Сложение дробей с одинаковыми знаменателями 5. Дроби с различными знаменателями и их вычитание

Одной из важнейших наук, применение которой можно увидеть в таких дисциплинах, как химия, физика и даже биология, является математика. Изучение этой науки позволяет развить некоторые умственные качества, улучшить и способность концентрироваться. Одна из тем, которые заслуживают отдельного внимания в курсе «Математика» - сложение и вычитание дробей. У многих учеников ее изучение вызывает затруднение. Возможно, наша статья поможет лучше понять эту тему.

Как вычесть дроби, знаменатели которых одинаковые

Дроби - это те же числа, с которыми можно производить различные действия. Их отличие от целых чисел заключается в присутствии знаменателя. Именно поэтому при выполнении действий с дробями нужно изучить некоторые их особенности и правила. Наиболее простым случаем является вычитание обыкновенных дробей, знаменатели которых представлены в виде одинакового числа. Выполнить это действие не составит особого труда, если знать простое правило:

  • Для того чтобы из одной дроби вычесть вторую, необходимо из числителя уменьшаемой дроби вычесть числитель вычитаемой дроби. Это число записываем в числитель разницы, а знаменатель оставляем тот же: k/m - b/m = (k-b)/m.

Примеры вычитания дробей, знаменатели которых одинаковы

7/19 - 3/19 = (7 - 3)/19 = 4/19.

От числителя уменьшаемой дроби «7» отнимаем числитель вычитаемой дроби «3», получаем «4». Это число мы записываем в числитель ответа, а в знаменатель ставим то же число, что было в знаменателях первой и второй дроби - «19».

На картинке ниже приведено еще несколько подобных примеров.

Рассмотрим более сложный пример, где произведено вычитание дробей с одинаковыми знаменателями:

29/47 - 3/47 - 8/47 - 2/47 - 7/47 = (29 - 3 - 8 - 2 - 7)/47 = 9/47.

От числителя уменьшаемой дроби «29» отниманием по очереди числители всех последующих дробей - «3», «8», «2», «7». В итоге получаем результат «9», который записываем в числитель ответа, а в знаменатель записываем то число, которое находится в знаменателях всех этих дробей, - «47».

Сложение дробей, имеющих одинаковый знаменатель

Сложение и вычитание обыкновенных дробей осуществляется по одному и тому же принципу.

  • Для того чтобы сложить дроби, знаменатели которых одинаковы, необходимо числители сложить. Полученное число - числитель суммы, а знаменатель останется тот же: k/m + b/m = (k + b)/m.

Рассмотрим, как это выглядит на примере:

1/4 + 2/4 = 3/4.

К числителю первой слагаемой дроби - «1» - добавляем числитель второй слагаемой дроби - «2». Результат - «3» - записываем в числитель суммы, а знаменатель оставляем тот же, что присутствовал в дробях, - «4».

Дроби с различными знаменателями и их вычитание

Действие с дробями, которые имеют одинаковый знаменатель, мы уже рассмотрели. Как видим, зная простые правила, решить подобные примеры достаточно легко. Но что делать, если необходимо произвести действие с дробями, которые имеют различные знаменатели? Многие учащиеся средних школ приходят в затруднение перед такими примерами. Но и здесь, если знать принцип решения, примеры уже не будут представлять для вас сложности. Здесь также существует правило, без которого решение подобных дробей просто невозможно.

    Чтобы произвести вычитание дробей с разными знаменателями, необходимо их привести к одинаковому наименьшему знаменателю.

    О том, как это сделать, мы поговорим подробнее.

    Свойство дроби

    Для того чтобы несколько дробей привести к одинаковому знаменателю, нужно использовать в решении главное свойство дроби: после деления или умножения числителя и знаменателя на одинаковое число получится дробь, равная данной.

    Так, например, дробь 2/3 может иметь такие знаменатели, как «6», «9», «12» и т. д., то есть она может иметь вид любого числа, которое кратно «3». После того как числитель и знаменатель мы умножим на «2», получится дробь 4/6. После того как числитель и знаменатель исходной дроби мы умножим на «3», получим 6/9, а если аналогичное действие произвести с цифрой «4», получим 8/12. Одним равенством это можно записать так:

    2/3 = 4/6 = 6/9 = 8/12…

    Как привести несколько дробей к одному и тому же знаменателю

    Рассмотрим, как привести несколько дробей к одному и тому же знаменателю. Для примера возьмем дроби, приведенные на картинке ниже. Для начала необходимо определить, какое число может стать знаменателем для их всех. Для облегчения разложим имеющиеся знаменатели на множители.

    Знаменатель дроби 1/2 и дроби 2/3 на множители разложить нельзя. Знаменатель 7/9 имеет два множителя 7/9 = 7/(3 х 3), знаменатель дроби 5/6 = 5/(2 х 3). Теперь необходимо определить, какие же множители будут наименьшими для всех этих четырех дробей. Так как в первой дроби в знаменателе имеется число «2», значит, оно должно присутствовать во всех знаменателях, в дроби 7/9 присутствуют две тройки, значит, они также обе должны присутствовать в знаменателе. Учитывая вышесказанное, определяем, что знаменатель состоит из трех множителей: 3, 2, 3 и равен 3 х 2 х 3 = 18.

    Рассмотрим первую дробь - 1/2. В ее знаменателе имеется «2», но нет ни одной цифры «3», а должно быть две. Для этого мы знаменатель умножаем на две тройки, но, согласно свойству дроби, мы и числитель должны умножить на две тройки:
    1/2 = (1 х 3 х 3)/(2 х 3 х 3) = 9/18.

    Аналогично производим действия с оставшимися дробями.

    • 2/3 - в знаменателе не хватает одной тройки и одной двойки:
      2/3 = (2 х 3 х 2)/(3 х 3 х 2) = 12/18.
    • 7/9 или 7/(3 х 3) - в знаменателе не хватает двойки:
      7/9 = (7 х 2)/(9 х 2) = 14/18.
    • 5/6 или 5/(2 х 3) - в знаменателе не хватает тройки:
      5/6 = (5 х 3)/(6 х 3) = 15/18.

    Все вместе это выглядит так:

    Как вычесть и сложить дроби, имеющие различные знаменатели

    Как уже говорилось выше, для того чтобы произвести сложение или вычитание дробей, имеющих различные знаменатели, их необходимо привести к одному знаменателю, а дальше воспользоваться правилами вычитания дробей, имеющих одинаковый знаменатель, о котором уже рассказывалось.

    Рассмотрим это на примере: 4/18 - 3/15.

    Находим кратное чисел 18 и 15:

    • Число 18 состоит из 3 х 2 х 3.
    • Число 15 состоит из 5 х 3.
    • Общее кратное будет состоять из следующих множителей 5 х 3 х 3 х 2 = 90.

    После того как знаменатель будет найден, необходимо вычислить множитель, который будет отличным для каждой дроби, то есть то число, на которое необходимо будет умножить не только знаменатель, но и числитель. Для этого число, которое мы нашли (общее кратное), делим на знаменатель той дроби, у которой нужно определить дополнительные множители.

    • 90 поделить на 15. Полученное число «6» будет множителем для 3/15.
    • 90 поделить на 18. Полученное число «5» будет множителем для 4/18.

    Следующий этап нашего решения - приведение каждой дроби к знаменателю «90».

    Как это делается, мы уже говорили. Рассмотрим, как это записывается в примере:

    (4 х 5)/(18 х 5) - (3 х 6)/(15 х 6) = 20/90 - 18/90 = 2/90 = 1/45.

    Если дроби с маленькими числами, то можно общий знаменатель определить, как в примере, приведенном на картинке ниже.

    Аналогично производится и имеющих различные знаменатели.

    Вычитание и имеющих целые части

    Вычитание дробей и их сложение мы уже детально разобрали. Но как произвести вычитание, если у дроби есть целая часть? Опять же, воспользуемся несколькими правилами:

    • Все дроби, имеющие целую часть, перевести в неправильные. Говоря простыми словами, убрать целую часть. Для этого число целой части умножаем на знаменатель дроби, полученное произведение добавляем к числителю. То число, которое получится после этих действий, - числитель неправильной дроби. Знаменатель же остается неизменным.
    • Если дроби имеют различные знаменатели, следует привести их к одинаковому.
    • Произвести сложение или вычитание с одинаковыми знаменателями.
    • При получении неправильной дроби выделить целую часть.

    Есть и иной способ, при помощи которого можно осуществить сложение и вычитание дробей с целыми частями. Для этого производятся отдельно действия с целыми частями, и отдельно действия с дробями, а результаты записываются вместе.

    Приведенный пример состоит из дробей, которые имеют одинаковый знаменатель. В том случае, когда знаменатели различны, их необходимо привести к одинаковому, а далее выполнить действия, как показано на примере.

    Вычитание дробей из целого числа

    Еще одной из разновидностей действий с дробями является тот случай, когда дробь необходимо отнять от На первый взгляд подобный пример кажется трудно решаемым. Однако здесь все довольно просто. Для его решения необходимо перевести целое число в дробь, причем с таким знаменателем, который имеется в вычитаемой дроби. Далее производим вычитание, аналогичное вычитанию с одинаковыми знаменателями. На примере это выглядит так:

    7 - 4/9 = (7 х 9)/9 - 4/9 = 53/9 - 4/9 = 49/9.

    Приведенное в этой статье вычитание дробей (6 класс) является основой для решения более сложных примеров, которые рассматриваются в последующих классах. Знания этой темы используются впоследствии для решения функций, производных и так далее. Поэтому очень важно разобраться и понять действия с дробями, рассматриваемые выше.

Найдите числитель и знаменатель. Дробь включает два числа: число, которое расположено над чертой, называется числителем, а число, которое находится под чертой – знаменателем. Знаменатель обозначает общее количество частей, на которые разбито некоторое целое, а числитель – это рассматриваемое количество таких частей.

  • Например, в дроби ½ числителем является 1, а знаменателем 2.

Определите знаменатель. Если две и более дроби имеют общий знаменатель, у таких дробей под чертой находится одно и то же число, то есть в этом случае некоторое целое разбито на одинаковое количество частей. Складывать дроби с общим знаменателем очень просто, так как знаменатель суммарной дроби будет таким же, как у складываемых дробей. Например:

  • У дробей 3/5 и 2/5 общий знаменатель 5.
  • У дробей 3/8, 5/8, 17/8 общий знаменатель 8.
  • Определите числители. Чтобы сложить дроби с общим знаменателем, сложите их числители, а результат запишите над знаменателем складываемых дробей.

    • У дробей 3/5 и 2/5 числители 3 и 2.
    • У дробей 3/8, 5/8, 17/8 числители 3, 5, 17.
  • Сложите числители. В задаче 3/5 + 2/5 сложите числители 3 + 2 = 5. В задаче 3/8 + 5/8 + 17/8 сложите числители 3 + 5 + 17 = 25.

  • Запишите суммарную дробь. Помните, что при сложении дробей с общим знаменателем он остается без изменений – складываются только числители.

    • 3/5 + 2/5 = 5/5
    • 3/8 + 5/8 + 17/8 = 25/8
  • Если нужно, преобразуйте дробь. Иногда дробь можно записать в виде целого числа, а не обыкновенной или десятичной дроби. Например, дробь 5/5 легко преобразуется в 1, так как любая дробь, у которой числитель равен знаменателю, есть 1. Представьте пирог, разрезанный на три части. Если вы съедите все три части, то вы съедите целый (один) пирог.

    • Любую обыкновенную дробь можно преобразовать в десятичную; для этого разделите числитель на знаменатель. Например, дробь 5/8 можно записать так: 5 ÷ 8 = 0,625.
  • Если возможно, упростите дробь. Упрощенная дробь – эта дробь, числитель и знаменатель которой не имеют общих делителей.

    • Например, рассмотрим дробь 3/6. Здесь и у числителя, и у знаменателя есть общий делитель, равный 3, то есть числитель и знаменатель нацело делятся на 3. Поэтому дробь 3/6 можно записать так: 3 ÷ 3/6 ÷ 3 = ½.
  • Если нужно, преобразуйте неправильную дробь в смешанную дробь (смешанное число). У неправильной дроби числитель больше знаменателя, например, 25/8 (у правильной дроби числитель меньше знаменателя). Неправильную дробь можно преобразовать в смешанную дробь, которая состоит из целой части (то есть целого числа) и дробной части (то есть правильной дроби). Чтобы преобразовать неправильную дробь, например, 25/8, в смешанное число, выполните следующие действия:

    • Разделите числитель неправильной дроби на ее знаменатель; запишите неполное частное (целый ответ). В нашем примере: 25 ÷ 8 = 3 плюс некоторый остаток. В данном случае целый ответ – это целая часть смешанного числа.
    • Найдите остаток. В нашем примере: 8 х 3 = 24; полученный результат вычтите из исходного числителя: 25 - 24 = 1, то есть остаток равен 1. В данном случае остаток – это числитель дробной части смешанного числа.
    • Запишите смешанную дробь. Знаменатель не меняется (то есть равен знаменателю неправильной дроби), поэтому 25/8 = 3 1/8.
  • Разные действия с дробями можно выполнять, например, сложение дробей. Сложение дробей можно разделить на несколько видов. В каждом виде сложения дробей свои правила и алгоритм действий. Рассмотрим подробно каждый вид сложения.

    Сложение дробей с одинаковыми знаменателями.

    На примере посмотрим, как складывать дроби с общим знаменателем.

    Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или \(\frac{1}{5}\) от всего пути. Во второй день они прошли от точки B до D или \(\frac{2}{5}\) от всего пути. Какое расстояние они прошли от начала пути до точки D?

    Чтобы найти расстояние от точки A до точки D нужно сложить дроби \(\frac{1}{5} + \frac{2}{5}\).

    Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

    \(\frac{1}{5} + \frac{2}{5} = \frac{1 + 2}{5} = \frac{3}{5}\)

    В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

    \(\bf \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}\)

    Ответ: туристы прошли \(\frac{3}{5}\) всего пути.

    Сложение дробей с разными знаменателями.

    Рассмотрим пример:

    Нужно сложить две дроби \(\frac{3}{4}\) и \(\frac{2}{7}\).

    Чтобы сложить дроби с разными знаменателями нужно сначала найти , а потом воспользоваться правилом сложения дробей с одинаковыми знаменателями.

    Для знаменателей 4 и 7 общим знаменателем будет число 28. Первую дробь \(\frac{3}{4}\) нужно умножить на 7. Вторую дробь \(\frac{2}{7}\) нужно умножить на 4.

    \(\frac{3}{4} + \frac{2}{7} = \frac{3 \times \color{red} {7} + 2 \times \color{red} {4}}{4 \times \color{red} {7}} = \frac{21 + 8}{28} = \frac{29}{28} = 1\frac{1}{28}\)

    В буквенном виде получаем такую формулу:

    \(\bf \frac{a}{b} + \frac{c}{d} = \frac{a \times d + c \times b}{b \times d}\)

    Сложение смешанных чисел или смешанных дробей.

    Сложение происходит по закону сложения.

    У смешанных дробей складываем целые части с целыми и дробные части с дробными.

    Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

    Сложим смешанные числа \(3\frac{6}{11}\) и \(1\frac{3}{11}\).

    \(3\frac{6}{11} + 1\frac{3}{11} = (\color{red} {3} + \color{blue} {\frac{6}{11}}) + (\color{red} {1} + \color{blue} {\frac{3}{11}}) = (\color{red} {3} + \color{red} {1}) + (\color{blue} {\frac{6}{11}} + \color{blue} {\frac{3}{11}}) = \color{red}{4} + (\color{blue} {\frac{6 + 3}{11}}) = \color{red}{4} + \color{blue} {\frac{9}{11}} = \color{red}{4} \color{blue} {\frac{9}{11}}\)

    Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

    Выполним сложение смешанных чисел \(7\frac{1}{8}\) и \(2\frac{1}{6}\).

    Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь \(7\frac{1}{8}\) на дополнительный множитель 3, а вторую дробь \(2\frac{1}{6}\) на 4.

    \(7\frac{1}{8} + 2\frac{1}{6} = 7\frac{1 \times \color{red} {3}}{8 \times \color{red} {3}} = 2\frac{1 \times \color{red} {4}}{6 \times \color{red} {4}} =7\frac{3}{24} + 2\frac{4}{24} = 9\frac{7}{24}\)

    Вопросы по теме:
    Как складывать дроби?
    Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

    Как решать дроби с разными знаменателями?
    Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

    Как решать смешанные дроби?
    Ответ: складываем целые части с целыми и дробные части с дробными.

    Пример №1:
    Может ли сумма двух в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

    \(\frac{2}{7} + \frac{3}{7} = \frac{2 + 3}{7} = \frac{5}{7}\)

    Дробь \(\frac{5}{7}\) это правильная дробь, она является результатом суммы двух правильных дробей \(\frac{2}{7}\) и \(\frac{3}{7}\).

    \(\frac{2}{5} + \frac{8}{9} = \frac{2 \times 9 + 8 \times 5}{5 \times 9} =\frac{18 + 40}{45} = \frac{58}{45}\)

    Дробь \(\frac{58}{45}\) является неправильной дроби, она получилась в результате суммы правильных дробей \(\frac{2}{5}\) и \(\frac{8}{9}\).

    Ответ: на оба вопроса ответ да.

    Пример №2:
    Сложите дроби: а) \(\frac{3}{11} + \frac{5}{11}\) б) \(\frac{1}{3} + \frac{2}{9}\).

    а) \(\frac{3}{11} + \frac{5}{11} = \frac{3 + 5}{11} = \frac{8}{11}\)

    б) \(\frac{1}{3} + \frac{2}{9} = \frac{1 \times \color{red} {3}}{3 \times \color{red} {3}} + \frac{2}{9} = \frac{3}{9} + \frac{2}{9} = \frac{5}{9}\)

    Пример №3:
    Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) \(1\frac{9}{47}\) б) \(5\frac{1}{3}\)

    а) \(1\frac{9}{47} = 1 + \frac{9}{47}\)

    б) \(5\frac{1}{3} = 5 + \frac{1}{3}\)

    Пример №4:
    Вычислите сумму: а) \(8\frac{5}{7} + 2\frac{1}{7}\) б) \(2\frac{9}{13} + \frac{2}{13}\) в) \(7\frac{2}{5} + 3\frac{4}{15}\)

    а) \(8\frac{5}{7} + 2\frac{1}{7} = (8 + 2) + (\frac{5}{7} + \frac{1}{7}) = 10 + \frac{6}{7} = 10\frac{6}{7}\)

    б) \(2\frac{9}{13} + \frac{2}{13} = 2 + (\frac{9}{13} + \frac{2}{13}) = 2\frac{11}{13} \)

    в) \(7\frac{2}{5} + 3\frac{4}{15} = 7\frac{2 \times 3}{5 \times 3} + 3\frac{4}{15} = 7\frac{6}{15} + 3\frac{4}{15} = (7 + 3)+(\frac{6}{15} + \frac{4}{15}) = 10 + \frac{10}{15} = 10\frac{10}{15} = 10\frac{2}{3}\)

    Задача №1:
    За обедам съели \(\frac{8}{11}\) от торта, а вечером за ужином съели \(\frac{3}{11}\). Как вы думаете торт полностью съели или нет?

    Решение:
    Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

    \(\frac{8}{11} + \frac{3}{11} = \frac{11}{11} = 1\)

    Ответ: весь торт съели.

    Сегодня мы поговорим о дробях . Какой ужас внушает это слово во многих учащихся, а зря… Работа с дробями на самом деле не такая сложная. Главное разобраться с правилами. Чем мы сегодня и займемся.

    К сожалению, данная тема является слабым звеном у многих учащихся, хотя является одной из самых основных при изучении математики.

    Итак, давайте разбираться. Начнем с того, для чего она вообще нужна.

    В нашей жизни есть такие ситуации, когда необходимо разделить какой-либо целый объект на определенное количество долей (в жизни – разрезать, распилить, отломить и т.п.). Давайте возьмем для примера пиццу:

    Допустим вы с семьей заказали пиццу (или спекли – кому как нравится). Вас в семье четверо человек… Придется делиться)) И скорее всего вы постараетесь разделить пиццу на равные куски, чтобы никого не обидеть. В итоге каждому члену вашей семьи достанется по одной части пиццы (как и остальным членам семьи). И как раз в этом случае нам поможет понятие дроби. В числителе дроби будет указана часть пиццы доставшаяся вам, а в знаменателе – общее количество частей (равных частей).

    Вы можете порезать пиццу и на 6 равных частей, и на 7, и на 12….

    А теперь немного теории:

    • любая дробь состоит из числителя (число, записанное над знаком дроби) и знаменателя (число, записанное под знаком дроби);
    • знаменатель показывает на сколько частей разделен объект, а числитель – сколько из этих частей взято для каких-либо целей.
    • дробь показывает отношение взятых частей к общему количеству частей объекта.

    Предлагаю вам в течении изучения (повторения) темы выполнять предложенные упражнения (тренажеры). Это поможет закрепить знания и получить навык их применения на практике. С тренажерами рекомендуется работать именно в том порядке, в котором они приведены в данной статье.

    С применением дробей в нашей жизни мы разобрались. Теперь давайте рассмотрим виды дробей. Обыкновенные дроби бывают правильными и неправильными…

    Только не надо охать и ахать)) Все еще проще.

    • правильной дробью называется дробь, у которой числитель меньше знаменателя;
    • неправильной дробью называется дробь, у которой числитель больше знаменателя.

    Как я уже говорила выше, дроби (сейчас мы говорим о дробях с одинаковыми знаменателями) можно сравнивать. Для этого необходимо сравнить их числители (знаменатели-то одинаковые…)

    А вы заметили, что если числитель и знаменатель одинаковы, то мы получаем целый объект?))

    Поэтому говорят, что если числитель и знаменатель равны, то дробь равна единице.

    И еще один важный момент: надеюсь, что вы заметили))) значок дробной черты означает действие “деление”. И тогда становится совсем понятно, что если число разделить на само себя, в итоге получится единица. Но тут я забегаю вперед и более подобно мы поговорим об этом в статье о сокращение дробей…

    А теперь давайте разберемся со сложением и вычитанием дробей с одинаковыми знаменателями. Правило очень простое: чтобы сложить (вычесть) дроби с одинаковыми знаменателями необходимо сложить (вычесть) их числители, а знаменатель оставить оставить тем же.

    И напоследок давайте проверим наши знания с помощью теста. Данный тест можно пройти, только если вы правильно выполните все задания. Только в этом случае можно сказать, что тема усвоена. Вы можете проходить тест бесконечное количество раз. И даже если вы с первого раза сдали тест на 100% – зайдите на эту страничку через несколько дней и проверьте свои знания еще раз. Это только укрепить ваши знания и разовьет навык работы с такими дробями.

    P.S. Но кончено это еще не все о дробях, ведь они бывают не только обыкновенными, но и десятичными. А так же встречаться в смешанном числе (число, в котором есть и целая часть, и дробная)… Но об этом в следующих статьях. Не пропустите.

    Исследование, проведенное Алышевой Т.В. 1 , свидетельствует о целесообразности при изучении действий сложения и вычитания обыкновенных дробей с одинаковыми знаменателями использовать аналогию со сложением и вычитанием уже известных учащимся

    Алышева Т. В. Изучение арифметических действий с обыкновенными дробями учащимися вспомогательной школы //Дефектология. -1992.- № 4.- С. 25-27.

    исел, полученных в результате измерения величин, и проводить ручение действий дедуктивным методом, т. е. «от общего к част­ому».

    Сначала повторяется сложение и вычитание чисел с наимено-»аниями мер стоимости, длины. Например, 8 р. 20 к. ± 4 р. 15 к.

    Лри выполнении устного сложения и вычитания нужно склады-

    3 м 45 см ± 2 м 24 см - сначала складываются (вычитаются) метры, а потом сантиметры.

    ; При сложении и вычитании дробей рассматривается общий случай: выполнение этих действий со смешанными дробями (зна­менатели одинаковые): 3-?- ± 1-г. В этом случае надо: «Сложить (вычесть) целые числа, затем числители, а знаменатель остается тем же». Это общее правило распространяется на все случаи сложения и вычитания дробей. Постепенно вводятся частные слу­чаи: сложение смешанного числа с дробью 1у + -= = \-= \, потом

    (1 1\ ^ "

    смешанного числа с целым \-= + 4 = 5у. После этого рассматри­ваются более трудные случаи вычитания: 1) из смешанного числа дроби: 4д~п=4д-; 2) из смешанного числа целого: 4д-2=2-д-.

    После усвоения этих достаточно простых случаев вычитания учащиеся знакомятся с более трудными случаями, когда требуется преобразование уменьшаемого: вычитание из одной целой едини­цы или из нескольких единиц, например:

    \ О О О 2, л О <-)Э О п~

    1 ~Ь-~Ь~Ь-~5" 6 ~~5~ 2 Ь~"5- 2 "5-

    В первом случае единицу нужно представить в виде дроби со знаменателем, равным знаменателю вычитаемого. Во втором слу­чае из целого числа берем единицу и также ее записываем в виде неправильной дроби со знаменателем вычитаемого, получаем в уменьшаемом смешанное число. Вычитание выполняется по обще­му правилу.

    Наконец рассматривается наиболее трудный случай вычитания: из смешанного числа, причем числитель дробной части меньше

    числителя в вычитаемом: 5^-^. В этом случае надо уменьшае­мое изменить так, чтобы можно было применить общее правило, т. е. в уменьшаемом занять из целого одну единицу и раздробить

    в пятые доли, получим 1=-г, да еще -г, получится -г, прим<-|>

    примет такой вид: 4^~^, к его решению уже можно применим

    общее правило.

    Использование дедуктивного метода обучения сложению и вычп танию дробей будет способствовать развитию у учащихся умении обобщать, сравнивать, дифференцировать, включать отдельные слу­чаи вычислений в общую систему знаний о действиях с дробями.

    2. Сложение и вычитание дробей и смешанных чисел с разными знаменателями*.

    а) больший знаменатель является НОЗ:

    о?+|, Н; 2) 1|+", 4-ш" 3 > 4+4 4-4

    б) больший знаменатель не является НОЗ:

    п 3 4 7 2. 9 г.3 , 7 ,3 2. 04^2.. 1 гЗ 9 2 1} Б-+7" 8-9" 2) %+8" 1 5-5" 3) %+%" 5 Т- 2 3"

    Выполнение сложения и вычитания дробей, имеющих разные з менатели, представляет значительные трудности для умственно -сталых школьников, так как, прежде чем выполнять действия, тре­буется привести дроби к наименьшему знаменателю, в связи с чем внимание учащихся переключается на дополнительную операцию (удлиняется запись выражения - требуется несколько раз перепи­сывать выражение, ставя знак равенства). Это требует от учащихся сосредоточенности внимания. А внимание учащихся с нарушением ин­теллекта характеризуется, как известно, отвлекаемостью, рассеяннос­тью. Это нередко приводит к потере целых, знака равенства, а то и ком­понента. Чтобы избежать подобных ошибок, можно на первых порах предложить учащимся запись выражения проговорить устно, а именно сказать, какие операции надо выполнить и в какой последовательности: 1) привести дроби к наименьшему знаменателю; 2) выполнить дейст­вие; 3) произвести, если нужно, преобразование в ответе.

    При выполнении сложения дроби со смешанным числом надо обратить внимание учащихся на значение суммы и каждого слагаемого, сравнив со свойством суммы целых чисел.

    То же самое необходимо сделать и при знакомстве с вычитанием дро­бей, подчеркнув общность свойств разности целых и дробных чисел.

    Для этого целесообразно решить и сравнить пары примеров на нахождение суммы и разности целых и дробных чисел: 310

    4,3 . 3 , -1 5 + 5" 1 ТО +5 ТО

    Вывод: сумма больше каждого из слагаемых, разность меньше или равна уменьшаемому.

    Сложение и вычитание дробей необходимо связать с жизненно-практическими заданиями и упражнениями, которые могут быть мыполнены и устно. Например:

    «На отделку блузки отрезали -^ м белой и -^ м синей тесьмы.

    Сколько тесьмы пошло на отделку блузки?»

    ъ - - о -3

    «От рейки длиной 2 м отпилили один кусок длиной -% м и

    второй - длиной 4" м. Какова длина оставшейся рейки?»

    Отметим, что в этих задачах даны числа, полученные от изме­рения величин. Это позволяет закрепить в памяти учащихся наи­более употребительные в повседневной жизни соотношения: к- м - это 50 см, -^ м - это 25 см, -? м - это 20 см, -^ ч - это 15 мин и т. д.

    В этот период следует решать с учащимися примеры на нахож­дение неизвестных компонентов сложения и вычитания, сопостав­ляя нахождение неизвестных компонентов сложения и вычитания дробных и целых чисел.

    Учащиеся должны убедиться, что переместительный и сочета­тельный закон арифметических действий над целыми числами рас­пространяются и на действия над дробными числами. Так же как и при изучении действий с целыми числами, учащиеся получают

    лишь практическое знакомство с законами - их использование

    3 для рационализации вычислений. Например, решить пример -^+2

    удобнее, переставив местами слагаемые, т. е. использовав пере­местительный закон сложения.

    Решение примеров с предварительным обдумыванием порядка вы­полнения действий развивает сообразительность, смекалку, предуп­реждает шаблонность и имеет большое корригирующее значение.

    УМНОЖЕНИЕ И ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ*

    В школе VIII вида рассматривается только умножение и деле­ние дробей и смешанных чисел на целое число. Изучение этих

    действий, так же как и изучение сложения и вычитания, дает параллельно.

    Для удобства изложения мы сначала рассмотрим методику зь комства с умножением дроби на целое число, а затем с деление дроби на целое число.

    Прежде чем знакомить учащихся с умножением дроби на цел^ число, необходимо повторить умножение целых чисел.

    При рассмотрении умножения дроби на целое число необхоД| мо соблюдать определенную последовательность разных случае] которая определяется степенью их трудности.

      Умножение дроби на целое число.

      Умножение смешанного числа на целое. Подготовительными заданиями к объяснению умножения дрой

    на целое число являются задания на умножение целых чисел | последующей заменой действия умножения действием сложений например: заменить умножение 7-3=21 сложением 7+7+7=21| заменить действие умножения (первый множитель - дробь второй множитель - целое число) действием сложен» д-хЗ=д-+д-4-д-=-д. При этом обращается внимание на числитель знаменатель произведения и первого множителя. С помощью во просов: «Изменился ли знаменатель дроби при умножении? Чт| произошло с числителем дроби?» - учащиеся приходят к выводу^ что числитель увеличился в 3 раза, а знаменатель не изменился.. Для вывода правила умножения дроби на целое число недостаточ­но ограничиться рассмотрением только одного примера, нужно, рассмотреть еще несколько примеров:

    2

    2,2,2 2+2+2 =++ 7 = ~7~

    3 6

    - ~- 7 ;

    3 2 6 3~

    Правильность ответов в этих примерах необходимо подтвер­дить демонстрацией рисунков.

    В рассмотренных примерах внимание учащихся надо обратить на то, что в числителе сумму одинаковых слагаемых (трех двоек) можно заменить произведением (2 3). Это позволит подвести их

    л » 2 о 2 3 6

    к более сокращенной записи: у 3= - ^ - =у, а следовательно, и к

    выводу правила. Кроме того, при умножении дроби на целое число получается произведение, большее первого множителя. После усвоения правила умножения дроби на целое число необхо­димо показать учащимся, что до умножения числителя на целое 312

    Исло надо сопоставить эти числа со знаменателем и, если у них Ьть общий делитель, разделить на него и только потом произвес-умножение. Такой прием предварительного сокращения чисел,

    писанных в числителе и знаменателе, облегчает вычисления, пример: -г-10=-?-=-г-=8. Это же действие выполним с пред-рительным сокращением числителя и знаменателя на общий |делитель:

    I Дети с интеллектуальным недоразвитием редко прибегают к | рациональным приемам вычисления, используя, как правило, толь­ко те приемы, которые стали стереотипными. Поэтому учителю надо иногда просто требовать, чтобы учащиеся использовали ра­циональные способы действий.

    Перед объяснением умножения смешанного числа на целое необходимо повторить умножение чисел, полученных при измере­нии величин, вида 15 р. 32 к.-3. Сначала следует дать подробную запись при решении этого примера: 1 р. = 100 к.

    15 р. = 100 к.-15=1500 к. 1500 к.+32 к. = 1532 к.

    Однако тут же надо показать, что некоторые примеры легче решать в уме, умножая отдельно число рублей и копеек.

    При умножении смешанного числа на целое обращается внима­ние на то, что смешанное число надо выразить (записать) в виде неправильной дроби, а затем выполнять умножение по правилу умножения дроби на целое число, например:

    -

    4 _ 35 „

    (Сопоставить с умножением 15 р. 32 к. на целое число 3.)

    Недостатком этого способа вычислений является его громозд­кость: большие числа, которые получаются в числителе, затрудня­ют вычисления. Однако у этого способа есть и преимущество: в дальнейшем, когда учащиеся будут знакомиться с делением сме­шанного числа на целое, перед выполнением действия им потребу­ется выразить смешанное число неправильной дробью.

    Наиболее сильным учащимся можно показать и второй сп| умножения смешанного числа на целое (без записи смешан| числа неправильной дробью), например:

    (

    Сопоставить с умножением чисел, полученных от измеренияличин, устно: 15 р. 32 к. -3=45 р. 96 к.)

    В этом случае умножается целое число на целое, получен», произведение записывается целым числом, затем умножаете!, дробная часть числа по правилу умножения дроби на целое число,.

    При изучении темы «Умножение дроби на целое число» следу*! ет решать примеры и задачи на увеличение дроби в несколько!

    2 раз. Необходимо показать учащимся, что пример у 3 можно про*

    произведение у и 3; множители у и 3, найти произведение. После!

    решения примера уЗ=у следует сравнить произведение и пер-

    выи множитель: у больше у в 3 раза, = меньше у в 3 раза.

    Надо решать примеры и с неизвестным числителем или знаме­нателем в первом множителе вида: -~--2=-г, т=г-2=-я-.

    Можно предложить и более трудные примеры вида:

    А, 4 1 ,-, 3 П г-, 2

    1 -а- 4 =Ъи" а =Г> П" П =5

    2. Дробь тг увеличить в 3 раза.

    Деление дроби на целое число дается в следующей последо­вательности:

      Деление дроби на целое число без предварительного сокра­ щения.

      Деление смешанного числа на целое число без предваритель­ ного сокращения.

      Деление с предварительным сокращением.

    Учащимся необходимо показать и такие случаи деления дроби или смешанного числа на целое, когда предварительное сокраще­ние облегчает процесс выполнения действия. Например:

    5- 2= 7^- = 5" 3 4- 9 = Т" :9 = 4^ = Т2-

    На основе наблюдений и конкретной деятельности учащиеся

    н"мнодятся к выводу: при делении дроби на целое число доли

    1.ПЮВЯТСЯ мельче, число же долей не изменяется. Например,

    | гни взять половину яблока и разделить эту половину на 2 рав-

    ц.к" части (-я- : 2 ] , то получится по яблока. Записываем: -к\2=-^.

    Каждый ученик должен самостоятельно половину круга (полоски, Отрезки) разделить на 2 равные части и записать результат деле-

    Части: -^:3=к- Учащиеся видят, что получились при делении девя­тые доли, а число их не изменилось. Сравниваются числитель и знаменатель частного и делимого: знаменатель увеличился в 3 раза, а числитель не изменился. Отсюда можно сделать вывод: чтобы разделить дробь на целое число, нужно знаменатель умно­жить на это число, а числитель оставить тот же. На основе правила решается пример:Затем на предметах уча-

    щиеся должны еще раз показать процесс деления и убедиться, что пример решен верно.

    Деление дроби на целое число необходимо сопоставить с умно­жением дроби на целое число, решая взаимно обратные примеры видаПри этом следует сравнить

    произведение и частное соответственно с первым множителем и делимым. Это надо для того, чтобы учащихся подвести к обобще­нию: при умножении дроби на целое число произведение во столь­ко раз больше первого множителя, сколько единиц содержится во втором множителе. Аналогичный вывод нужно сделать и для част­ного.

    Деление смешанного числа на целое дается по аналогии со вторым способом умножения смешанного числа на целое, напри­мер:Смешанное число обращается в непра-

    вильную дробь и деление производится по правилу деления дроби на целое число.

    Наиболее сильных учащихся нужно познакомить и с особыми случаями деления. Если целая часть смешанного числа нацело делится на делитель, то смешанное число не обращается в непра-

    вильную дробь, например: 2-^".2=\-^. Нужно делить сначала

    часть, результат записать в частное, затем делить дробную част

    правилу деления дроби на целое число: 12^:3=47^=4-^. В

    случае деление смешанного числа нужно показать на предметиц пособиях. После изучения всех четырех действий с обыкновений ми дробями предлагаются сложные примеры со скобками и порядок действий.

    НАХОЖДЕНИЕ ОДНОЙ И НЕСКОЛЬКИХ ЧАСТЕЙ ОТ ЧИСЛА

    Данная тема изучается сразу же после изучения темы чение дроби».

    Объяснение нового понятия следует начать с решения практ! ческой задачи, например: «От доски длиной 80 см отпилили -^ част Какой длины доску отпилили?» Эту задачу нужно показать,-, щимся на предметных пособиях. Взять планку длиной 80 ск

    проверить ее длину с помощью метровой линейки, а затем спре

    I сить, как найти часть этой планки. Учащиеся знают, что план

    нужно разделить на 4 равные части и отпилить одну четверту! часть. Отпиленный кусок планки измеряется. Его длина оказыв* ется равной 20 см. «Как получили число 20 см?» - спрашивав учитель. Ответ на этот вопрос вызывает у некоторых учащихс затруднение, поэтому надо показать, что раз планку делили на равные части, то, следовательно, делили 80 см на 4 равные часп Запишем решение этой задачи: -% от 80 см составляет 80 см:4- =20 см.

    Нахождение нескольких частей от числа в школе VIII шадв производится с помощью двух арифметических действий. В пер­вом действии определяется одна часть от числа, а во вто-

    ром - несколько частей. Например, надо найти -5- от 15. Находим 1 21

    Д- от 15, 15:3=5; -? больше -о- в 2 раза, поэтому 5 нужно умно­жить на 2. Находим * от 15, 5-2 = 10.

    3 от 15 15:3=5; | от 15 5-2=10.

    НАХОЖДЕНИЕ ЧИСЛА ПО ОДНОЙ ЕГО ЧАСТИ*

    |Работу над данной темой следует связать с задачами чисто ] I

    |ктического содержания, например: «Известно, что ^ р. со-

    |вляет 50 к. Чему равно все число? (Сколько копеек в целом бле?)» Учащиеся знают, что целый рубль - это 100 к. I Если это известно, то зная, чему равна его * часть, они опре-1лят неизвестное число, * часть рубля, т. е. 50 к., умножаем на! (знаменатель дроби).

    Таким образом рассматриваем решение еще ряда задач, связан-йх с определенным жизненным опытом и наблюдениями учащих-К: «-т- м составляет 25 см. Сколько сантиметров в 1 м?»

    Решение. 25 см-4= 100 см.

    «На платье израсходовали 3 м материи, что составляет -з- всей пленной материи. Сколько материи купили?» Решение. 3 мхЗ=9 м - это вся купленная материя. Теперь надо убедиться, что -^ от 9 м составляет 3 м, т, е. выполнить проверку, -д- от 9 м мы находить умеем. Нужно 9 м:3=3 м. 3 м - это -т часть всей купленной материи. Значит, задача решена верно.

    Когда учащиеся научатся решать задачи на нахождение числа по одной части, необходимо сопоставить решение этих задач с уже известными, т. е. с задачами на нахождение одной части от числа, выявляя сходство, различие в условии, вопросе и решении задач.

    Только прием сравнительного анализа позволит отдифференциро­вать задачи этих двух видов и сознательно подойти к их решению. Для сопоставления эффективнее всего, как показывает опыт, предлагать задачи с одинаковой фабулой:

    «В классе 16 учащихся. Девочки составляют -т- часть всех учащихся. Сколько девочек в классе?» Решение Найти от 16 учеников. 16 уч.:4=4 уч.

    Ответ. В классе 4 девочки.

    «В классе 4 девочки, что составляет -у часть всех учащи}! класса. Сколько всего учащихся в классе?»

    4 уч. -4=16 уч.

    Ответ. В классе 16 учащихся.