Regula pentru găsirea derivatei unei funcții complexe. Funcție complexă

Este absolut imposibil să rezolvi probleme fizice sau exemple de matematică fără cunoștințe despre derivată și metode de calcul. Derivata este unul dintre cele mai importante concepte ale analizei matematice. Am decis să dedicăm articolul de astăzi acestui subiect fundamental. Ce este o derivată, care este semnificația sa fizică și geometrică, cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , dat într-un anumit interval (a,b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența valorilor sale x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. O modificare sau o creștere a unei funcții este diferența dintre valorile unei funcții în două puncte. Definiție derivată:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Dar care:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


Semnificația fizică a derivatului: derivata în timp a traseului este egală cu viteza mișcării rectilinie.

Într-adevăr, încă din timpul școlii, toată lumea știe că viteza este o cale privată. x=f(t) si timpul t . Viteza medie pe o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: scoateți constanta

Constanta poate fi scoasă din semnul derivatei. Mai mult, trebuie făcut. Când rezolvați exemple la matematică, luați ca regulă - dacă puteți simplifica expresia, asigurați-vă că simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom da o demonstrație a acestei teoreme, ci mai degrabă vom lua în considerare un exemplu practic.

Aflați derivata unei funcții:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Soluţie:

Aici este important de spus despre calculul derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar cu derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus, întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, luăm în considerare mai întâi derivata funcției externe față de argumentul intermediar și apoi înmulțim cu derivata argumentului intermediar însuși față de variabila independentă.

Regula a patra: derivata coeficientului a două funcții

Formula pentru determinarea derivatei unui cât de două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebare pe acest subiect și alte subiecte, puteți contacta serviciul studenți. În scurt timp, vă vom ajuta să rezolvați cel mai dificil control și să vă ocupați de sarcini, chiar dacă nu v-ați mai ocupat niciodată de calculul derivatelor.

Și teorema asupra derivatei unei funcții complexe, a cărei formulare este următoarea:

Fie 1) funcția $u=\varphi (x)$ are o derivată $u_(x)"=\varphi"(x_0)$ la un moment dat $x_0$, 2) funcția $y=f(u)$ are în punctul corespunzător $u_0=\varphi (x_0)$ derivata $y_(u)"=f"(u)$. Atunci funcția complexă $y=f\left(\varphi (x) \right)$ la punctul menționat va avea și o derivată egală cu produsul derivatelor funcțiilor $f(u)$ și $\varphi ( x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

sau, într-o notație mai scurtă: $y_(x)"=y_(u)"\cdot u_(x)"$.

În exemplele acestei secțiuni, toate funcțiile au forma $y=f(x)$ (adică, considerăm doar funcțiile unei variabile $x$). În consecință, în toate exemplele, derivata $y"$ este luată în raport cu variabila $x$. Pentru a sublinia faptul că derivata este luată în raport cu variabila $x$, se scrie adesea $y"_x$ în loc de $ y"$.

Exemplele #1, #2 și #3 oferă un proces detaliat pentru găsirea derivatei funcțiilor complexe. Exemplul nr. 4 este destinat pentru o înțelegere mai completă a tabelului derivatelor și este logic să vă familiarizați cu acesta.

Este recomandabil, după studierea materialului din exemplele nr. 1-3, să se treacă la rezolvarea independentă a exemplelor nr. 5, nr. 6 și nr. 7. Exemplele #5, #6 și #7 conțin o soluție scurtă, astfel încât cititorul să poată verifica corectitudinea rezultatului său.

Exemplul #1

Aflați derivata funcției $y=e^(\cos x)$.

Trebuie să găsim derivata funcției complexe $y"$. Deoarece $y=e^(\cos x)$, atunci $y"=\left(e^(\cos x)\right)"$. Pentru găsiți derivata $ \left(e^(\cos x)\right)"$ utilizați formula #6 din tabelul derivatelor. Pentru a utiliza formula nr. 6, trebuie să țineți cont de faptul că în cazul nostru $u=\cos x$. Soluția ulterioară constă într-o înlocuire banală a expresiei $\cos x$ în loc de $u$ în formula nr. 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Acum trebuie să găsim valoarea expresiei $(\cos x)"$. Ne întoarcem din nou la tabelul derivatelor, alegând formula nr. 10 din el. Înlocuind $u=x$ în formula nr. 10, avem : $(\cos x)"=-\ sin x\cdot x"$. Acum continuăm egalitatea (1.1), completând-o cu rezultatul găsit:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Deoarece $x"=1$, continuăm egalitatea (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Deci, din egalitatea (1.3) avem: $y"=-\sin x\cdot e^(\cos x)$. Desigur, explicațiile și egalitățile intermediare sunt de obicei sărite, scriind derivata pe o singură linie, ca în egalitate. ( 1.3) Deci, derivata funcției complexe a fost găsită, rămâne doar să notăm răspunsul.

Răspuns: $y"=-\sin x\cdot e^(\cos x)$.

Exemplul #2

Aflați derivata funcției $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Trebuie să calculăm derivata $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Pentru început, observăm că constanta (adică numărul 9) poate fi scoasă din semnul derivatei:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Acum să trecem la expresia $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Pentru a facilita selectarea formulei dorite din tabelul de derivate, voi prezenta expresia în cauză în această formă: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Acum este clar că este necesar să se folosească formula nr. 2, adică. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Înlocuiți $u=\arctg(4\cdot \ln x)$ și $\alpha=12$ în această formulă:

Completând egalitatea (2.1) cu rezultatul obținut, avem:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

În această situație, se face adesea o greșeală atunci când rezolvatorul de la primul pas alege formula $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ în locul formulei $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Ideea este că derivata funcției externe trebuie găsită mai întâi. Pentru a înțelege ce funcție va fi externă expresiei $\arctg^(12)(4\cdot 5^x)$, imaginați-vă că numărați valoarea expresiei $\arctg^(12)(4\cdot 5^ x)$ pentru o valoare de $x$. Mai întâi calculați valoarea de $5^x$, apoi înmulțiți rezultatul cu 4 pentru a obține $4\cdot 5^x$. Acum luăm arctangenta din acest rezultat, obținând $\arctg(4\cdot 5^x)$. Apoi ridicăm numărul rezultat la puterea a douăsprezecea, obținând $\arctg^(12)(4\cdot 5^x)$. Ultima acțiune, adică ridicarea la puterea de 12, - și va fi o funcție externă. Și de aici ar trebui să începem să găsim derivata, care a fost făcută în egalitate (2.2).

Acum trebuie să găsim $(\arctg(4\cdot \ln x))"$. Folosim formula nr. 19 din tabelul derivatelor, înlocuind $u=4\cdot \ln x$ în ea:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Să simplificăm puțin expresia rezultată, ținând cont de $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Egalitatea (2.2) va deveni acum:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Rămâne să găsim $(4\cdot \ln x)"$. Luăm constanta (adică 4) din semnul derivatei: $(4\cdot \ln x)"=4\cdot (\ln x )"$. Pentru a găsi $(\ln x)"$, folosim formula nr. 8, substituind $u=x$ în ea: $(\ln x)"=\frac(1)(x) \cdot x"$. Deoarece $x"=1$, atunci $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Inlocuind rezultatul obtinut in formula (2.3), obtinem:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).$ $

Permiteți-mi să vă reamintesc că derivata unei funcții complexe este cel mai adesea într-o singură linie, așa cum este scrisă în ultima egalitate. Prin urmare, atunci când faceți calcule sau teste standard, nu este deloc necesar să pictați soluția în același detaliu.

Răspuns: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Exemplul #3

Găsiți $y"$ a funcției $y=\sqrt(\sin^3(5\cdot9^x))$.

Mai întâi, să transformăm ușor funcția $y$ exprimând radicalul (rădăcină) ca putere: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9) ^x) \right)^(\frac(3)(7))$. Acum să începem să găsim derivata. Deoarece $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, atunci:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Folosim formula nr. 2 din tabelul derivatelor, substituind $u=\sin(5\cdot 9^x)$ și $\alpha=\frac(3)(7)$ în ea:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Continuăm egalitatea (3.1) folosind rezultatul obținut:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Acum trebuie să găsim $(\sin(5\cdot 9^x))"$. Pentru aceasta, folosim formula nr. 9 din tabelul de derivate, înlocuind $u=5\cdot 9^x$ în ea:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Completând egalitatea (3.2) cu rezultatul obținut, avem:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Rămâne să găsim $(5\cdot 9^x)"$. În primul rând, luăm constanta (numărul $5$) din semnul derivatei, adică $(5\cdot 9^x)"=5\ cdot (9^x) "$. Pentru a găsi derivata $(9^x)"$, aplicăm formula nr. 5 din tabelul de derivate, înlocuind în ea $a=9$ și $u=x$: $ (9^x)"=9^x\cdot \ ln9\cdot x"$. Deoarece $x"=1$, atunci $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Acum putem continua egalitatea (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Puteți reveni de la puteri la radicali (adică rădăcini) din nou scriind $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ ca $\frac(1 )(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^) x)))$. Apoi derivata va fi scrisă sub următoarea formă:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))). $$

Răspuns: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Exemplul #4

Arătați că formulele nr. 3 și nr. 4 din tabelul derivatelor sunt un caz special al formulei nr. 2 din acest tabel.

In formula nr.2 din tabelul derivatelor se scrie derivata functiei $u^\alpha$. Înlocuind $\alpha=-1$ în formula #2, obținem:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Deoarece $u^(-1)=\frac(1)(u)$ și $u^(-2)=\frac(1)(u^2)$, egalitatea (4.1) poate fi rescrisă după cum urmează: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Aceasta este formula numărul 3 din tabelul derivatelor.

Să revenim din nou la formula nr. 2 din tabelul derivatelor. Înlocuiți $\alpha=\frac(1)(2)$ în el:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Deoarece $u^(\frac(1)(2))=\sqrt(u)$ și $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1) )(2)))=\frac(1)(\sqrt(u))$, atunci egalitatea (4.2) poate fi rescrisă după cum urmează:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Egalitatea rezultată $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ este formula nr. 4 din tabelul derivatelor. După cum puteți vedea, formulele nr. 3 și nr. 4 din tabelul derivatelor sunt obținute din formula nr. 2 prin înlocuirea valorii corespunzătoare a $\alpha$.

Dacă urmărim definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la incrementul argumentului Δ X:

Totul pare a fi clar. Dar încercați să calculați prin această formulă, să zicem, derivata funcției f(X) = X 2 + (2X+ 3) · e X păcat X. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că așa-numitele funcții elementare pot fi distinse de întreaga varietate de funcții. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și introduse în tabel. Astfel de funcții sunt destul de ușor de reținut, împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. Mai mult, nu este greu să le memorezi - de aceea sunt elementare.

Deci, derivatele funcțiilor elementare:

Nume Funcţie Derivat
Constant f(X) = C, CR 0 (da, da, zero!)
Gradul cu exponent rațional f(X) = X n n · X n − 1
Sinusul f(X) = păcat X cos X
Cosinus f(X) = cos X − păcat X(minus sinus)
Tangentă f(X) = tg X 1/cos 2 X
Cotangentă f(X) = ctg X − 1/sin2 X
logaritmul natural f(X) = jurnal X 1/X
Logaritmul arbitrar f(X) = jurnal A X 1/(X ln A)
Functie exponentiala f(X) = e X e X(Nimic nu s-a schimbat)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcții este, de asemenea, ușor de calculat:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2X 3)' = 2 ( X 3)' = 2 3 X 2 = 6X 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite și multe altele. Așa vor apărea funcții noi, nu prea elementare, dar și diferențiabile după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Lasă funcțiile f(X) și g(X), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare, diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(X) = X 2 + sinx; g(X) = X 4 + 2X 2 − 3.

Funcţie f(X) este suma a două funcții elementare, deci:

f ’(X) = (X 2+ păcat X)’ = (X 2)' + (păcat X)’ = 2X+ cosx;

Argumentăm în mod similar pentru funcție g(X). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Răspuns:
f ’(X) = 2X+ cosx;
g ’(X) = 4X · ( X 2 + 1).

Derivat al unui produs

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata sumei este egală cu suma derivatelor, atunci derivata produsului grevă„\u003e egal cu produsul derivatelor. Dar smochine pentru tine! Derivatul produsului este calculat folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

O sarcină. Găsiți derivate ale funcțiilor: f(X) = X 3 cosx; g(X) = (X 2 + 7X− 7) · e X .

Funcţie f(X) este un produs al două funcții elementare, deci totul este simplu:

f ’(X) = (X 3 cos X)’ = (X 3)' cos X + X 3 (cos X)’ = 3X 2 cos X + X 3 (−sin X) = X 2 (3cos XX păcat X)

Funcţie g(X) primul multiplicator este puțin mai complicat, dar schema generală nu se schimbă de la aceasta. Evident, primul multiplicator al funcției g(X) este un polinom, iar derivata sa este derivata sumei. Avem:

g ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X(2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Răspuns:
f ’(X) = X 2 (3cos XX păcat X);
g ’(X) = X(X+ 9) · e X .

Rețineți că în ultimul pas, derivata este factorizată. Formal, acest lucru nu este necesar, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a explora funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi găsite și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie descompusă în factori.

Dacă există două funcții f(X) și g(X), și g(X) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(X) = f(X)/g(X). Pentru o astfel de funcție, puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Dar așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați cu exemple specifice.

O sarcină. Găsiți derivate ale funcțiilor:

Există funcții elementare în numărătorul și numitorul fiecărei fracții, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Prin tradiție, factorăm numărătorul în factori - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luăm funcția f(X) = păcat Xși înlocuiți variabila X, să zicem, pe X 2+ln X. Se dovedește f(X) = păcat ( X 2+ln X) este o funcție complexă. Ea are și un derivat, dar nu va funcționa să-l găsești conform regulilor discutate mai sus.

Cum să fii? În astfel de cazuri, înlocuirea unei variabile și formula pentru derivata unei funcții complexe ajută:

f ’(X) = f ’(t) · t', dacă X este înlocuit cu t(X).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați cu exemple specifice, cu o descriere detaliată a fiecărui pas.

O sarcină. Găsiți derivate ale funcțiilor: f(X) = e 2X + 3 ; g(X) = păcat ( X 2+ln X)

Rețineți că dacă în funcție f(X) în loc de expresia 2 X+ 3 va fi ușor X, atunci obținem o funcție elementară f(X) = e X. Prin urmare, facem o substituție: fie 2 X + 3 = t, f(X) = f(t) = e t. Căutăm derivata unei funcții complexe prin formula:

f ’(X) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuarea unei înlocuiri inverse: t = 2X+ 3. Obținem:

f ’(X) = e t · t ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Acum să ne uităm la funcție g(X). Evident că trebuie înlocuit. X 2+ln X = t. Avem:

g ’(X) = g ’(t) · t' = (păcat t)’ · t' = cos t · t

Înlocuire inversă: t = X 2+ln X. Apoi:

g ’(X) = cos ( X 2+ln X) · ( X 2+ln X)' = cos ( X 2+ln X) · (2 X + 1/X).

Asta e tot! După cum se poate observa din ultima expresie, întreaga problemă a fost redusă la calcularea derivatei sumei.

Răspuns:
f ’(X) = 2 e 2X + 3 ;
g ’(X) = (2X + 1/X) cos ( X 2+ln X).

Foarte des în lecțiile mele, în locul termenului „derivat”, folosesc cuvântul „accident vascular cerebral”. De exemplu, cursa sumei este egală cu suma curselor. Este mai clar? Asta e bine.

Astfel, calculul derivatei se rezumă la a scăpa chiar de aceste lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(X n)’ = n · X n − 1

Puțini știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este X 0,5 . Dar dacă există ceva complicat sub rădăcină? Din nou, se va dovedi o funcție complexă - le place să ofere astfel de construcții în teste și examene.

O sarcină. Aflați derivata unei funcții:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(X) = (X 2 + 8X − 7) 0,5 .

Acum facem o înlocuire: let X 2 + 8X − 7 = t. Găsim derivata prin formula:

f ’(X) = f ’(t) · t ’ = (t 0,5)' t' = 0,5 t−0,5 t ’.

Facem o substituție inversă: t = X 2 + 8X− 7. Avem:

f ’(X) = 0,5 ( X 2 + 8X− 7) −0,5 ( X 2 + 8X− 7)' = 0,5 (2 X+ 8) ( X 2 + 8X − 7) −0,5 .

În sfârșit, înapoi la rădăcini:

Primul nivel

Derivată de funcție. Ghid cuprinzător (2019)

Imaginează-ți un drum drept care trece printr-o zonă deluroasă. Adică merge în sus și în jos, dar nu se întoarce la dreapta sau la stânga. Dacă axa este îndreptată orizontal de-a lungul drumului și vertical, atunci linia drumului va fi foarte similară cu graficul unei funcții continue:

Axa este un anumit nivel de înălțime zero, în viață folosim nivelul mării.

Înaintând pe un astfel de drum, ne mișcăm și în sus sau în jos. Mai putem spune: atunci când argumentul se schimbă (deplasarea de-a lungul axei absciselor), valoarea funcției se modifică (deplasarea de-a lungul axei ordonatelor). Acum să ne gândim cum să determinăm „abruptul” drumului nostru? Care ar putea fi această valoare? Foarte simplu: cât de mult se va schimba înălțimea la deplasarea înainte pe o anumită distanță. Într-adevăr, pe diferite tronsoane de drum, înaintând (de-a lungul abscisei) cu un kilometru, vom urca sau coborî un număr diferit de metri față de nivelul mării (de-a lungul ordonatei).

Indică progresul înainte (a se citi „delta x”).

Litera greacă (delta) este folosită în mod obișnuit în matematică ca prefix care înseamnă „schimbare”. Adică - aceasta este o schimbare de amploare, - o schimbare; atunci ce este? Așa e, o schimbare de dimensiune.

Important: expresia este o singură entitate, o variabilă. Nu ar trebui să rupeți niciodată „delta” din „x” sau din orice altă literă! Adică, de exemplu, .

Deci, am mers înainte, pe orizontală, mai departe. Dacă comparăm linia drumului cu graficul unei funcții, atunci cum notăm creșterea? Desigur, . Adică, atunci când mergem înainte, ne ridicăm mai sus.

Este ușor de calculat valoarea: dacă la început eram la înălțime, iar după mișcare eram la înălțime, atunci. Dacă punctul final s-a dovedit a fi mai mic decât punctul de început, va fi negativ - asta înseamnă că nu urcăm, ci coborăm.

Înapoi la „abrupte”: aceasta este o valoare care indică cât de mult (abrupt) crește înălțimea atunci când se avansează pe unitate de distanță:

Să presupunem că pe o anumită porțiune de potecă, la înaintarea cu km, drumul urcă cu km. Atunci abruptul în acest loc este egal. Și dacă drumul, la înaintarea cu m, s-a scufundat cu km? Atunci panta este egală.

Acum luați în considerare vârful unui deal. Dacă luați începutul secțiunii la jumătate de kilometru până în vârf, iar sfârșitul - o jumătate de kilometru după ea, puteți vedea că înălțimea este aproape aceeași.

Adică, conform logicii noastre, se dovedește că panta aici este aproape egală cu zero, ceea ce în mod clar nu este adevărat. Multe se pot schimba la doar câteva mile distanță. Zonele mai mici trebuie luate în considerare pentru o estimare mai adecvată și mai precisă a abruptului. De exemplu, dacă măsurați modificarea înălțimii când vă deplasați cu un metru, rezultatul va fi mult mai precis. Dar chiar și această precizie poate să nu fie suficientă pentru noi - la urma urmei, dacă există un stâlp în mijlocul drumului, ne putem strecura pur și simplu prin el. Ce distanță ar trebui să alegem atunci? Centimetru? Milimetru? Mai puțin este mai bine!

În viața reală, măsurarea distanței la cel mai apropiat milimetru este mai mult decât suficientă. Dar matematicienii luptă întotdeauna spre perfecțiune. Prin urmare, conceptul a fost infinitezimal, adică valoarea modulo este mai mică decât orice număr pe care îl putem numi. De exemplu, spui: o trilionime! Cu cât mai puțin? Și împărțiți acest număr la - și va fi și mai puțin. Si asa mai departe. Dacă vrem să scriem că valoarea este infinit de mică, scriem astfel: (citim „x tinde spre zero”). Este foarte important de înțeles că acest număr nu este egal cu zero! Dar foarte aproape de ea. Aceasta înseamnă că poate fi împărțit în.

Conceptul opus infinitului mic este infinit de mare (). Probabil l-ați întâlnit deja când lucrați la inegalități: acest număr este mai mare ca modul decât orice număr la care vă puteți gândi. Dacă găsiți cel mai mare număr posibil, înmulțiți-l cu doi și obțineți și mai mult. Iar infinitul este chiar mai mult decât ceea ce se întâmplă. De fapt, infinit de mare și infinit de mici sunt inverse unul față de celălalt, adică la și invers: la.

Acum înapoi la drumul nostru. Panta calculată în mod ideal este panta calculată pentru un segment infinit de mic al traseului, adică:

Observ că, cu o deplasare infinit de mică, modificarea înălțimii va fi, de asemenea, infinit de mică. Dar permiteți-mi să vă reamintesc că infinit mic nu înseamnă egal cu zero. Dacă împărțiți numere infinitezimale între ele, puteți obține un număr complet obișnuit, de exemplu. Adică, o valoare mică poate fi exact de două ori mai mare decât alta.

De ce toate astea? Drumul, abruptul... Nu mergem într-un miting, dar învățăm matematică. Și în matematică totul este exact la fel, doar numit diferit.

Conceptul de derivat

Derivata unei funcții este raportul dintre incrementul funcției și incrementul argumentului la o creștere infinitezimală a argumentului.

Creştereîn matematică se numește schimbare. Cât de mult s-a schimbat argumentul () la deplasarea de-a lungul axei se numește increment de argumentși notat cu Cât de mult s-a schimbat funcția (înălțimea) la deplasarea înainte de-a lungul axei cu o distanță se numește creșterea funcției si este marcat.

Deci, derivata unei funcții este relația cu când. Derivata o notăm cu aceeași literă ca și funcția, doar cu o contur din dreapta sus: sau pur și simplu. Deci, să scriem formula derivată folosind aceste notații:

Ca și în analogia cu drumul, aici, când funcția crește, derivata este pozitivă, iar când scade, este negativă.

Dar derivata este egală cu zero? Desigur. De exemplu, dacă conducem pe un drum orizontal plat, abruptul este zero. Într-adevăr, înălțimea nu se schimbă deloc. Deci, cu derivata: derivata unei funcții constante (constante) este egală cu zero:

deoarece incrementul unei astfel de funcții este zero pentru oricare.

Să luăm exemplul din vârful dealului. S-a dovedit că este posibil să se aranjeze capetele segmentului pe laturile opuse ale vârfului astfel încât înălțimea la capete să fie aceeași, adică segmentul este paralel cu axa:

Dar segmentele mari sunt un semn de măsurare inexactă. Ne vom ridica segmentul paralel cu el însuși, apoi lungimea acestuia va scădea.

În final, când suntem infinit aproape de vârf, lungimea segmentului va deveni infinit de mică. Dar, în același timp, a rămas paralel cu axa, adică diferența de înălțime la capete este egală cu zero (nu tinde, dar este egală cu). Deci derivata

Acest lucru poate fi înțeles după cum urmează: când stăm în vârf, o mică deplasare la stânga sau la dreapta ne schimbă neglijabil înălțimea.

Există și o explicație pur algebrică: în stânga vârfului, funcția crește, iar în dreapta, scade. După cum am aflat deja mai devreme, atunci când funcția crește, derivata este pozitivă, iar când scade, este negativă. Dar se schimbă lin, fără sărituri (pentru că drumul nu își schimbă brusc panta nicăieri). Prin urmare, trebuie să existe între valori negative și pozitive. Va fi acolo unde funcția nici nu crește, nici nu scade - în punctul de vârf.

Același lucru este valabil și pentru vale (zona în care funcția scade în stânga și crește în dreapta):

Mai multe despre creșteri.

Deci schimbăm argumentul într-o valoare. Ne schimbăm de la ce valoare? Ce a devenit el (argumentul) acum? Putem alege orice punct, iar acum vom dansa din el.

Luați în considerare un punct cu o coordonată. Valoarea funcției din ea este egală. Apoi facem aceeași creștere: creștem coordonatele cu. Care este argumentul acum? Foarte usor: . Care este valoarea funcției acum? Unde merge argumentul, funcția merge acolo: . Cum rămâne cu creșterea funcției? Nimic nou: aceasta este încă suma cu care s-a schimbat funcția:

Exersați găsirea incrementelor:

  1. Găsiți incrementul funcției într-un punct cu un increment al argumentului egal cu.
  2. Același lucru pentru o funcție într-un punct.

Solutii:

În puncte diferite, cu același increment al argumentului, incrementul funcției va fi diferit. Aceasta înseamnă că derivata din fiecare punct are propria lui (am discutat despre acest lucru chiar de la început - abruptul drumului în diferite puncte este diferit). Prin urmare, atunci când scriem o derivată, trebuie să indicăm în ce moment:

Funcția de putere.

O funcție de putere se numește o funcție în care argumentul este într-o oarecare măsură (logic, nu?).

Și - în orice măsură: .

Cel mai simplu caz este când exponentul este:

Să-i găsim derivata la un punct. Amintiți-vă definiția unei derivate:

Deci argumentul se schimbă de la la. Care este incrementul funcției?

Creșterea este. Dar funcția în orice punct este egală cu argumentul său. De aceea:

Derivata este:

Derivata lui este:

b) Acum considerăm funcția pătratică (): .

Acum să ne amintim asta. Aceasta înseamnă că valoarea incrementului poate fi neglijată, deoarece este infinit de mică și, prin urmare, nesemnificativă pe fundalul unui alt termen:

Deci, avem o altă regulă:

c) Continuăm seria logică: .

Această expresie poate fi simplificată în diferite moduri: deschideți prima paranteză folosind formula pentru înmulțirea prescurtată a cubului sumei sau descompuneți întreaga expresie în factori folosind formula pentru diferența de cuburi. Încercați să o faceți singur în oricare dintre modurile sugerate.

Deci, am primit următoarele:

Și să ne amintim asta din nou. Aceasta înseamnă că putem neglija toți termenii care conțin:

Primim: .

d) Reguli similare pot fi obținute pentru puteri mari:

e) Rezultă că această regulă poate fi generalizată pentru o funcție de putere cu un exponent arbitrar, nici măcar un număr întreg:

(2)

Puteți formula regula cu cuvintele: „gradul este prezentat ca coeficient, apoi scade cu”.

Vom demonstra această regulă mai târziu (aproape la sfârșit). Acum să ne uităm la câteva exemple. Aflați derivata funcțiilor:

  1. (în două moduri: prin formula și folosind definiția derivatei - prin numărarea incrementului funcției);
  1. . Credeți sau nu, aceasta este o funcție de putere. Dacă aveți întrebări precum „Cum este? Și unde este gradul? ”, Ține minte subiectul“ ”!
    Da, da, rădăcina este și ea un grad, doar unul fracționar:.
    Deci rădăcina noastră pătrată este doar o putere cu un exponent:
    .
    Căutăm derivata folosind formula recent învățată:

    Dacă în acest moment a devenit din nou neclar, repetați subiectul „” !!! (aproximativ un grad cu un indicator negativ)

  2. . Acum exponentul:

    Și acum prin definiție (ai uitat încă?):
    ;
    .
    Acum, ca de obicei, neglijăm termenul care conține:
    .

  3. . Combinație de cazuri anterioare: .

funcții trigonometrice.

Aici vom folosi un fapt din matematica superioară:

Când expresia.

Dovada o vei invata in primul an de institut (si pentru a ajunge acolo trebuie sa treci bine examenul). Acum o voi arăta doar grafic:

Vedem că atunci când funcția nu există - punctul de pe grafic este perforat. Dar cu cât este mai aproape de valoare, cu atât funcția este mai aproape de aceasta.

În plus, puteți verifica această regulă cu un calculator. Da, da, nu te sfii, ia un calculator, încă nu suntem la examen.

Deci să încercăm: ;

Nu uitați să comutați calculatorul în modul Radians!

etc. Vedem că cu cât este mai mic, cu atât valoarea raportului este mai aproape de.

a) Luați în considerare o funcție. Ca de obicei, găsim creșterea acestuia:

Să transformăm diferența de sinusuri într-un produs. Pentru a face acest lucru, folosim formula (amintiți-vă de subiectul „”):.

Acum derivata:

Să facem o înlocuire: . Apoi, pentru infinit de mic, este și infinit de mic: . Expresia pentru ia forma:

Și acum ne amintim asta cu expresia. Și, de asemenea, ce se întâmplă dacă o valoare infinit de mică poate fi neglijată în sumă (adică la).

Deci obținem următoarea regulă: derivata sinusului este egală cu cosinusul:

Acestea sunt derivate de bază („tabel”). Iată-le într-o singură listă:

Mai târziu le vom adăuga câteva, dar acestea sunt cele mai importante, deoarece sunt folosite cel mai des.

Practică:

  1. Aflați derivata unei funcții într-un punct;
  2. Aflați derivata funcției.

Solutii:

  1. În primul rând, găsim derivata în formă generală și apoi îi înlocuim valoarea:
    ;
    .
  2. Aici avem ceva similar cu o funcție de putere. Să încercăm să o aducem la
    vedere normala:
    .
    Ok, acum poți folosi formula:
    .
    .
  3. . Eeeeeee….. Ce este????

Bine, ai dreptate, încă nu știm cum să găsim astfel de derivate. Aici avem o combinație de mai multe tipuri de funcții. Pentru a lucra cu ei, trebuie să înveți mai multe reguli:

Exponent și logaritm natural.

Există o astfel de funcție în matematică, a cărei derivată pentru oricare este egală cu valoarea funcției în sine pentru aceeași. Se numește „exponent” și este o funcție exponențială

Baza acestei funcții - o constantă - este o fracție zecimală infinită, adică un număr irațional (cum ar fi). Se numește „numărul Euler”, motiv pentru care este notat cu o literă.

Deci regula este:

Este foarte ușor de reținut.

Ei bine, nu vom merge departe, vom lua în considerare imediat funcția inversă. Care este inversul funcției exponențiale? Logaritm:

În cazul nostru, baza este un număr:

Un astfel de logaritm (adică un logaritm cu o bază) se numește „natural” și folosim o notație specială pentru el: scriem în schimb.

Cu ce ​​este egal? Desigur, .

Derivata logaritmului natural este, de asemenea, foarte simplă:

Exemple:

  1. Aflați derivata funcției.
  2. Care este derivata functiei?

Raspunsuri: Exponentul și logaritmul natural sunt funcții care sunt unic simple în ceea ce privește derivata. Funcțiile exponențiale și logaritmice cu orice altă bază vor avea o derivată diferită, pe care o vom analiza mai târziu, după ce vom parcurge regulile de diferențiere.

Reguli de diferențiere

Ce reguli? Un alt termen nou, din nou?!...

Diferenţiere este procesul de găsire a derivatei.

Numai și totul. Care este un alt cuvânt pentru acest proces? Nu proizvodnovanie... Diferenţialul de matematică se numeşte însăşi incrementul funcţiei la. Acest termen provine din latinescul diferentia - diferenta. Aici.

Când derivăm toate aceste reguli, vom folosi două funcții, de exemplu, și. Vom avea nevoie și de formule pentru incrementele lor:

Sunt 5 reguli în total.

Constanta este scoasă din semnul derivatei.

Dacă - un număr constant (constant), atunci.

Evident, această regulă funcționează și pentru diferența: .

Să demonstrăm. Lasă, sau mai ușor.

Exemple.

Găsiți derivate ale funcțiilor:

  1. la punct;
  2. la punct;
  3. la punct;
  4. la punct.

Solutii:

  1. (derivata este aceeași în toate punctele, deoarece este o funcție liniară, vă amintiți?);

Derivat al unui produs

Totul este similar aici: introducem o nouă funcție și găsim incrementul acesteia:

Derivat:

Exemple:

  1. Găsiți derivate ale funcțiilor și;
  2. Aflați derivata unei funcții într-un punct.

Solutii:

Derivată a funcției exponențiale

Acum cunoștințele tale sunt suficiente pentru a învăța cum să găsești derivata oricărei funcții exponențiale și nu doar exponentul (ai uitat încă ce este?).

Deci unde este un număr.

Știm deja derivata funcției, așa că să încercăm să aducem funcția noastră la o nouă bază:

Pentru a face acest lucru, folosim o regulă simplă: . Apoi:

Ei bine, a funcționat. Acum încercați să găsiți derivata și nu uitați că această funcție este complexă.

S-a întâmplat?

Iată, verifică-te:

Formula s-a dovedit a fi foarte asemănătoare cu derivata exponentului: așa cum a fost, rămâne, a apărut doar un factor, care este doar un număr, dar nu o variabilă.

Exemple:
Găsiți derivate ale funcțiilor:

Raspunsuri:

Acesta este doar un număr care nu poate fi calculat fără un calculator, adică nu poate fi scris într-o formă mai simplă. Prin urmare, în răspuns este lăsat în această formă.

Derivată a unei funcții logaritmice

Aici este similar: știți deja derivata logaritmului natural:

Prin urmare, pentru a găsi un arbitrar din logaritm cu o bază diferită, de exemplu:

Trebuie să aducem acest logaritm la bază. Cum schimbi baza unui logaritm? Sper să vă amintiți această formulă:

Abia acum în loc de noi vom scrie:

Numitorul s-a dovedit a fi doar o constantă (un număr constant, fără o variabilă). Derivatul este foarte simplu:

Derivate ale funcțiilor exponențiale și logaritmice nu se găsesc aproape niciodată în examen, dar nu va fi de prisos să le cunoaștem.

Derivată a unei funcții complexe.

Ce este o „funcție complexă”? Nu, acesta nu este un logaritm și nu o arc tangentă. Aceste funcții pot fi greu de înțeles (deși dacă logaritmul ți se pare dificil, citește subiectul „Logaritmi” și totul va funcționa), dar în materie de matematică, cuvântul „complex” nu înseamnă „dificil”.

Imaginați-vă un transportor mic: doi oameni stau și fac niște acțiuni cu unele obiecte. De exemplu, primul înfășoară un baton de ciocolată într-un ambalaj, iar al doilea îl leagă cu o panglică. Se dovedește un astfel de obiect compozit: un baton de ciocolată înfășurat și legat cu o panglică. Pentru a mânca un baton de ciocolată, trebuie să faceți pașii opuși în ordine inversă.

Să creăm o conductă matematică similară: mai întâi vom găsi cosinusul unui număr, apoi vom pătra numărul rezultat. Așadar, ne dau un număr (ciocolată), îi găsesc cosinus (înveliș), iar apoi pătrați ce am primit (legați-l cu o panglică). Ce s-a întâmplat? Funcţie. Acesta este un exemplu de funcție complexă: când, pentru a-i găsi valoarea, facem prima acțiune direct cu variabila, iar apoi o a doua acțiune cu ceea ce s-a întâmplat ca urmare a primei.

S-ar putea să facem aceiași pași în ordine inversă: mai întâi pătrați, apoi caut cosinusul numărului rezultat:. Este ușor de ghicit că rezultatul va fi aproape întotdeauna diferit. O caracteristică importantă a funcțiilor complexe: atunci când ordinea acțiunilor se schimbă, funcția se schimbă.

Cu alte cuvinte, O funcție complexă este o funcție al cărei argument este o altă funcție: .

Pentru primul exemplu, .

Al doilea exemplu: (la fel). .

Ultima acțiune pe care o facem va fi numită funcția „externă”., și acțiunea efectuată prima - respectiv funcția „internă”.(acestea sunt nume informale, le folosesc doar pentru a explica materialul într-un limbaj simplu).

Încercați să determinați singur ce funcție este externă și care este internă:

Raspunsuri: Separarea funcțiilor interioare și exterioare este foarte asemănătoare cu schimbarea variabilelor: de exemplu, în funcție

  1. Ce măsură vom lua mai întâi? Mai întâi calculăm sinusul și abia apoi îl ridicăm la un cub. Deci este o funcție internă, nu una externă.
    Iar funcția inițială este compoziția lor: .
  2. Intern: ; extern: .
    Examinare: .
  3. Intern: ; extern: .
    Examinare: .
  4. Intern: ; extern: .
    Examinare: .
  5. Intern: ; extern: .
    Examinare: .

schimbăm variabile și obținem o funcție.

Ei bine, acum ne vom extrage ciocolata - căutați derivatul. Procedura este întotdeauna inversată: mai întâi căutăm derivata funcției exterioare, apoi înmulțim rezultatul cu derivata funcției interioare. Pentru exemplul original, arată astfel:

Alt exemplu:

Deci, să formulăm în sfârșit regula oficială:

Algoritm pentru găsirea derivatei unei funcții complexe:

Totul pare a fi simplu, nu?

Să verificăm cu exemple:

Solutii:

1) Intern: ;

Extern: ;

2) Intern: ;

(doar nu încercați să reduceți până acum! Nu se scoate nimic de sub cosinus, vă amintiți?)

3) Intern: ;

Extern: ;

Este imediat clar că aici există o funcție complexă pe trei niveluri: la urma urmei, aceasta este deja o funcție complexă în sine și încă extragem rădăcina din ea, adică efectuăm a treia acțiune (punem ciocolată într-un ambalaj și cu o panglică într-o servietă). Dar nu există niciun motiv să ne fie frică: oricum, vom „despacheta” această funcție în aceeași ordine ca de obicei: de la sfârșit.

Adică mai întâi diferențiem rădăcina, apoi cosinusul și abia apoi expresia dintre paranteze. Și apoi înmulțim totul.

În astfel de cazuri, este convenabil să numerotați acțiunile. Adică să ne imaginăm ce știm. În ce ordine vom efectua acțiuni pentru a calcula valoarea acestei expresii? Să ne uităm la un exemplu:

Cu cât acțiunea este efectuată mai târziu, cu atât funcția corespunzătoare va fi mai „externă”. Secvența de acțiuni - ca și înainte:

Aici cuibărirea este în general pe 4 niveluri. Să stabilim cursul acțiunii.

1. Exprimarea radicală. .

2. Rădăcină. .

3. Sinusul. .

4. Pătrat. .

5. Punând totul împreună:

DERIVAT. SCURT DESPRE PRINCIPALA

Derivată de funcție- raportul dintre incrementul funcției și incrementul argumentului cu o creștere infinitezimală a argumentului:

Derivate de bază:

Reguli de diferențiere:

Constanta este scoasă din semnul derivatei:

Derivată a sumei:

Produs derivat:

Derivată a coeficientului:

Derivata unei functii complexe:

Algoritm pentru găsirea derivatei unei funcții complexe:

  1. Definim funcția „internă”, găsim derivata ei.
  2. Definim funcția „externă”, găsim derivata ei.
  3. Înmulțim rezultatele primului și celui de-al doilea punct.

Derivată a unei funcții complexe. Exemple de soluții

În această lecție, vom învăța cum să găsim derivata unei functii complexe. Lecția este o continuare logică a lecției Cum să găsesc derivatul?, pe care am analizat cele mai simple derivate și, de asemenea, ne-am familiarizat cu regulile de diferențiere și unele metode tehnice de găsire a derivatelor. Astfel, dacă nu ești foarte bun cu derivatele de funcții sau unele puncte din acest articol nu sunt în totalitate clare, atunci citește mai întâi lecția de mai sus. Vă rugăm să acordați o dispoziție serioasă - materialul nu este ușor, dar voi încerca totuși să îl prezint simplu și clar.

În practică, trebuie să te ocupi de derivata unei funcții complexe foarte des, chiar aș spune aproape întotdeauna, când ți se dau sarcini să găsești derivate.

Ne uităm în tabel la regula (nr. 5) pentru diferențierea unei funcții complexe:

Înțelegem. În primul rând, să aruncăm o privire asupra notației. Aici avem două funcții - și , iar funcția, la figurat vorbind, este imbricată în funcția . O funcție de acest fel (când o funcție este imbricată în alta) se numește funcție complexă.

Voi apela funcția functie externa, și funcția – funcție interioară (sau imbricată)..

! Aceste definiții nu sunt teoretice și nu ar trebui să apară în proiectarea finală a sarcinilor. Folosesc expresiile informale „funcție externă”, funcție „internă” doar pentru a vă facilita înțelegerea materialului.

Pentru a clarifica situația, luați în considerare:

Exemplul 1

Aflați derivata unei funcții

Sub sinus, nu avem doar litera „x”, ci întreaga expresie, deci găsirea imediată a derivatei din tabel nu va funcționa. De asemenea, observăm că este imposibil să aplicați primele patru reguli aici, pare să existe o diferență, dar adevărul este că este imposibil să „sfiți” sinusul:

În acest exemplu, deja din explicațiile mele, este intuitiv clar că funcția este o funcție complexă, iar polinomul este o funcție internă (încorporare) și o funcție externă.

Primul pas, care trebuie efectuată atunci când găsirea derivatei unei funcții complexe este să înțelegeți ce funcție este internă și care este externă.

În cazul exemplelor simple, pare clar că un polinom este imbricat sub sinus. Dar dacă nu este evident? Cum să determinați exact ce funcție este externă și care este internă? Pentru a face acest lucru, vă propun să folosiți următoarea tehnică, care poate fi efectuată mental sau pe ciornă.

Să ne imaginăm că trebuie să calculăm valoarea expresiei cu un calculator (în loc de unul, poate exista orice număr).

Ce calculăm mai întâi? Pentru inceput va trebui să efectuați următoarea acțiune: , deci polinomul va fi o funcție internă:

În al doilea rând va trebui să găsiți, deci sinusul - va fi o funcție externă:

După ce noi A INTELEGE Cu funcții interioare și exterioare, este timpul să aplici regula de diferențiere a funcției compuse.

Începem să decidem. De la lecție Cum să găsesc derivatul? ne amintim că proiectarea soluției oricărei derivate începe întotdeauna astfel - includem expresia între paranteze și punem o contur în dreapta sus:

Primul găsim derivata funcției externe (sinus), ne uităm la tabelul derivatelor funcțiilor elementare și observăm că . Toate formulele tabelare sunt aplicabile chiar dacă „x” este înlocuit cu o expresie complexă, în acest caz:

Rețineți că funcția interioară nu s-a schimbat, nu o atingem.

Ei bine, este destul de evident că

Rezultatul final al aplicării formulei arată astfel:

Factorul constant este de obicei plasat la începutul expresiei:

Dacă există vreo neînțelegere, notați decizia pe hârtie și citiți din nou explicațiile.

Exemplul 2

Aflați derivata unei funcții

Exemplul 3

Aflați derivata unei funcții

Ca întotdeauna, scriem:

Ne dăm seama unde avem o funcție externă și unde este una internă. Pentru a face acest lucru, încercăm (mental sau pe o schiță) să calculăm valoarea expresiei pentru . Ce trebuie făcut mai întâi? În primul rând, trebuie să calculați cu ce baza este egală:, ceea ce înseamnă că polinomul este funcția internă:

Și, numai atunci se realizează exponențiarea, prin urmare, funcția de putere este o funcție externă:

Conform formulei, mai întâi trebuie să găsiți derivata funcției externe, în acest caz, gradul. Căutăm formula dorită în tabel:. Repetăm ​​din nou: orice formulă tabelară este valabilă nu numai pentru „x”, ci și pentru o expresie complexă. Astfel, rezultatul aplicării regulii de diferențiere a unei funcții complexe este următorul:

Subliniez din nou că atunci când luăm derivata funcției exterioare, funcția interioară nu se modifică:

Acum rămâne să găsiți o derivată foarte simplă a funcției interioare și să „pieptănați” puțin rezultatul:

Exemplul 4

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Pentru a consolida înțelegerea derivatei unei funcții complexe, voi da un exemplu fără comentarii, încercați să vă dați seama singur, raționați, unde este externul și unde este funcția internă, de ce sarcinile sunt rezolvate astfel?

Exemplul 5

a) Aflați derivata unei funcții

b) Aflați derivata funcției

Exemplul 6

Aflați derivata unei funcții

Aici avem o rădăcină, iar pentru a diferenția rădăcina, aceasta trebuie reprezentată ca un grad. Astfel, mai întâi aducem funcția în forma potrivită pentru diferențiere:

Analizând funcția, ajungem la concluzia că suma a trei termeni este o funcție internă, iar exponențiația este o funcție externă. Aplicam regula de diferentiere a unei functii complexe:

Gradul este din nou reprezentat ca un radical (rădăcină), iar pentru derivata funcției interne, aplicăm o regulă simplă de diferențiere a sumei:

Gata. De asemenea, puteți aduce expresia la un numitor comun între paranteze și scrieți totul ca o fracție. Este frumos, desigur, dar atunci când se obțin derivate lungi greoaie, este mai bine să nu faci acest lucru (este ușor să te confuzi, să faci o greșeală inutilă și profesorul va fi incomod să verifice).

Exemplul 7

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Este interesant de observat că uneori, în loc de regula de diferențiere a unei funcții complexe, se poate folosi regula de diferențiere a unui coeficient. , dar o astfel de soluție ar arăta ca o perversiune amuzantă. Iată un exemplu tipic:



Exemplul 8

Aflați derivata unei funcții

Aici puteți folosi regula de diferențiere a coeficientului , dar este mult mai profitabil să găsim derivata prin regula de diferențiere a unei funcții complexe:

Pregătim funcția pentru diferențiere - scoatem semnul minus al derivatei și ridicăm cosinusul la numărător:

Cosinusul este o funcție internă, exponențiația este o funcție externă.
Să folosim regula noastră:

Găsim derivata funcției interioare, resetăm cosinusul înapoi în jos:

Gata. În exemplul luat în considerare, este important să nu vă confundați în semne. Apropo, încercați să o rezolvați cu regula , răspunsurile trebuie să se potrivească.

Exemplul 9

Aflați derivata unei funcții

Acesta este un exemplu de auto-rezolvare (răspuns la sfârșitul lecției).

Până acum, am luat în considerare cazurile în care am avut un singur cuib într-o funcție complexă. În sarcinile practice, puteți găsi adesea derivate, în care, precum păpușile de cuibărit, una în cealaltă, 3 sau chiar 4-5 funcții sunt imbricate deodată.

Exemplul 10

Aflați derivata unei funcții

Înțelegem atașamentele acestei funcții. Încercăm să evaluăm expresia folosind valoarea experimentală. Cum am conta pe un calculator?

Mai întâi trebuie să găsiți, ceea ce înseamnă că arcsinusul este cel mai adânc cuib:

Acest arcsinus al unității ar trebui apoi să fie la pătrat:

Și, în sfârșit, îi ridicăm pe cei șapte la putere:

Adică, în acest exemplu avem trei funcții diferite și două imbricare, în timp ce funcția cea mai interioară este arcsinus, iar funcția cea mai exterioară este funcția exponențială.

Începem să decidem

Conform regulii, mai întâi trebuie să luați derivata funcției externe. Ne uităm la tabelul de derivate și aflăm derivata funcției exponențiale: Singura diferență este că în loc de „x” avem o expresie complexă, care nu anulează validitatea acestei formule. Deci, rezultatul aplicării regulii de diferențiere a unei funcții complexe este următorul:

Sub liniuță, avem din nou o funcție dificilă! Dar deja este mai ușor. Este ușor de observat că funcția interioară este arcsinus și funcția exterioară este gradul. Conform regulii de diferențiere a unei funcții complexe, mai întâi trebuie să luați derivata gradului.