \(\frac(\log_(4)(10)+4)(5)\)

លោការីតទសភាគ និងធម្មជាតិ

ដូចដែលបានបញ្ជាក់នៅក្នុងនិយមន័យនៃលោការីត មូលដ្ឋានរបស់វាអាចជាលេខវិជ្ជមានណាមួយ លើកលែងតែមួយ \((a>0, a\neq1)\)។ ហើយក្នុងចំណោមមូលដ្ឋានដែលអាចធ្វើបានទាំងអស់ មានពីរដែលកើតឡើងជាញឹកញាប់ ដែលសញ្ញាណខ្លីពិសេសមួយត្រូវបានបង្កើតឡើងសម្រាប់លោការីតជាមួយពួកគេ៖

លោការីតធម្មជាតិ៖ ជាលោការីតដែលមានមូលដ្ឋានជាលេខអយល័រ \(e\) (ស្មើនឹងប្រមាណ \(2.7182818...\)) ហើយលោការីតត្រូវបានសរសេរជា \(\ln(a)\) ។

I.e, \(\ln(a)\) គឺដូចគ្នានឹង \(\log_(e)(a)\)

លោការីតទសភាគ៖ លោការីត​ដែល​មាន​គោល​១០​ត្រូវ​បាន​សរសេរ \(\lg(a)\) ។

I.e, \(\lg(a)\) គឺដូចគ្នានឹង \(\log_(10)(a)\)ដែលជាកន្លែងដែល \(a\) គឺជាលេខមួយចំនួន។

អត្តសញ្ញាណលោការីតមូលដ្ឋាន

លោការីតមានលក្ខណៈសម្បត្តិជាច្រើន។ មួយក្នុងចំណោមពួកគេត្រូវបានគេហៅថា "អត្តសញ្ញាណលោការីតមូលដ្ឋាន" ហើយមើលទៅដូចនេះ:

\(a^(\log_(a)(c))=c\)

ទ្រព្យសម្បត្តិនេះធ្វើតាមដោយផ្ទាល់ពីនិយមន័យ។ តោះមើលពីរបៀបដែលរូបមន្តនេះកើតឡើង។

រំលឹកនិយមន័យខ្លីនៃលោការីត៖

ប្រសិនបើ \(a^(b)=c\), បន្ទាប់មក \(\log_(a)(c)=b\)

នោះគឺ \(b\) គឺដូចគ្នានឹង \(\log_(a)(c)\)។ បន្ទាប់មកយើងអាចសរសេរ \(\log_(a)(c)\) ជំនួសឱ្យ \(b\) ក្នុងរូបមន្ត \(a^(b)=c\) ។ វាបានប្រែក្លាយ \(a^(\log_(a)(c))=c\) - អត្តសញ្ញាណលោការីតមេ។

អ្នកអាចរកឃើញលក្ខណៈសម្បត្តិដែលនៅសល់របស់លោការីត។ ដោយមានជំនួយរបស់ពួកគេ អ្នកអាចធ្វើឱ្យសាមញ្ញ និងគណនាតម្លៃនៃកន្សោមជាមួយនឹងលោការីត ដែលពិបាកក្នុងការគណនាដោយផ្ទាល់។

ឧទាហរណ៍ ៖ ស្វែងរកតម្លៃនៃកន្សោម \(36^(\log_(6)(5))\)

ការសម្រេចចិត្ត :

ចម្លើយ : \(25\)

តើធ្វើដូចម្តេចដើម្បីសរសេរលេខជាលោការីត?

ដូចដែលបានរៀបរាប់ខាងលើ លោការីតណាមួយគ្រាន់តែជាលេខប៉ុណ្ណោះ។ ការសន្ទនាក៏ពិតដែរ៖ លេខណាមួយអាចត្រូវបានសរសេរជាលោការីត។ ឧទាហរណ៍ យើងដឹងថា \(\log_(2)(4)\) ស្មើនឹងពីរ។ បន្ទាប់មក អ្នកអាចសរសេរ \(\log_(2)(4)\) ជំនួសឱ្យពីរ។

ប៉ុន្តែ \(\log_(3)(9)\) ក៏ស្មើនឹង \(2\) ដូច្នេះអ្នកក៏អាចសរសេរ \(2=\log_(3)(9)\) ផងដែរ។ ស្រដៀងគ្នាជាមួយ \(\log_(5)(25)\) និងជាមួយ \(\log_(9)(81)\) ។ល។ នោះគឺវាប្រែចេញ

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

ដូច្នេះ ប្រសិនបើយើងត្រូវការ យើងអាចសរសេរទាំងពីរជាលោការីតជាមួយនឹងមូលដ្ឋានណាមួយក៏បាន (សូម្បីតែនៅក្នុងសមីការ សូម្បីតែនៅក្នុងកន្សោម សូម្បីតែនៅក្នុងវិសមភាពក៏ដោយ) យើងគ្រាន់តែសរសេរមូលដ្ឋានការ៉េជាអាគុយម៉ង់។

វាដូចគ្នាជាមួយនឹងបីដង - វាអាចត្រូវបានសរសេរជា \(\log_(2)(8)\) ឬជា \(\log_(3)(27)\) ឬជា \(\log_(4)( 64) \) ... នៅទីនេះយើងសរសេរមូលដ្ឋាននៅក្នុងគូបជាអាគុយម៉ង់មួយ:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

ហើយជាមួយបួន:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

ហើយជាមួយដកមួយ៖

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( ៣)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\)\(...\)

ហើយមួយភាគបី៖

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

លេខណាមួយ \(a\) អាចត្រូវបានតំណាងជាលោការីតជាមួយគោល \(b\): \(a=\log_(b)(b^(a))\)

ឧទាហរណ៍ ៖ ស្វែងរកតម្លៃនៃកន្សោមមួយ។ \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

ការសម្រេចចិត្ត :

ចម្លើយ : \(1\)

លក្ខណៈសម្បត្តិមូលដ្ឋាន.

  1. logax + logay = log(x y);
  2. logax − logay = log(x:y)។

មូលដ្ឋានដូចគ្នា។

log6 4 + log6 ៩.

ឥឡូវ​នេះ​សូម​ធ្វើ​ឱ្យ​កិច្ចការ​ស្មុគស្មាញ​បន្តិច។

ឧទាហរណ៍នៃការដោះស្រាយលោការីត

ចុះបើមានដឺក្រេក្នុងគោល ឬអាគុយម៉ង់នៃលោការីត? បន្ទាប់មកនិទស្សន្តនៃដឺក្រេនេះអាចត្រូវបានយកចេញពីសញ្ញានៃលោការីតដោយយោងទៅតាមច្បាប់ដូចខាងក្រោមៈ

ជាការពិតណាស់ ច្បាប់ទាំងអស់នេះមានន័យប្រសិនបើលោការីត ODZ ត្រូវបានសង្កេតឃើញ៖ a > 0, a ≠ 1, x >

កិច្ចការ។ ស្វែងរកតម្លៃនៃកន្សោម៖

ការផ្លាស់ប្តូរទៅគ្រឹះថ្មី។

សូមឱ្យលោការីតលោការីតត្រូវបានផ្តល់ឱ្យ។ បន្ទាប់មកសម្រាប់លេខណាមួយ c ដូចជា c > 0 និង c ≠ 1 សមភាពគឺពិត៖

កិច្ចការ។ ស្វែងរកតម្លៃនៃកន្សោម៖

សូម​មើល​ផង​ដែរ:


លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



និទស្សន្តគឺ 2.718281828…. ដើម្បីចងចាំនិទស្សន្ត អ្នកអាចសិក្សាក្បួន៖ និទស្សន្តគឺ 2.7 និងពីរដងនៃឆ្នាំកំណើតរបស់ Leo Tolstoy ។

លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត

ដោយដឹងពីច្បាប់នេះ អ្នកនឹងដឹងទាំងតម្លៃពិតប្រាកដនៃនិទស្សន្ត និងថ្ងៃខែឆ្នាំកំណើតរបស់ Leo Tolstoy ។


ឧទាហរណ៍សម្រាប់លោការីត

យកលោការីតនៃកន្សោម

ឧទាហរណ៍ ១
ក) x=10ac^2 (a>0, c>0)។

ដោយលក្ខណៈសម្បត្តិ 3,5 យើងគណនា

2.

3.

4. កន្លែងណា .



ឧទាហរណ៍ទី 2 ស្វែងរក x ប្រសិនបើ


ឧទាហរណ៍ 3. អនុញ្ញាតឱ្យតម្លៃលោការីតត្រូវបានផ្តល់ឱ្យ

គណនា log(x) ប្រសិនបើ




លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត

លោការីត ដូចជាលេខណាមួយ អាចត្រូវបានបន្ថែម ដក និងបំប្លែងតាមគ្រប់មធ្យោបាយដែលអាចធ្វើទៅបាន។ ប៉ុន្តែដោយសារលោការីតមិនមែនជាលេខធម្មតាទេ មានច្បាប់នៅទីនេះ ដែលត្រូវបានគេហៅថា លក្ខណៈសម្បត្តិមូលដ្ឋាន.

ច្បាប់ទាំងនេះត្រូវតែដឹង - គ្មានបញ្ហាលោការីតធ្ងន់ធ្ងរអាចត្រូវបានដោះស្រាយដោយគ្មានពួកវាទេ។ លើសពីនេះទៀតមានពួកគេតិចតួចណាស់ - អ្វីគ្រប់យ៉ាងអាចរៀនបានក្នុងមួយថ្ងៃ។ ដូច្នេះសូមចាប់ផ្តើម។

ការបូកនិងដកលោការីត

ពិចារណាលោការីតពីរដែលមានមូលដ្ឋានដូចគ្នា៖ លោការីត និងលោការីត។ បន្ទាប់មក គេអាចបូក និងដក និង៖

  1. logax + logay = log(x y);
  2. logax − logay = log(x:y)។

ដូច្នេះផលបូកនៃលោការីតគឺស្មើនឹងលោការីតនៃផលិតផល ហើយភាពខុសគ្នាគឺលោការីតនៃកូតាត។ សូមចំណាំ៖ ចំណុចសំខាន់នៅទីនេះគឺ - មូលដ្ឋានដូចគ្នា។. ប្រសិនបើមូលដ្ឋានខុសគ្នា ច្បាប់ទាំងនេះមិនដំណើរការទេ!

រូបមន្តទាំងនេះនឹងជួយគណនាកន្សោមលោការីត ទោះបីជាផ្នែកនីមួយៗរបស់វាមិនត្រូវបានពិចារណាក៏ដោយ (សូមមើលមេរៀន "អ្វីជាលោការីត")។ សូមក្រឡេកមើលឧទាហរណ៍ហើយមើល៖

ដោយសារមូលដ្ឋាននៃលោការីតគឺដូចគ្នា យើងប្រើរូបមន្តបូក៖
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2 ។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log2 48 − log2 ៣.

មូលដ្ឋានគឺដូចគ្នា យើងប្រើរូបមន្តខុសគ្នា៖
log2 48 − log2 3 = log2 (48:3) = log2 16 = 4 ។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log3 135 − log3 ៥.

ជាថ្មីម្តងទៀត មូលដ្ឋានគឺដូចគ្នា ដូច្នេះយើងមាន៖
log3 135 − log3 5 = log3 (135:5) = log3 27 = 3 ។

ដូចដែលអ្នកអាចឃើញកន្សោមដើមត្រូវបានបង្កើតឡើងដោយលោការីត "អាក្រក់" ដែលមិនត្រូវបានគេចាត់ទុកថាដាច់ដោយឡែក។ ប៉ុន្តែ​បន្ទាប់​ពី​ការ​ផ្លាស់​ប្តូ​រ​ចំនួន​ធម្មតា​ពិត​ជា​ចេញ​។ ការធ្វើតេស្តជាច្រើនគឺផ្អែកលើការពិតនេះ។ បាទ/ចាស ការគ្រប់គ្រង - ការបញ្ចេញមតិស្រដៀងគ្នាក្នុងភាពធ្ងន់ធ្ងរទាំងអស់ (ជួនកាល - ស្ទើរតែគ្មានការផ្លាស់ប្តូរ) ត្រូវបានផ្តល់ជូននៅពេលប្រឡង។

ការដកនិទស្សន្តចេញពីលោការីត

វាងាយស្រួលក្នុងការឃើញថាច្បាប់ចុងក្រោយធ្វើតាមពីរដំបូងរបស់ពួកគេ។ ប៉ុន្តែវាជាការល្អប្រសើរជាងមុនក្នុងការចងចាំវាយ៉ាងណាក៏ដោយ - ក្នុងករណីខ្លះវានឹងកាត់បន្ថយបរិមាណនៃការគណនាយ៉ាងខ្លាំង។

ជាការពិតណាស់ ច្បាប់ទាំងអស់នេះមានន័យប្រសិនបើលោការីត ODZ ត្រូវបានសង្កេតឃើញ៖ a> 0, a ≠ 1, x> 0។ ហើយរឿងមួយទៀត៖ រៀនអនុវត្តរូបមន្តទាំងអស់មិនត្រឹមតែពីឆ្វេងទៅស្តាំប៉ុណ្ណោះទេ ថែមទាំងច្រាសមកវិញផងដែរ ពោលគឺឧ។ អ្នកអាចបញ្ចូលលេខមុនសញ្ញាលោការីតទៅក្នុងលោការីតខ្លួនឯង។ នេះគឺជាអ្វីដែលត្រូវការញឹកញាប់បំផុត។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log7 496 ។

ចូរយើងកម្ចាត់ដឺក្រេនៅក្នុងអាគុយម៉ង់ដោយរូបមន្តទីមួយ៖
log7 496 = 6 log7 49 = 6 2 = 12

កិច្ចការ។ ស្វែងរកតម្លៃនៃកន្សោម៖

ចំណាំថាភាគបែងគឺជាលោការីតដែលមូលដ្ឋាននិងអាគុយម៉ង់គឺជាអំណាចពិតប្រាកដ: 16 = 24; 49 = 72. យើងមាន៖

ខ្ញុំគិតថាឧទាហរណ៍ចុងក្រោយត្រូវការការបំភ្លឺ។ តើលោការីតបានទៅណា? រហូត​ដល់​ពេល​ចុង​ក្រោយ​បំផុត យើង​ធ្វើ​ការ​តែ​ជាមួយ​ភាគបែង​ប៉ុណ្ណោះ។

រូបមន្តលោការីត។ លោការីតគឺជាឧទាហរណ៍នៃដំណោះស្រាយ។

ពួកគេបានបង្ហាញពីមូលដ្ឋាន និងអំណះអំណាងនៃលោការីតឈរនៅទីនោះក្នុងទម្រង់ជាដឺក្រេ ហើយយកសូចនាករចេញ - ពួកគេទទួលបានប្រភាគ "បីជាន់" ។

ឥឡូវនេះសូមក្រឡេកមើលប្រភាគសំខាន់។ ភាគយក និងភាគបែងមានលេខដូចគ្នា៖ log2 7. ចាប់តាំងពី log2 7 ≠ 0 យើងអាចកាត់បន្ថយប្រភាគបាន - 2/4 នឹងនៅតែស្ថិតក្នុងភាគបែង។ យោងទៅតាមក្បួននព្វន្ធ លេខទាំងបួនអាចផ្ទេរទៅភាគយកដែលបានធ្វើរួច។ លទ្ធផលគឺចម្លើយ៖ ២.

ការផ្លាស់ប្តូរទៅគ្រឹះថ្មី។

និយាយអំពីច្បាប់សម្រាប់បូក និងដកលោការីត ខ្ញុំបានសង្កត់ធ្ងន់ជាពិសេសថាពួកវាដំណើរការតែជាមួយមូលដ្ឋានតែមួយប៉ុណ្ណោះ។ ចុះបើមូលដ្ឋានខុសគ្នា? ចុះ​បើ​ពួក​គេ​មិន​មែន​ជា​លេខ​ដូច​គ្នា?

រូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីមកជួយសង្គ្រោះ។ យើងបង្កើតវាក្នុងទម្រង់នៃទ្រឹស្តីបទ៖

សូមឱ្យលោការីតលោការីតត្រូវបានផ្តល់ឱ្យ។ បន្ទាប់មកសម្រាប់លេខណាមួយ c ដូចជា c > 0 និង c ≠ 1 សមភាពគឺពិត៖

ជាពិសេសប្រសិនបើយើងដាក់ c = x យើងទទួលបាន៖

វាធ្វើតាមរូបមន្តទីពីរដែលវាអាចធ្វើទៅបានដើម្បីផ្លាស់ប្តូរមូលដ្ឋាននិងអាគុយម៉ង់នៃលោការីតប៉ុន្តែក្នុងករណីនេះកន្សោមទាំងមូលត្រូវបាន "ត្រឡប់" ពោលគឺឧ។ លោការីតគឺនៅក្នុងភាគបែង។

រូបមន្តទាំងនេះកម្រត្រូវបានរកឃើញនៅក្នុងកន្សោមលេខធម្មតា។ វាអាចធ្វើទៅបានដើម្បីវាយតម្លៃថាតើពួកវាមានភាពងាយស្រួលយ៉ាងណានៅពេលដោះស្រាយសមីការលោការីត និងវិសមភាព។

ទោះយ៉ាងណាក៏ដោយ មានកិច្ចការដែលមិនអាចដោះស្រាយបានទាល់តែសោះ លើកលែងតែការផ្លាស់ប្តូរទៅកាន់គ្រឹះថ្មីមួយ។ ចូរយើងពិចារណាពីរបីចំណុចនេះ៖

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log5 16 log2 25.

ចំណាំថាអាគុយម៉ង់នៃលោការីតទាំងពីរគឺជានិទស្សន្តពិតប្រាកដ។ ចូរយកសូចនាករនេះចេញ៖ log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

ឥឡូវ​យើង​ត្រឡប់​លោការីត​ទីពីរ៖

ដោយសារផលិតផលមិនផ្លាស់ប្តូរពីការបំប្លែងកត្តា យើងគុណនឹងបួន និងពីរដោយស្ងប់ស្ងាត់ ហើយបន្ទាប់មករកលោការីត។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log9 100 lg ៣.

មូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីតទី 1 គឺជាអំណាចពិតប្រាកដ។ ចូរសរសេរវាចុះ ហើយកម្ចាត់សូចនាករ៖

ឥឡូវនេះ ចូរយើងកម្ចាត់លោការីតទសភាគដោយផ្លាស់ទីទៅមូលដ្ឋានថ្មី៖

អត្តសញ្ញាណលោការីតមូលដ្ឋាន

ជាញឹកញាប់នៅក្នុងដំណើរការនៃការដោះស្រាយ វាត្រូវបានទាមទារដើម្បីតំណាងឱ្យលេខជាលោការីតទៅមូលដ្ឋានដែលបានផ្តល់ឱ្យ។ ក្នុងករណីនេះរូបមន្តនឹងជួយយើង:

ក្នុងករណីទីមួយ លេខ n ក្លាយជានិទស្សន្តនៅក្នុងអាគុយម៉ង់។ លេខ n អាចជាអ្វីទាំងអស់ ព្រោះវាគ្រាន់តែជាតម្លៃនៃលោការីតប៉ុណ្ណោះ។

រូបមន្តទីពីរគឺពិតជានិយមន័យដែលបានបកស្រាយ។ វាត្រូវបានគេហៅថាដូចនេះ៖

ជាការពិត តើនឹងមានអ្វីកើតឡើង ប្រសិនបើលេខ b ត្រូវបានលើកឡើងដល់កម្រិតដែលលេខ b ក្នុងសញ្ញាបត្រនេះផ្តល់លេខ a? ត្រឹមត្រូវ៖ នេះគឺជាលេខដូចគ្នា a ។ អានកថាខណ្ឌនេះម្តងទៀតដោយប្រុងប្រយ័ត្ន - មនុស្សជាច្រើន "ព្យួរ" លើវា។

ដូចរូបមន្តបំប្លែងមូលដ្ឋានថ្មី អត្តសញ្ញាណលោការីតមូលដ្ឋាន ជួនកាលជាដំណោះស្រាយតែមួយគត់ដែលអាចធ្វើទៅបាន។

កិច្ចការ។ ស្វែងរកតម្លៃនៃកន្សោម៖

ចំណាំថា log25 64 = log5 8 - គ្រាន់តែយកការ៉េចេញពីមូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីត។ ដោយផ្អែកលើច្បាប់សម្រាប់គុណអំណាចដែលមានមូលដ្ឋានដូចគ្នា យើងទទួលបាន៖

ប្រសិនបើនរណាម្នាក់មិនស្គាល់ នោះគឺជាកិច្ចការពិតប្រាកដមួយពីការប្រឡងរដ្ឋបង្រួបបង្រួម🙂

ឯកតាលោការីត និងសូន្យលោការីត

សរុបសេចក្តីមក ខ្ញុំនឹងផ្តល់អត្តសញ្ញាណពីរដែលពិបាកហៅលក្ខណៈសម្បត្តិ - ផ្ទុយទៅវិញ ទាំងនេះគឺជាផលវិបាកពីនិយមន័យនៃលោការីត។ ពួកគេត្រូវបានរកឃើញជានិច្ចនៅក្នុងបញ្ហា ហើយគួរឱ្យភ្ញាក់ផ្អើល បង្កើតបញ្ហាសូម្បីតែសម្រាប់សិស្ស "កម្រិតខ្ពស់" ក៏ដោយ។

  1. logaa = 1 គឺ។ ចងចាំម្តងនិងសម្រាប់ទាំងអស់: លោការីតទៅមូលដ្ឋានណាមួយ a ពីមូលដ្ឋាននេះខ្លួនវាគឺស្មើនឹងមួយ។
  2. loga 1 = 0 គឺ។ គោល a អាច​ជា​អ្វី​ក៏​ដោយ ប៉ុន្តែ​ប្រសិន​បើ​អាគុយម៉ង់​គឺ​មួយ នោះ​លោការីត​គឺ​សូន្យ! ដោយសារតែ a0 = 1 គឺជាផលវិបាកផ្ទាល់នៃនិយមន័យ។

នោះហើយជាលក្ខណៈសម្បត្តិទាំងអស់។ ត្រូវ​អនុវត្ត​ឲ្យ​បាន​ជាក់​ជា​មិន​ខាន! ទាញយកសន្លឹកបន្លំនៅដើមមេរៀន បោះពុម្ពវាចេញ និងដោះស្រាយបញ្ហា។

សូម​មើល​ផង​ដែរ:

លោការីតនៃលេខ b ទៅមូលដ្ឋាន a តំណាងឱ្យកន្សោម។ ដើម្បីគណនាលោការីតមានន័យថា ស្វែងរកអំណាច x () ដែលសមភាពគឺពិត

លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត

លក្ខណៈសម្បត្តិខាងលើចាំបាច់ត្រូវដឹង ព្រោះថានៅលើមូលដ្ឋានរបស់វា បញ្ហា និងឧទាហរណ៍ស្ទើរតែទាំងអស់ត្រូវបានដោះស្រាយដោយផ្អែកលើលោការីត។ លក្ខណៈសម្បត្តិកម្រនិងអសកម្មដែលនៅសេសសល់អាចទទួលបានដោយឧបាយកលគណិតវិទ្យាជាមួយនឹងរូបមន្តទាំងនេះ

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

នៅពេលគណនារូបមន្តសម្រាប់ផលបូក និងភាពខុសគ្នានៃលោការីត (3.4) ត្រូវបានជួបប្រទះជាញឹកញាប់។ អ្វីដែលនៅសល់គឺស្មុគស្មាញបន្តិច ប៉ុន្តែនៅក្នុងកិច្ចការមួយចំនួន ពួកគេមិនអាចខ្វះបានសម្រាប់ការសម្រួលកន្សោមស្មុគស្មាញ និងគណនាតម្លៃរបស់វា។

ករណីទូទៅនៃលោការីត

លោការីតទូទៅមួយចំនួនគឺជាអ្នកដែលមានមូលដ្ឋានសូម្បីតែដប់ និទស្សន្ត ឬ deuce ។
លោការីតគោលដប់ជាធម្មតាត្រូវបានគេហៅថាលោការីតគោលដប់ ហើយត្រូវបានតំណាងយ៉ាងសាមញ្ញ lg(x)។

វាអាចត្រូវបានគេមើលឃើញពីកំណត់ត្រាដែលជាមូលដ្ឋានមិនត្រូវបានសរសេរនៅក្នុងកំណត់ត្រា។ ឧទាហរណ៍

លោការីតធម្មជាតិគឺជាលោការីតដែលមូលដ្ឋានជានិទស្សន្ត (តំណាង ln(x))។

និទស្សន្តគឺ 2.718281828…. ដើម្បីចងចាំនិទស្សន្ត អ្នកអាចសិក្សាក្បួន៖ និទស្សន្តគឺ 2.7 និងពីរដងនៃឆ្នាំកំណើតរបស់ Leo Tolstoy ។ ដោយដឹងពីច្បាប់នេះ អ្នកនឹងដឹងទាំងតម្លៃពិតប្រាកដនៃនិទស្សន្ត និងថ្ងៃខែឆ្នាំកំណើតរបស់ Leo Tolstoy ។

ហើយមូលដ្ឋានសំខាន់មួយទៀតលោការីតពីរគឺ

ដេរីវេនៃលោការីតនៃអនុគមន៍គឺស្មើនឹងមួយបែងចែកដោយអថេរ

លោការីតអាំងតេក្រាល ឬអង្គបដិវត្តត្រូវបានកំណត់ដោយការពឹងផ្អែក

សម្ភារៈខាងលើគឺគ្រប់គ្រាន់សម្រាប់អ្នកក្នុងការដោះស្រាយបញ្ហាជាច្រើនទាក់ទងនឹងលោការីត និងលោការីត។ សម្រាប់ជាប្រយោជន៍នៃការយល់ដឹងអំពីសម្ភារៈ ខ្ញុំនឹងផ្តល់ឧទាហរណ៍ធម្មតាមួយចំនួនពី កម្មវិធីសិក្សារបស់សាលានិងសាកលវិទ្យាល័យ។

ឧទាហរណ៍សម្រាប់លោការីត

យកលោការីតនៃកន្សោម

ឧទាហរណ៍ ១
ក) x=10ac^2 (a>0, c>0)។

ដោយលក្ខណៈសម្បត្តិ 3,5 យើងគណនា

2.
ដោយលក្ខណៈសម្បត្តិខុសគ្នានៃលោការីត យើងមាន

3.
ដោយប្រើលក្ខណៈសម្បត្តិ 3.5 យើងរកឃើញ

4. កន្លែងណា .

កន្សោម​ដែល​ហាក់​ដូច​ជា​ស្មុគ្រ​ស្មាញ​ដោយ​ប្រើ​ស៊េរី​នៃ​ច្បាប់​ត្រូវ​បាន​ធ្វើ​ឱ្យ​សាមញ្ញ​ទៅ​នឹង​ទម្រង់​បែបបទ

ការស្វែងរកតម្លៃលោការីត

ឧទាហរណ៍ទី 2 ស្វែងរក x ប្រសិនបើ

ការសម្រេចចិត្ត។ សម្រាប់ការគណនា យើងអនុវត្តលក្ខណៈសម្បត្តិ 5 និង 13 រហូតដល់ពាក្យចុងក្រោយ

ជំនួសក្នុងកំណត់ត្រា និងកាន់ទុក្ខ

ដោយហេតុថាមូលដ្ឋានស្មើគ្នា នោះយើងស្មើនឹងកន្សោម

លោការីត។ កម្រិតដំបូង។

អនុញ្ញាតឱ្យតម្លៃលោការីតត្រូវបានផ្តល់ឱ្យ

គណនា log(x) ប្រសិនបើ

ដំណោះស្រាយ៖ យកលោការីតនៃអថេរមកសរសេរលោការីតតាមរយៈផលបូកនៃពាក្យ


នេះគ្រាន់តែជាការចាប់ផ្តើមនៃការស្គាល់លោការីត និងលក្ខណៈសម្បត្តិរបស់វា។ អនុវត្តការគណនា បង្កើនជំនាញជាក់ស្តែងរបស់អ្នក - អ្នកនឹងត្រូវការចំណេះដឹងដែលទទួលបានក្នុងពេលឆាប់ៗនេះ ដើម្បីដោះស្រាយសមីការលោការីត។ ដោយបានសិក្សាពីវិធីសាស្រ្តជាមូលដ្ឋានសម្រាប់ដោះស្រាយសមីការបែបនេះ យើងនឹងពង្រីកចំនេះដឹងរបស់អ្នកសម្រាប់ប្រធានបទសំខាន់ស្មើគ្នាមួយទៀត គឺវិសមភាពលោការីត...

លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត

លោការីត ដូចជាលេខណាមួយ អាចត្រូវបានបន្ថែម ដក និងបំប្លែងតាមគ្រប់មធ្យោបាយដែលអាចធ្វើទៅបាន។ ប៉ុន្តែដោយសារលោការីតមិនមែនជាលេខធម្មតាទេ មានច្បាប់នៅទីនេះ ដែលត្រូវបានគេហៅថា លក្ខណៈសម្បត្តិមូលដ្ឋាន.

ច្បាប់ទាំងនេះត្រូវតែដឹង - គ្មានបញ្ហាលោការីតធ្ងន់ធ្ងរអាចត្រូវបានដោះស្រាយដោយគ្មានពួកវាទេ។ លើសពីនេះទៀតមានពួកគេតិចតួចណាស់ - អ្វីគ្រប់យ៉ាងអាចរៀនបានក្នុងមួយថ្ងៃ។ ដូច្នេះសូមចាប់ផ្តើម។

ការបូកនិងដកលោការីត

ពិចារណាលោការីតពីរដែលមានមូលដ្ឋានដូចគ្នា៖ លោការីត និងលោការីត។ បន្ទាប់មក គេអាចបូក និងដក និង៖

  1. logax + logay = log(x y);
  2. logax − logay = log(x:y)។

ដូច្នេះផលបូកនៃលោការីតគឺស្មើនឹងលោការីតនៃផលិតផល ហើយភាពខុសគ្នាគឺលោការីតនៃកូតាត។ សូមចំណាំ៖ ចំណុចសំខាន់នៅទីនេះគឺ - មូលដ្ឋានដូចគ្នា។. ប្រសិនបើមូលដ្ឋានខុសគ្នា ច្បាប់ទាំងនេះមិនដំណើរការទេ!

រូបមន្តទាំងនេះនឹងជួយគណនាកន្សោមលោការីត ទោះបីជាផ្នែកនីមួយៗរបស់វាមិនត្រូវបានពិចារណាក៏ដោយ (សូមមើលមេរៀន "អ្វីជាលោការីត")។ សូមក្រឡេកមើលឧទាហរណ៍ហើយមើល៖

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log6 4 + log6 ៩.

ដោយសារមូលដ្ឋាននៃលោការីតគឺដូចគ្នា យើងប្រើរូបមន្តបូក៖
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2 ។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log2 48 − log2 ៣.

មូលដ្ឋានគឺដូចគ្នា យើងប្រើរូបមន្តខុសគ្នា៖
log2 48 − log2 3 = log2 (48:3) = log2 16 = 4 ។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log3 135 − log3 ៥.

ជាថ្មីម្តងទៀត មូលដ្ឋានគឺដូចគ្នា ដូច្នេះយើងមាន៖
log3 135 − log3 5 = log3 (135:5) = log3 27 = 3 ។

ដូចដែលអ្នកអាចឃើញកន្សោមដើមត្រូវបានបង្កើតឡើងដោយលោការីត "អាក្រក់" ដែលមិនត្រូវបានគេចាត់ទុកថាដាច់ដោយឡែក។ ប៉ុន្តែ​បន្ទាប់​ពី​ការ​ផ្លាស់​ប្តូ​រ​ចំនួន​ធម្មតា​ពិត​ជា​ចេញ​។ ការធ្វើតេស្តជាច្រើនគឺផ្អែកលើការពិតនេះ។ បាទ/ចាស ការគ្រប់គ្រង - ការបញ្ចេញមតិស្រដៀងគ្នាក្នុងភាពធ្ងន់ធ្ងរទាំងអស់ (ជួនកាល - ស្ទើរតែគ្មានការផ្លាស់ប្តូរ) ត្រូវបានផ្តល់ជូននៅពេលប្រឡង។

ការដកនិទស្សន្តចេញពីលោការីត

ឥឡូវ​នេះ​សូម​ធ្វើ​ឱ្យ​កិច្ចការ​ស្មុគស្មាញ​បន្តិច។ ចុះបើមានដឺក្រេក្នុងគោល ឬអាគុយម៉ង់នៃលោការីត? បន្ទាប់មកនិទស្សន្តនៃដឺក្រេនេះអាចត្រូវបានយកចេញពីសញ្ញានៃលោការីតដោយយោងទៅតាមច្បាប់ដូចខាងក្រោមៈ

វាងាយស្រួលក្នុងការឃើញថាច្បាប់ចុងក្រោយធ្វើតាមពីរដំបូងរបស់ពួកគេ។ ប៉ុន្តែវាជាការល្អប្រសើរជាងមុនក្នុងការចងចាំវាយ៉ាងណាក៏ដោយ - ក្នុងករណីខ្លះវានឹងកាត់បន្ថយបរិមាណនៃការគណនាយ៉ាងខ្លាំង។

ជាការពិតណាស់ ច្បាប់ទាំងអស់នេះមានន័យប្រសិនបើលោការីត ODZ ត្រូវបានសង្កេតឃើញ៖ a> 0, a ≠ 1, x> 0។ ហើយរឿងមួយទៀត៖ រៀនអនុវត្តរូបមន្តទាំងអស់មិនត្រឹមតែពីឆ្វេងទៅស្តាំប៉ុណ្ណោះទេ ថែមទាំងច្រាសមកវិញផងដែរ ពោលគឺឧ។ អ្នកអាចបញ្ចូលលេខមុនសញ្ញាលោការីតទៅក្នុងលោការីតខ្លួនឯង។

វិធីដោះស្រាយលោការីត

នេះគឺជាអ្វីដែលត្រូវការញឹកញាប់បំផុត។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log7 496 ។

ចូរយើងកម្ចាត់ដឺក្រេនៅក្នុងអាគុយម៉ង់ដោយរូបមន្តទីមួយ៖
log7 496 = 6 log7 49 = 6 2 = 12

កិច្ចការ។ ស្វែងរកតម្លៃនៃកន្សោម៖

ចំណាំថាភាគបែងគឺជាលោការីតដែលមូលដ្ឋាននិងអាគុយម៉ង់គឺជាអំណាចពិតប្រាកដ: 16 = 24; 49 = 72. យើងមាន៖

ខ្ញុំគិតថាឧទាហរណ៍ចុងក្រោយត្រូវការការបំភ្លឺ។ តើលោការីតបានទៅណា? រហូត​ដល់​ពេល​ចុង​ក្រោយ​បំផុត យើង​ធ្វើ​ការ​តែ​ជាមួយ​ភាគបែង​ប៉ុណ្ណោះ។ ពួកគេបានបង្ហាញពីមូលដ្ឋាន និងអំណះអំណាងនៃលោការីតឈរនៅទីនោះក្នុងទម្រង់ជាដឺក្រេ ហើយយកសូចនាករចេញ - ពួកគេទទួលបានប្រភាគ "បីជាន់" ។

ឥឡូវនេះសូមក្រឡេកមើលប្រភាគសំខាន់។ ភាគយក និងភាគបែងមានលេខដូចគ្នា៖ log2 7. ចាប់តាំងពី log2 7 ≠ 0 យើងអាចកាត់បន្ថយប្រភាគបាន - 2/4 នឹងនៅតែស្ថិតក្នុងភាគបែង។ យោងទៅតាមក្បួននព្វន្ធ លេខទាំងបួនអាចផ្ទេរទៅភាគយកដែលបានធ្វើរួច។ លទ្ធផលគឺចម្លើយ៖ ២.

ការផ្លាស់ប្តូរទៅគ្រឹះថ្មី។

និយាយអំពីច្បាប់សម្រាប់បូក និងដកលោការីត ខ្ញុំបានសង្កត់ធ្ងន់ជាពិសេសថាពួកវាដំណើរការតែជាមួយមូលដ្ឋានតែមួយប៉ុណ្ណោះ។ ចុះបើមូលដ្ឋានខុសគ្នា? ចុះ​បើ​ពួក​គេ​មិន​មែន​ជា​លេខ​ដូច​គ្នា?

រូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីមកជួយសង្គ្រោះ។ យើងបង្កើតវាក្នុងទម្រង់នៃទ្រឹស្តីបទ៖

សូមឱ្យលោការីតលោការីតត្រូវបានផ្តល់ឱ្យ។ បន្ទាប់មកសម្រាប់លេខណាមួយ c ដូចជា c > 0 និង c ≠ 1 សមភាពគឺពិត៖

ជាពិសេសប្រសិនបើយើងដាក់ c = x យើងទទួលបាន៖

វាធ្វើតាមរូបមន្តទីពីរដែលវាអាចធ្វើទៅបានដើម្បីផ្លាស់ប្តូរមូលដ្ឋាននិងអាគុយម៉ង់នៃលោការីតប៉ុន្តែក្នុងករណីនេះកន្សោមទាំងមូលត្រូវបាន "ត្រឡប់" ពោលគឺឧ។ លោការីតគឺនៅក្នុងភាគបែង។

រូបមន្តទាំងនេះកម្រត្រូវបានរកឃើញនៅក្នុងកន្សោមលេខធម្មតា។ វាអាចធ្វើទៅបានដើម្បីវាយតម្លៃថាតើពួកវាមានភាពងាយស្រួលយ៉ាងណានៅពេលដោះស្រាយសមីការលោការីត និងវិសមភាព។

ទោះយ៉ាងណាក៏ដោយ មានកិច្ចការដែលមិនអាចដោះស្រាយបានទាល់តែសោះ លើកលែងតែការផ្លាស់ប្តូរទៅកាន់គ្រឹះថ្មីមួយ។ ចូរយើងពិចារណាពីរបីចំណុចនេះ៖

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log5 16 log2 25.

ចំណាំថាអាគុយម៉ង់នៃលោការីតទាំងពីរគឺជានិទស្សន្តពិតប្រាកដ។ ចូរយកសូចនាករនេះចេញ៖ log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

ឥឡូវ​យើង​ត្រឡប់​លោការីត​ទីពីរ៖

ដោយសារផលិតផលមិនផ្លាស់ប្តូរពីការបំប្លែងកត្តា យើងគុណនឹងបួន និងពីរដោយស្ងប់ស្ងាត់ ហើយបន្ទាប់មករកលោការីត។

កិច្ចការ។ រកតម្លៃនៃកន្សោម៖ log9 100 lg ៣.

មូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីតទី 1 គឺជាអំណាចពិតប្រាកដ។ ចូរសរសេរវាចុះ ហើយកម្ចាត់សូចនាករ៖

ឥឡូវនេះ ចូរយើងកម្ចាត់លោការីតទសភាគដោយផ្លាស់ទីទៅមូលដ្ឋានថ្មី៖

អត្តសញ្ញាណលោការីតមូលដ្ឋាន

ជាញឹកញាប់នៅក្នុងដំណើរការនៃការដោះស្រាយ វាត្រូវបានទាមទារដើម្បីតំណាងឱ្យលេខជាលោការីតទៅមូលដ្ឋានដែលបានផ្តល់ឱ្យ។ ក្នុងករណីនេះរូបមន្តនឹងជួយយើង:

ក្នុងករណីទីមួយ លេខ n ក្លាយជានិទស្សន្តនៅក្នុងអាគុយម៉ង់។ លេខ n អាចជាអ្វីទាំងអស់ ព្រោះវាគ្រាន់តែជាតម្លៃនៃលោការីតប៉ុណ្ណោះ។

រូបមន្តទីពីរគឺពិតជានិយមន័យដែលបានបកស្រាយ។ វាត្រូវបានគេហៅថាដូចនេះ៖

ជាការពិត តើនឹងមានអ្វីកើតឡើង ប្រសិនបើលេខ b ត្រូវបានលើកឡើងដល់កម្រិតដែលលេខ b ក្នុងសញ្ញាបត្រនេះផ្តល់លេខ a? ត្រឹមត្រូវ៖ នេះគឺជាលេខដូចគ្នា a ។ អានកថាខណ្ឌនេះម្តងទៀតដោយប្រុងប្រយ័ត្ន - មនុស្សជាច្រើន "ព្យួរ" លើវា។

ដូចរូបមន្តបំប្លែងមូលដ្ឋានថ្មី អត្តសញ្ញាណលោការីតមូលដ្ឋាន ជួនកាលជាដំណោះស្រាយតែមួយគត់ដែលអាចធ្វើទៅបាន។

កិច្ចការ។ ស្វែងរកតម្លៃនៃកន្សោម៖

ចំណាំថា log25 64 = log5 8 - គ្រាន់តែយកការ៉េចេញពីមូលដ្ឋាន និងអាគុយម៉ង់នៃលោការីត។ ដោយផ្អែកលើច្បាប់សម្រាប់គុណអំណាចដែលមានមូលដ្ឋានដូចគ្នា យើងទទួលបាន៖

ប្រសិនបើនរណាម្នាក់មិនស្គាល់ នោះគឺជាកិច្ចការពិតប្រាកដមួយពីការប្រឡងរដ្ឋបង្រួបបង្រួម🙂

ឯកតាលោការីត និងសូន្យលោការីត

សរុបសេចក្តីមក ខ្ញុំនឹងផ្តល់អត្តសញ្ញាណពីរដែលពិបាកហៅលក្ខណៈសម្បត្តិ - ផ្ទុយទៅវិញ ទាំងនេះគឺជាផលវិបាកពីនិយមន័យនៃលោការីត។ ពួកគេត្រូវបានរកឃើញជានិច្ចនៅក្នុងបញ្ហា ហើយគួរឱ្យភ្ញាក់ផ្អើល បង្កើតបញ្ហាសូម្បីតែសម្រាប់សិស្ស "កម្រិតខ្ពស់" ក៏ដោយ។

  1. logaa = 1 គឺ។ ចងចាំម្តងនិងសម្រាប់ទាំងអស់: លោការីតទៅមូលដ្ឋានណាមួយ a ពីមូលដ្ឋាននេះខ្លួនវាគឺស្មើនឹងមួយ។
  2. loga 1 = 0 គឺ។ គោល a អាច​ជា​អ្វី​ក៏​ដោយ ប៉ុន្តែ​ប្រសិន​បើ​អាគុយម៉ង់​គឺ​មួយ នោះ​លោការីត​គឺ​សូន្យ! ដោយសារតែ a0 = 1 គឺជាផលវិបាកផ្ទាល់នៃនិយមន័យ។

នោះហើយជាលក្ខណៈសម្បត្តិទាំងអស់។ ត្រូវ​អនុវត្ត​ឲ្យ​បាន​ជាក់​ជា​មិន​ខាន! ទាញយកសន្លឹកបន្លំនៅដើមមេរៀន បោះពុម្ពវាចេញ និងដោះស្រាយបញ្ហា។