Fundamentele mecanicii teoretice. La subiectul „Mecanica tehnică

Ca parte a oricărei programe, studiul fizicii începe cu mecanica. Nu din teoretic, nu din aplicat și nu din calcul, ci din mecanică clasică veche. Această mecanică este numită și mecanică newtoniană. Potrivit legendei, omul de știință se plimba prin grădină, a văzut un măr căzând și tocmai acest fenomen l-a determinat să descopere legea gravitației universale. Desigur, legea a existat dintotdeauna, iar Newton i-a dat doar o formă pe înțelesul oamenilor, dar meritul lui este neprețuit. În acest articol, nu vom descrie legile mecanicii newtoniene cât mai detaliat posibil, dar vom schița elementele de bază, cunoștințele de bază, definițiile și formulele care vă pot juca întotdeauna.

Mecanica este o ramură a fizicii, o știință care studiază mișcarea corpurilor materiale și interacțiunile dintre ele.

Cuvântul în sine este de origine greacă și se traduce prin „arta de a construi mașini”. Dar înainte de a construi mașini, mai avem un drum lung de parcurs, așa că haideți să călcăm pe urmele strămoșilor noștri și vom studia mișcarea pietrelor aruncate în unghi față de orizont și a merelor care cad pe capete de la o înălțime h.


De ce începe studiul fizicii cu mecanica? Pentru că este complet firesc, să nu o pornim de la echilibrul termodinamic?!

Mecanica este una dintre cele mai vechi științe, iar din punct de vedere istoric, studiul fizicii a început tocmai cu bazele mecanicii. Plasați în cadrul timpului și al spațiului, oamenii, de fapt, nu puteau pleca de la altceva, oricât de mult și-ar fi dorit. Corpurile în mișcare sunt primul lucru la care acordăm atenție.

Ce este mișcarea?

Mișcarea mecanică este o modificare a poziției corpurilor în spațiu unul față de celălalt în timp.

După această definiție, ajungem în mod firesc la conceptul de cadru de referință. Schimbarea poziției corpurilor în spațiu unul față de celălalt. Cuvinte cheie aici: relativ unul față de celălalt . La urma urmei, un pasager într-o mașină se mișcă față de o persoană care stă pe marginea drumului cu o anumită viteză și se odihnește față de vecinul său pe un scaun din apropiere și se deplasează cu o altă viteză față de un pasager într-o mașină care ii depaseste.


De aceea, pentru a măsura în mod normal parametrii obiectelor în mișcare și a nu ne confunda, avem nevoie sistem de referință - corp de referință interconectat rigid, sistem de coordonate și ceas. De exemplu, pământul se mișcă în jurul soarelui într-un cadru de referință heliocentric. În viața de zi cu zi, efectuăm aproape toate măsurătorile noastre într-un sistem de referință geocentric asociat cu Pământul. Pământul este un corp de referință în raport cu care se deplasează mașini, avioane, oameni, animale.


Mecanica, ca știință, are propria sa sarcină. Sarcina mecanicii este de a cunoaște în orice moment poziția corpului în spațiu. Cu alte cuvinte, mecanica construiește o descriere matematică a mișcării și găsește conexiuni între mărimile fizice care o caracterizează.

Pentru a merge mai departe, avem nevoie de noțiunea de „ punct material ". Ei spun că fizica este o știință exactă, dar fizicienii știu câte aproximări și presupuneri trebuie făcute pentru a fi de acord cu exactitatea aceasta. Nimeni nu a văzut vreodată un punct material sau a adulmecat un gaz ideal, dar ele există! Doar că sunt mult mai ușor de trăit cu ele.

Un punct material este un corp a cărui dimensiune și formă pot fi neglijate în contextul acestei probleme.

Secţiuni de mecanică clasică

Mecanica este formată din mai multe secțiuni

  • Cinematică
  • Dinamica
  • Statică

Cinematică din punct de vedere fizic, studiază exact modul în care se mișcă corpul. Cu alte cuvinte, această secțiune tratează caracteristicile cantitative ale mișcării. Găsiți viteza, calea - sarcini tipice ale cinematicii

Dinamica rezolvă întrebarea de ce se mișcă așa cum o face. Adică ia în considerare forțele care acționează asupra corpului.

Statică studiază echilibrul corpurilor sub acțiunea forțelor, adică răspunde la întrebarea: de ce nu cade deloc?

Limitele de aplicabilitate ale mecanicii clasice

Mecanica clasică nu mai pretinde a fi o știință care explică totul (la începutul secolului trecut, totul era complet diferit) și are un domeniu clar de aplicabilitate. În general, legile mecanicii clasice sunt valabile pentru lumea cunoscută nouă în ceea ce privește dimensiunea (macrolume). Ele încetează să funcționeze în cazul lumii particulelor, când mecanica clasică este înlocuită cu mecanica cuantică. De asemenea, mecanica clasică este inaplicabilă cazurilor în care mișcarea corpurilor are loc la o viteză apropiată de viteza luminii. În astfel de cazuri, efectele relativiste devin pronunțate. Aproximativ vorbind, în cadrul mecanicii cuantice și relativiste - mecanica clasică, acesta este un caz special când dimensiunile corpului sunt mari și viteza este mică.


În general, efectele cuantice și relativiste nu dispar niciodată; ele au loc și în timpul mișcării obișnuite a corpurilor macroscopice la o viteză mult mai mică decât viteza luminii. Un alt lucru este că acțiunea acestor efecte este atât de mică încât nu depășește cele mai precise măsurători. Mecanica clasică nu își va pierde niciodată importanța fundamentală.

Vom continua să studiem bazele fizice ale mecanicii în articolele viitoare. Pentru o mai bună înțelegere a mecanicii, vă puteți referi oricând la autorii noștri, care aruncă în mod individual lumină asupra punctului întunecat al celei mai dificile sarcini.

a 20-a ed. - M.: 2010.- 416 p.

Cartea conturează bazele mecanicii unui punct material, a sistemului de puncte materiale și a unui corp solid într-un volum corespunzător programelor universităților tehnice. Sunt date multe exemple și sarcini, ale căror soluții sunt însoțite de linii directoare adecvate. Pentru studenții universităților tehnice cu normă întreagă și prin corespondență.

Format: pdf

Marimea: 14 MB

Urmăriți, descărcați: drive.google

CUPRINS
Prefață la cea de-a treisprezecea ediție 3
Introducere 5
SECȚIUNEA I STATICA UNEI STĂRI SOLIDE
Capitolul I. Concepte de bază prevederile inițiale ale articolelor 9
41. Corp absolut rigid; putere. Sarcini de statică 9
12. Dispoziții inițiale ale staticii » 11
$ 3. Conexiuni și reacțiile lor 15
Capitolul II. Compoziția forțelor. Sistemul forțelor convergente 18
§patru. Geometric! Metoda de combinare a forțelor. Rezultatul forțelor convergente, descompunerea forțelor 18
f 5. Proiecții de forțe pe axă și pe plan, Metodă analitică de stabilire și adunare a forțelor 20
16. Echilibrul sistemului de forţe convergente_. . . 23
17. Rezolvarea problemelor de statică. 25
Capitolul III. Moment de forță în jurul centrului. Cuplu de putere 31
i 8. Moment de forță în jurul centrului (sau punctului) 31
| 9. Câteva forțe. moment de cuplu 33
f 10*. Teoreme de echivalență și adunare perechi 35
Capitolul IV. Aducerea sistemului de forțe în centru. Condiții de echilibru... 37
f 11. Teorema transferului de forțe paralele 37
112. Aducerea sistemului de forţe la un centru dat - . .38
§ 13. Condiţii pentru echilibrul unui sistem de forţe. Teorema asupra momentului rezultantei 40
Capitolul V. Sistemul de forțe plat 41
§ 14. Momente algebrice de forță și cupluri 41
115. Reducerea unui sistem plat de forțe la forma cea mai simplă .... 44
§ 16. Echilibrul unui sistem plat de forţe. Cazul forțelor paralele. 46
§ 17. Rezolvarea problemelor 48
118. Echilibrul sistemelor corpurilor 63
§ 19*. Sisteme de corpuri (structuri) determinate static și nedeterminate static 56"
f 20*. Definiţia internal forces. 57
§ 21*. Forțe distribuite 58
E22*. Calculul fermelor plate 61
Capitolul VI. Frecare 64
! 23. Legile frecării de alunecare 64
: 24. Reacții de legătură aspră. Unghi de frecare 66
: 25. Echilibrul în prezența frecării 66
(26*. Frecarea filetului pe o suprafață cilindrică 69
1 27*. Frecare de rulare 71
Capitolul VII. Sistemul spațial de forțe 72
§28. Moment de forță în jurul axei. Calculul vectorului principal
iar momentul principal al sistemului de forțe 72
§ 29*. Reducerea sistemului spațial de forțe la forma cea mai simplă 77
§treizeci. Echilibrul unui sistem spațial arbitrar de forțe. Cazul forțelor paralele
Capitolul VIII. Centrul de greutate 86
§31. Centrul forțelor paralele 86
§ 32. Câmp de forță. Centrul de greutate al unui corp rigid 88
§ 33. Coordonatele centrelor de greutate ale corpurilor omogene 89
§ 34. Metode de determinare a coordonatelor centrelor de greutate ale corpurilor. 90
§ 35. Centrele de greutate ale unor corpuri omogene 93
SECȚIUNEA A DOUA CINEMATICA UNUI PUNCT ȘI A UNUI CORPS RIGID
Capitolul IX. Cinematica punctuală 95
§ 36. Introducere în cinematică 95
§ 37. Metode de precizare a deplasării unui punct. . 96
§38. Vector viteza punctului,. 99
§ 39
§40. Determinarea vitezei și accelerației unui punct cu metoda coordonatelor de specificare a mișcării 102
§41. Rezolvarea problemelor de cinematică punctuală 103
§ 42. Axele unui triedru natural. Valoarea numerică a vitezei 107
§ 43. Accelerația tangentă și normală a unui punct 108
§44. Câteva cazuri speciale de mișcare a unui punct în software
§45. Grafice ale mișcării, vitezei și accelerației punctului 112
§ 46. Rezolvarea problemelor< 114
§47*. Viteza și accelerația unui punct în coordonatele polare 116
Capitolul X. Mișcările de translație și rotație ale unui corp rigid. . 117
§48. Mișcarea de translație 117
§ 49. Mișcarea de rotație a unui corp rigid în jurul unei axe. Viteza unghiulară și accelerația unghiulară 119
§cincizeci. Rotire uniformă și uniformă 121
§51. Vitezele și accelerațiile punctelor unui corp în rotație 122
Capitolul XI. Mișcarea plan-paralelă a unui corp rigid 127
§52. Ecuațiile mișcării plan-paralel (mișcarea unei figuri plane). Descompunerea mișcării în translație și rotație 127
§53*. Determinarea traiectoriilor punctelor unui plan figura 129
§54. Determinarea vitezelor punctelor de pe un plan figura 130
§ 55. Teorema privind proiecţiile vitezelor a două puncte ale corpului 131
§ 56. Determinarea vitezelor punctelor unei figuri plane folosind centrul de viteze instantaneu. Conceptul de centroizi 132
§57. Rezolvarea problemelor 136
§58*. Determinarea accelerațiilor punctelor unui plan figura 140
§59*. Centru de accelerație instantaneu „*”*
Capitolul XII*. Mișcarea unui corp rigid în jurul unui punct fix și mișcarea unui corp rigid liber 147
§ 60. Mișcarea unui corp rigid având un punct fix. 147
§61. Ecuații Euler cinematice 149
§62. Vitezele și accelerațiile punctelor corpului 150
§ 63. Cazul general de mișcare a unui corp rigid liber 153
Capitolul XIII. Mișcare complexă a punctului 155
§ 64. Moțiuni relative, figurative și absolute 155
§ 65, Teorema adiției vitezei » 156
§66. Teorema adunării accelerațiilor (teorema lui Coriols) 160
§67. Rezolvarea problemelor 16*
Capitolul XIV*. Mișcarea complexă a unui corp rigid 169
§68. Adăugarea mișcărilor de translație 169
§69. Adăugarea rotațiilor în jurul a două axe paralele 169
§70. Roți dințate cilindrice 172
§ 71. Adăugarea rotațiilor în jurul axelor care se intersectează 174
§72. Adăugarea mișcărilor de translație și rotație. Mișcarea șurubului 176
SECȚIUNEA A TREIA DINAMICA UNUI PUNCT
Capitolul XV: Introducere în dinamică. Legile dinamicii 180
§ 73. Concepte de bază și definiții 180
§ 74. Legile dinamicii. Probleme ale dinamicii unui punct material 181
§ 75. Sisteme de unitati 183
§76. Tipuri de bază de forțe 184
Capitolul XVI. Ecuații diferențiale ale mișcării unui punct. Rezolvarea problemelor de dinamică a punctelor 186
§ 77. Ecuații diferențiale, mișcări ale unui punct material Nr. 6
§ 78. Rezolvarea primei probleme de dinamică (determinarea forțelor dintr-o mișcare dată) 187
§ 79. Rezolvarea problemei principale de dinamică în mișcarea rectilinie a unui punct 189
§ 80. Exemple de rezolvare a problemelor 191
§81*. Căderea unui corp într-un mediu rezistent (în aer) 196
§82. Rezolvarea problemei principale de dinamică, cu mișcarea curbilinie a unui punct 197
Capitolul XVII. Teoreme generale ale dinamicii punctelor 201
§83. Cantitatea de mișcare a punctului. Force Impulse 201
§ S4. Teorema privind modificarea impulsului unui punct 202
§ 85. Teorema privind modificarea momentului unghiular al unui punct (teorema momentelor) „204
§86*. Mișcarea sub acțiunea unei forțe centrale. Legea zonelor.. 266
§ 8-7. Munca de forță. Puterea 208
§88. Exemple de calcul al lucrării 210
§89. Teorema privind modificarea energiei cinetice a unui punct. „... 213J
Capitolul XVIII. Mișcarea neliberă și relativă a unui punct 219
§90. Mișcarea neliberă a unui punct. 219
§91. Mișcarea relativă a unui punct 223
§ 92. Influența rotației Pământului asupra echilibrului și mișcării corpurilor... 227
Secțiunea 93*. Abaterea punctului incident de la verticală din cauza rotației Pământului „230
Capitolul XIX. Fluctuațiile rectilinie ale unui punct. . . 232
§ 94. Vibrații libere fără a ține cont de forțele de rezistență 232
§ 95. Oscilații libere cu rezistență vâscoasă (oscilații amortizate) 238
§96. Vibrații forțate. Rezonanta 241
Capitolul XX*. Mișcarea unui corp în câmpul gravitațional 250
§ 97. Mișcarea unui corp aruncat în câmpul gravitațional al Pământului „250
§98. Sateliții artificiali ai Pământului. Traiectorii eliptice. 254
§ 99. Conceptul de imponderabilitate. „Sisteme de referinţă locale 257
SECȚIUNEA A PATRA DINAMICA UNUI SISTEM ȘI A UNUI CORPS RIGID
G i a v a XXI. Introducere în dinamica sistemului. momente de inerție. 263
§ 100. Sistem mecanic. Forțe externe și interne 263
§ 101. Masa sistemului. Centrul de greutate 264
§ 102. Momentul de inerție al unui corp în jurul unei axe. Raza de inerție. . 265
$ 103. Momentele de inerție ale unui corp față de axe paralele. Teorema lui Huygens 268
§ 104*. momente de inerție centrifuge. Concepte despre principalele axe de inerție ale corpului 269
105 USD*. Momentul de inerție al unui corp față de o axă arbitrară. 271
Capitolul XXII. Teorema privind mișcarea centrului de masă al sistemului 273
$ 106. Ecuații diferențiale ale mișcării sistemului 273
§ 107. Teorema asupra mișcării centrului de masă 274
$ 108. Legea conservării mișcării centrului de masă 276
§ 109. Rezolvarea problemelor 277
Capitolul XXIII. Teorema privind modificarea cantității unui sistem mobil. . 280
$ DAR. Număr sistem de mișcare 280
§111. Teorema privind schimbarea impulsului 281
§ 112. Legea conservării impulsului 282
113 USD*. Aplicarea teoremei la mișcarea unui lichid (gaz) 284
§ 114*. Corp de masă variabilă. Mișcarea rachetei 287
Gdawa XXIV. Teorema privind modificarea momentului de impuls al sistemului 290
§ 115. Momentul principal al mărimilor de mișcare ale sistemului 290
$ 116. Teorema privind modificarea momentului principal al impulsului sistemului (teorema momentelor) 292
117 USD. Legea conservării momentului principal al impulsului. . 294
118 USD. Rezolvarea problemelor 295
119 USD*. Aplicarea teoremei momentului la mișcarea unui lichid (gaz) 298
§ 120. Condiții de echilibru pentru un sistem mecanic 300
Capitolul XXV. Teorema privind modificarea energiei cinetice a sistemului. . 301.
§ 121. Energia cinetică a sistemului 301
122 USD. Unele cazuri de calcul al muncii 305
$ 123. Teorema privind modificarea energiei cinetice a sistemului 307
124 USD. Rezolvarea problemelor 310
125 USD*. Sarcini mixte „314
126 USD. Câmp de forță potențial și funcție de forță 317
127 USD, energie potențială. Legea conservării energiei mecanice 320
Capitolul XXVI. „Aplicarea teoremelor generale la dinamica unui corp rigid 323
12 USD&. Mișcarea de rotație a unui corp rigid în jurul unei axe fixe ". 323"
129 dolari. Pendul fizic. Determinarea experimentală a momentelor de inerție. 326
130 USD. Mișcarea plan-paralelă a unui corp rigid 328
131 USD*. Teoria elementară a giroscopului 334
132 USD*. Mișcarea unui corp rigid în jurul unui punct fix și mișcarea unui corp rigid liber 340
Capitolul XXVII. principiul d'Alembert 344
133 dolari. Principiul lui d'Alembert pentru un punct și un sistem mecanic. . 344
$ 134. Vectorul principal și momentul principal al forțelor de inerție 346
135 USD. Rezolvarea problemelor 348
$136*, Reacții didemice care acționează pe axa unui corp în rotație. Echilibrarea corpurilor rotative 352
Capitolul XXVIII. Principiul deplasărilor posibile și ecuația generală a dinamicii 357
§ 137. Clasificarea legăturilor 357
§ 138. Posibilele deplasări ale sistemului. Numărul de grade de libertate. . 358
§ 139. Principiul mişcărilor posibile 360
§ 140. Rezolvarea problemelor 362
§ 141. Ecuația generală a dinamicii 367
Capitolul XXIX. Condiții de echilibru și ecuații de mișcare ale sistemului în coordonate generalizate 369
§ 142. Coordonate generalizate şi viteze generalizate. . . 369
§ 143. Forţe generalizate 371
§ 144. Condiții de echilibru pentru un sistem în coordonate generalizate 375
§ 145. Ecuațiile lui Lagrange 376
§ 146. Rezolvarea problemelor 379
Capitolul XXX*. Mici oscilații ale sistemului în jurul poziției de echilibru stabil 387
§ 147. Conceptul de stabilitate de echilibru 387
§ 148. Mici vibrații libere ale unui sistem cu un grad de libertate 389
§ 149. Mici oscilații amortizate și forțate ale unui sistem cu un grad de libertate 392
§ 150. Mici oscilații sumare ale unui sistem cu două grade de libertate 394
Capitolul XXXI. Teoria elementară a impactului 396
§ 151. Ecuația de bază a teoriei impactului 396
§ 152. Teoreme generale ale teoriei impactului 397
§ 153. Factorul de recuperare a impactului 399
§ 154. Impactul corpului asupra unei bariere fixe 400
§ 155. Impactul central direct al a două corpuri (impactul bilelor) 401
§ 156. Pierderea energiei cinetice în timpul unui impact neelastic a două corpuri. Teorema lui Carnot 403
§ 157*. O lovitură pentru un corp în rotație. Centrul de impact 405
Index 409

Cinematica punctuală.

1. Subiectul mecanicii teoretice. Abstracții de bază.

Mecanica teoreticăeste o știință în care sunt studiate legile generale ale mișcării mecanice și ale interacțiunii mecanice ale corpurilor materiale.

Mișcare mecanicănumită mișcarea unui corp în raport cu un alt corp, care are loc în spațiu și timp.

Interacțiune mecanică se numește o astfel de interacțiune a corpurilor materiale, care schimbă natura mișcării lor mecanice.

Statică - Aceasta este o ramură a mecanicii teoretice, care studiază metodele de transformare a sistemelor de forțe în sisteme echivalente și stabilește condițiile pentru echilibrul forțelor aplicate unui corp solid.

Cinematică - este ramura mecanicii teoretice care se ocupă de mişcarea corpurilor materiale în spaţiu din punct de vedere geometric, indiferent de forţele care acţionează asupra lor.

Dinamica - Aceasta este o ramură a mecanicii care studiază mișcarea corpurilor materiale în spațiu, în funcție de forțele care acționează asupra lor.

Obiecte de studiu în mecanica teoretică:

punct material,

sistem de puncte materiale,

Corp absolut rigid.

Spațiul absolut și timpul absolut sunt independente unul de celălalt. Spațiu absolut - spatiu euclidian tridimensional, omogen, nemiscat. Timp absolut - curge din trecut in viitor continuu, este omogen, acelasi in toate punctele spatiului si nu depinde de miscarea materiei.

2. Subiectul cinematicii.

cinematica - aceasta este o ramură a mecanicii care studiază proprietățile geometrice ale mișcării corpurilor fără a lua în considerare inerția lor (adică masa) și forțele care acționează asupra lor.

Pentru a determina poziția unui corp (sau punct) în mișcare cu corpul în raport cu care se studiază mișcarea acestui corp, în mod rigid, se conectează un sistem de coordonate, care împreună cu corpul formează sistem de referință.

Sarcina principală a cinematicii este de a, cunoscând legea mișcării unui corp (punct) dat, să determine toate mărimile cinematice care caracterizează mișcarea acestuia (viteza și accelerația).

3. Metode de precizare a mișcării unui punct

· mod natural

Ar trebui cunoscut:

Traiectoria mișcării punctului;

Începutul și direcția numărării;

Legea mișcării unui punct de-a lungul unei traiectorii date în forma (1.1)

· Metoda coordonatelor

Ecuațiile (1.2) sunt ecuațiile de mișcare ale punctului M.

Ecuația pentru traiectoria punctului M poate fi obținută prin eliminarea parametrului timp « t » din ecuațiile (1.2)

· Mod vectorial

(1.3)

Relația dintre metodele de coordonate și vectoriale pentru specificarea mișcării unui punct

(1.4)

Legătura dintre coordonate și modurile naturale de specificare a mișcării unui punct

Determinați traiectoria punctului, excluzând timpul din ecuațiile (1.2);

-- găsiți legea mișcării unui punct de-a lungul unei traiectorii (utilizați expresia pentru diferența de arc)

După integrare, obținem legea mișcării unui punct de-a lungul unei traiectorii date:

Legătura dintre metodele coordonate și vectoriale de specificare a mișcării unui punct este determinată de ecuația (1.4)

4. Determinarea vitezei unui punct cu metoda vectoriala de precizare a miscarii.

Lasă pe momenttpozitia punctului este determinata de vectorul raza , iar in momentul de timpt 1 – rază-vector , apoi pentru o perioadă de timp punctul se va muta.


(1.5)

viteza medie punctuala,

direcția vectorului este aceeași cu a vectorului

Viteza unui punct la un moment dat

Pentru a obține viteza unui punct la un moment dat de timp, este necesar să faceți o trecere până la limită

(1.6)

(1.7)

Vectorul viteză al unui punct la un moment dat este egală cu prima derivată a vectorului rază în raport cu timpul și este direcționată tangențial la traiectoria într-un punct dat.

(unitate¾ m/s, km/h)

Vector accelerație medie are aceeași direcție ca vectorulΔ v , adică îndreptată spre concavitatea traiectoriei.

Vector de accelerație al unui punct la un moment dat este egală cu prima derivată a vectorului viteză sau cu derivata a doua a vectorului raza punctului în raport cu timpul.

(unitate - )

Cum este localizat vectorul în raport cu traiectoria punctului?

În mișcare rectilinie, vectorul este îndreptat de-a lungul liniei drepte de-a lungul căreia se mișcă punctul. Dacă traiectoria punctului este o curbă plată, atunci vectorul accelerație , precum și vectorul cp, se află în planul acestei curbe și este îndreptat către concavitatea acesteia. Dacă traiectoria nu este o curbă plană, atunci vectorul cp va fi îndreptat către concavitatea traiectoriei și se va afla în planul care trece prin tangenta la traiectorie în punctulM și o dreaptă paralelă cu tangenta într-un punct adiacentM 1 . LA limită atunci când punctulM 1 tinde să M acest plan ocupă poziţia aşa-numitului plan contiguu. Prin urmare, în cazul general, vectorul accelerație se află în planul contiguu și este îndreptat spre concavitatea curbei.

Statica este o secțiune a mecanicii teoretice care studiază condițiile de echilibru pentru corpurile materiale sub acțiunea forțelor, precum și metodele de transformare a forțelor în sisteme echivalente.

În starea de echilibru, în statică, se înțelege starea în care toate părțile sistemului mecanic sunt în repaus în raport cu un sistem de coordonate inerțial. Unul dintre obiectele de bază ale staticii sunt forțele și punctele de aplicare a acestora.

Forța care acționează asupra unui punct material cu un vector rază din alte puncte este o măsură a influenței altor puncte asupra punctului considerat, în urma căreia primește accelerație față de cadrul de referință inerțial. Valoare putere este determinată de formula:
,
unde m este masa punctului - o valoare care depinde de proprietățile punctului însuși. Această formulă se numește a doua lege a lui Newton.

Aplicarea staticii în dinamică

O caracteristică importantă a ecuațiilor de mișcare a unui corp absolut rigid este că forțele pot fi convertite în sisteme echivalente. Cu o astfel de transformare, ecuațiile mișcării își păstrează forma, dar sistemul de forțe care acționează asupra corpului poate fi transformat într-un sistem mai simplu. Astfel, punctul de aplicare a forței poate fi deplasat de-a lungul liniei de acțiune a acesteia; forțele pot fi extinse conform regulii paralelogramului; forțele aplicate într-un punct pot fi înlocuite cu suma lor geometrică.

Un exemplu de astfel de transformări este gravitația. Acționează în toate punctele unui corp rigid. Dar legea mișcării corpului nu se va schimba dacă forța gravitațională distribuită peste toate punctele este înlocuită cu un singur vector aplicat la centrul de masă al corpului.

Rezultă că dacă la sistemul principal de forțe care acționează asupra corpului adăugăm un sistem echivalent, în care direcțiile forțelor sunt inversate, atunci corpul, sub acțiunea acestor sisteme, va fi în echilibru. Astfel, sarcina de a determina sisteme echivalente de forțe se reduce la problema echilibrului, adică la problema staticii.

Sarcina principală a staticii este stabilirea legilor pentru transformarea unui sistem de forţe în sisteme echivalente. Astfel, metodele staticii sunt folosite nu numai în studiul corpurilor aflate în echilibru, ci și în dinamica unui corp rigid, în transformarea forțelor în sisteme echivalente mai simple.

Statica punctului material

Luați în considerare un punct material care este în echilibru. Și să acționeze n forțe asupra ei, k = 1, 2, ..., n.

Dacă punctul material este în echilibru, atunci suma vectorială a forțelor care acționează asupra acestuia este egală cu zero:
(1) .

În echilibru, suma geometrică a forțelor care acționează asupra unui punct este zero.

Interpretare geometrică. Dacă începutul celui de-al doilea vector este plasat la sfârșitul primului vector, iar începutul celui de-al treilea este plasat la sfârșitul celui de-al doilea vector și apoi acest proces este continuat, atunci sfârșitul ultimului, al n-lea vector va fi combinat cu începutul primului vector. Adică, obținem o figură geometrică închisă, ale cărei lungimi ale laturilor sunt egale cu modulele vectorilor. Dacă toți vectorii se află în același plan, atunci obținem un poligon închis.

Este adesea convenabil să alegeți sistem de coordonate dreptunghiular Oxyz. Atunci sumele proiecțiilor tuturor vectorilor de forță de pe axele de coordonate sunt egale cu zero:

Dacă alegem orice direcție definită de un vector, atunci suma proiecțiilor vectorilor de forță pe această direcție este egală cu zero:
.
Înmulțim scalar ecuația (1) cu vectorul:
.
Iată produsul scalar al vectorilor și .
Rețineți că proiecția unui vector pe direcția vectorului este determinată de formula:
.

Statica corpului rigid

Moment de forță în jurul unui punct

Determinarea momentului de forta

Moment de forță, aplicat corpului în punctul A, relativ la centrul fix O, se numește vector egal cu produsul vectorial al vectorilor și:
(2) .

Interpretare geometrică

Momentul forței este egal cu produsul dintre forța F și brațul OH.

Fie vectorii și să fie localizați în planul figurii. Conform proprietății produsului încrucișat, vectorul este perpendicular pe vectori și , adică perpendicular pe planul figurii. Direcția sa este determinată de regula corectă a șurubului. În figură, vectorul moment este îndreptat către noi. Valoarea absolută a momentului:
.
Pentru că atunci
(3) .

Folosind geometria, se poate da o altă interpretare a momentului de forță. Pentru a face acest lucru, trageți o linie dreaptă AH prin vectorul forță . Din centrul O coborâm perpendiculara OH pe această dreaptă. Lungimea acestei perpendiculare se numește umărul puterii. Apoi
(4) .
Deoarece , formulele (3) și (4) sunt echivalente.

În acest fel, valoarea absolută a momentului de forță relativ la centrul O este produs al forței asupra umărului această forţă relativă la centrul ales O .

Când se calculează momentul, este adesea convenabil să se descompună forța în două componente:
,
Unde . Forța trece prin punctul O. Prin urmare, impulsul său este zero. Apoi
.
Valoarea absolută a momentului:
.

Componentele momentului în coordonate dreptunghiulare

Dacă alegem un sistem de coordonate dreptunghiular Oxyz centrat în punctul O, atunci momentul forței va avea următoarele componente:
(5.1) ;
(5.2) ;
(5.3) .
Iată coordonatele punctului A din sistemul de coordonate selectat:
.
Componentele sunt valorile momentului de forță în jurul axelor, respectiv.

Proprietățile momentului de forță despre centru

Momentul în jurul centrului O, din forța care trece prin acest centru, este egal cu zero.

Dacă punctul de aplicare al forței este deplasat de-a lungul unei linii care trece prin vectorul forță, atunci momentul, în timpul unei astfel de mișcări, nu se va schimba.

Momentul din suma vectorială a forțelor aplicate unui punct al corpului este egal cu suma vectorială a momentelor din fiecare dintre forțele aplicate în același punct:
.

Același lucru se aplică forțelor ale căror linii de prelungire se intersectează într-un punct.

Dacă suma vectorială a forțelor este zero:
,
atunci suma momentelor din aceste forțe nu depinde de poziția centrului, raportat la care se calculează momentele:
.

Cuplu de putere

Cuplu de putere- sunt două forțe egale în valoare absolută și având direcții opuse, aplicate în puncte diferite ale corpului.

O pereche de forțe se caracterizează prin momentul în care se creează. Deoarece suma vectorială a forțelor incluse în pereche este zero, momentul creat de cuplu nu depinde de punctul relativ la care se calculează momentul. Din punctul de vedere al echilibrului static, natura forțelor din pereche este irelevantă. O pereche de forțe este folosită pentru a indica faptul că un moment de forțe acționează asupra corpului, având o anumită valoare.

Moment de forță în jurul unei axe date

Adesea există cazuri când nu trebuie să cunoaștem toate componentele momentului de forță despre un punct selectat, ci trebuie să cunoaștem doar momentul de forță despre o axă selectată.

Momentul de forță în jurul axei care trece prin punctul O este proiecția vectorului momentului de forță, în jurul punctului O, pe direcția axei.

Proprietățile momentului de forță în jurul axei

Momentul în jurul axei de la forța care trece prin această axă este egal cu zero.

Momentul în jurul unei axe dintr-o forță paralelă cu această axă este zero.

Calculul momentului de forță în jurul unei axe

Fie ca o forță să acționeze asupra corpului în punctul A. Să găsim momentul acestei forțe în raport cu axa O′O′′.

Să construim un sistem de coordonate dreptunghiular. Lasă axa Oz să coincidă cu O′O′′ . Din punctul A aruncăm perpendiculara OH pe O′O′′ . Prin punctele O și A trasăm axa Ox. Desenăm axa Oy perpendiculară pe Ox și Oz. Descompunem forța în componente de-a lungul axelor sistemului de coordonate:
.
Forța traversează axa O′O′′. Prin urmare, impulsul său este zero. Forța este paralelă cu axa O′O′′. Prin urmare, momentul său este, de asemenea, zero. Prin formula (5.3) găsim:
.

Rețineți că componenta este direcționată tangențial la cercul al cărui centru este punctul O . Direcția vectorului este determinată de regula șurubului drept.

Condiții de echilibru pentru un corp rigid

În echilibru, suma vectorială a tuturor forțelor care acționează asupra corpului este egală cu zero, iar suma vectorială a momentelor acestor forțe relativ la un centru fix arbitrar este egală cu zero:
(6.1) ;
(6.2) .

Subliniem că centrul O , raportat la care se calculează momentele forțelor, poate fi ales arbitrar. Punctul O poate aparține corpului sau poate fi în afara acestuia. De obicei, centrul O este ales pentru a ușura calculele.

Condițiile de echilibru pot fi formulate în alt mod.

În echilibru, suma proiecțiilor forțelor pe orice direcție dată de un vector arbitrar este egală cu zero:
.
Suma momentelor forțelor în jurul unei axe arbitrare O′O′′ este, de asemenea, egală cu zero:
.

Uneori, aceste condiții sunt mai convenabile. Sunt momente când, prin alegerea axelor, calculele pot fi simplificate.

Centrul de greutate al corpului

Luați în considerare una dintre cele mai importante forțe - gravitația. Aici, forțele nu sunt aplicate în anumite puncte ale corpului, ci sunt distribuite continuu pe volumul acestuia. Pentru fiecare parte a corpului cu un volum infinitezimal ∆V, forța gravitațională acționează. Aici ρ este densitatea substanței corpului, este accelerația căderii libere.

Fie masa unei părți infinit de mică a corpului. Și să fie punctul A k definește poziția acestei secțiuni. Să găsim mărimile legate de forța gravitațională, care sunt incluse în ecuațiile de echilibru (6).

Să aflăm suma forțelor gravitaționale formate de toate părțile corpului:
,
unde este masa corpului. Astfel, suma forțelor gravitaționale ale părților infinitezimale individuale ale corpului poate fi înlocuită cu un vector gravitațional al întregului corp:
.

Să aflăm în mod arbitrar suma momentelor forțelor gravitaționale, raportate la centrul ales O:

.
Aici am introdus punctul C care se numește centrul de greutate corp. Poziția centrului de greutate, într-un sistem de coordonate centrat în punctul O, este determinată de formula:
(7) .

Deci, atunci când se determină echilibrul static, suma forțelor gravitaționale ale secțiunilor individuale ale corpului poate fi înlocuită cu rezultanta
,
aplicat pe centrul de masă al corpului C , a cărui poziţie este determinată de formula (7).

Poziția centrului de greutate pentru diferite forme geometrice poate fi găsită în cărțile de referință relevante. Dacă corpul are o axă sau un plan de simetrie, atunci centrul de greutate este situat pe această axă sau plan. Deci, centrele de greutate ale unei sfere, cerc sau cerc sunt situate în centrele cercurilor acestor figuri. Centrele de greutate ale unui paralelipiped dreptunghic, dreptunghi sau pătrat sunt, de asemenea, situate în centrele lor - în punctele de intersecție ale diagonalelor.

Sarcina distribuită uniform (A) și liniar (B).

Există și cazuri similare cu forța gravitațională, când forțele nu sunt aplicate în anumite puncte ale corpului, ci sunt distribuite continuu pe suprafața sau volumul acestuia. Astfel de forțe sunt numite forțe distribuite sau .

(Figura A). De asemenea, ca și în cazul gravitației, aceasta poate fi înlocuită cu forța rezultantă a mărimii , aplicată la centrul de greutate al diagramei. Deoarece diagrama din figura A este un dreptunghi, centrul de greutate al diagramei este în centrul său - punctul C: | AC | = | CB |.

(poza B). Poate fi înlocuit și cu rezultatul. Valoarea rezultantei este egală cu aria diagramei:
.
Punctul de aplicare este în centrul de greutate al diagramei. Centrul de greutate al unui triunghi, înălțimea h, se află la o distanță de bază. De aceea .

Forțele de frecare

Frecare de alunecare. Lăsați corpul să fie pe o suprafață plană. Și să fie o forță perpendiculară pe suprafața cu care suprafața acționează asupra corpului (forța de presiune). Apoi forța de frecare de alunecare este paralelă cu suprafața și direcționată în lateral, împiedicând mișcarea corpului. Valoarea sa cea mai mare este:
,
unde f este coeficientul de frecare. Coeficientul de frecare este o mărime adimensională.

frecare de rulare. Lăsați corpul rotunjit să se rostogolească sau se poate rula pe suprafață. Și să fie forța de presiune perpendiculară pe suprafața cu care suprafața acționează asupra corpului. Apoi asupra corpului, in punctul de contact cu suprafata, actioneaza momentul fortelor de frecare, care impiedica miscarea corpului. Cea mai mare valoare a momentului de frecare este:
,
unde δ este coeficientul de frecare la rulare. Are dimensiunea lungimii.

Referinte:
S. M. Targ, Curs scurt de mecanică teoretică, Școala Superioară, 2010.

Ca parte a oricărei programe, studiul fizicii începe cu mecanica. Nu din teoretic, nu din aplicat și nu din calcul, ci din mecanică clasică veche. Această mecanică este numită și mecanică newtoniană. Potrivit legendei, omul de știință se plimba prin grădină, a văzut un măr căzând și tocmai acest fenomen l-a determinat să descopere legea gravitației universale. Desigur, legea a existat dintotdeauna, iar Newton i-a dat doar o formă pe înțelesul oamenilor, dar meritul lui este neprețuit. În acest articol, nu vom descrie legile mecanicii newtoniene cât mai detaliat posibil, dar vom schița elementele de bază, cunoștințele de bază, definițiile și formulele care vă pot juca întotdeauna.

Mecanica este o ramură a fizicii, o știință care studiază mișcarea corpurilor materiale și interacțiunile dintre ele.

Cuvântul în sine este de origine greacă și se traduce prin „arta de a construi mașini”. Dar înainte de a construi mașini, mai avem un drum lung de parcurs, așa că haideți să călcăm pe urmele strămoșilor noștri și vom studia mișcarea pietrelor aruncate în unghi față de orizont și a merelor care cad pe capete de la o înălțime h.


De ce începe studiul fizicii cu mecanica? Pentru că este complet firesc, să nu o pornim de la echilibrul termodinamic?!

Mecanica este una dintre cele mai vechi științe, iar din punct de vedere istoric, studiul fizicii a început tocmai cu bazele mecanicii. Plasați în cadrul timpului și al spațiului, oamenii, de fapt, nu puteau pleca de la altceva, oricât de mult și-ar fi dorit. Corpurile în mișcare sunt primul lucru la care acordăm atenție.

Ce este mișcarea?

Mișcarea mecanică este o modificare a poziției corpurilor în spațiu unul față de celălalt în timp.

După această definiție, ajungem în mod firesc la conceptul de cadru de referință. Schimbarea poziției corpurilor în spațiu unul față de celălalt. Cuvinte cheie aici: relativ unul față de celălalt . La urma urmei, un pasager într-o mașină se mișcă față de o persoană care stă pe marginea drumului cu o anumită viteză și se odihnește față de vecinul său pe un scaun din apropiere și se deplasează cu o altă viteză față de un pasager într-o mașină care ii depaseste.


De aceea, pentru a măsura în mod normal parametrii obiectelor în mișcare și a nu ne confunda, avem nevoie sistem de referință - corp de referință interconectat rigid, sistem de coordonate și ceas. De exemplu, pământul se mișcă în jurul soarelui într-un cadru de referință heliocentric. În viața de zi cu zi, efectuăm aproape toate măsurătorile noastre într-un sistem de referință geocentric asociat cu Pământul. Pământul este un corp de referință în raport cu care se deplasează mașini, avioane, oameni, animale.


Mecanica, ca știință, are propria sa sarcină. Sarcina mecanicii este de a cunoaște în orice moment poziția corpului în spațiu. Cu alte cuvinte, mecanica construiește o descriere matematică a mișcării și găsește conexiuni între mărimile fizice care o caracterizează.

Pentru a merge mai departe, avem nevoie de noțiunea de „ punct material ". Ei spun că fizica este o știință exactă, dar fizicienii știu câte aproximări și presupuneri trebuie făcute pentru a fi de acord cu exactitatea aceasta. Nimeni nu a văzut vreodată un punct material sau a adulmecat un gaz ideal, dar ele există! Doar că sunt mult mai ușor de trăit cu ele.

Un punct material este un corp a cărui dimensiune și formă pot fi neglijate în contextul acestei probleme.

Secţiuni de mecanică clasică

Mecanica este formată din mai multe secțiuni

  • Cinematică
  • Dinamica
  • Statică

Cinematică din punct de vedere fizic, studiază exact modul în care se mișcă corpul. Cu alte cuvinte, această secțiune tratează caracteristicile cantitative ale mișcării. Găsiți viteza, calea - sarcini tipice ale cinematicii

Dinamica rezolvă întrebarea de ce se mișcă așa cum o face. Adică ia în considerare forțele care acționează asupra corpului.

Statică studiază echilibrul corpurilor sub acțiunea forțelor, adică răspunde la întrebarea: de ce nu cade deloc?

Limitele de aplicabilitate ale mecanicii clasice

Mecanica clasică nu mai pretinde a fi o știință care explică totul (la începutul secolului trecut, totul era complet diferit) și are un domeniu clar de aplicabilitate. În general, legile mecanicii clasice sunt valabile pentru lumea cunoscută nouă în ceea ce privește dimensiunea (macrolume). Ele încetează să funcționeze în cazul lumii particulelor, când mecanica clasică este înlocuită cu mecanica cuantică. De asemenea, mecanica clasică este inaplicabilă cazurilor în care mișcarea corpurilor are loc la o viteză apropiată de viteza luminii. În astfel de cazuri, efectele relativiste devin pronunțate. Aproximativ vorbind, în cadrul mecanicii cuantice și relativiste - mecanica clasică, acesta este un caz special când dimensiunile corpului sunt mari și viteza este mică.


În general, efectele cuantice și relativiste nu dispar niciodată; ele au loc și în timpul mișcării obișnuite a corpurilor macroscopice la o viteză mult mai mică decât viteza luminii. Un alt lucru este că acțiunea acestor efecte este atât de mică încât nu depășește cele mai precise măsurători. Mecanica clasică nu își va pierde niciodată importanța fundamentală.

Vom continua să studiem bazele fizice ale mecanicii în articolele viitoare. Pentru o mai bună înțelegere a mecanicii, vă puteți referi oricând la autorii noștri, care aruncă în mod individual lumină asupra punctului întunecat al celei mai dificile sarcini.