Энергетические подуровни.

Если говорить более строго, то относительное расположение подуровней обусловлено не столько их большей или меньшей энергией, сколько требованием минимума полной энергии атома .

Распределение электронов по атомным орбиталям происходит, начиная с орбитали, имеющей наименьшую энергию (принцип минимума энергии), т.е. электрон садится на ближайшую к ядру орбиталь. Это значит, что сначала заполняются электронами те подуровни, для которых сумма значений квантовых чисел (n + l ) была минимальной. Так энергия электрона на 4s-подуровне меньше энергии электрона, находящегося на 3d-подуровне. Следовательно, заполнение электронами подуровней происходит в следующем порядке: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d ~ 4f < 6p < 7s < 6d ~ 5f < 7p.

Исходя из этого требования, минимум энергии достигается у большинства атомов тогда, когда их подуровни заполняются в показанной выше последовательности. Но есть и исключения, которые вы можете найти в таблицах "Электронные конфигурации элементов", однако эти исключения редко приходится принимать во внимание при рассмотрении химических свойств элементов.

Атом хрома имеет электронную конфигурацию не 4s 2 3d 4 , a 4s 1 3d 5 . Это является примером того, как стабилизация состояний с параллельными спинами электронов преобладает над незначительной разницей энергетических состояний подуровней 3d и 4s (правила Гунда), то есть энергетически выгодными состояниями для d-подуровня являются d 5 и d 10 . Энергетические диаграммы валентных подуровней атомов хрома и меди представлены на рис.2.1.1.

Подобный переход одного электрона с s-подуровня на d-подуровень происходит еще у 8 элементов: Cu, Nb, Mo, Ru, Ag, Pt, Au . У атома Pd происходит переход двух s-электронов на d-подуровень: Pd 5s 0 4d 10 .

Рис.2.1.1. Энергетические диаграммы валентных подуровней атомов хрома и меди

Правила заполнения электронных оболочек:

1. Сначала выясняем, сколько всего электронов содержит атом интересующего нас элемента. Для этого достаточно знать заряд его ядра, который, всегда равен порядковому номеру элемента в Периодической таблице Д.И. Менделеева . Порядковый номер (число протонов в ядре) в точности равен и числу электронов во всем атоме.

2. Последовательно заполняем орбитали, начиная с 1s-орбитали, имеющимися электронами, учитывая принцип минимальной энергии. При этом нельзя располагать на каждой орбитали более двух электронов с противоположно направленными спинами (правило Паули).

3. Записываем электронную формулу элемента.

Атом - это сложная, динамически устойчивая микросистема взаимодействующих частиц: протонов р + , нейтронов n 0 и электронов е - .


Рис.2.1.2. Заполнение энергетических уровней электронами элемента фосфора

Электронную структуру атома водорода (z = 1) можно изобразить следующим образом:

+1 Н 1s 1 , n = 1 , где квантовая ячейка (атомная орбиталь) обозначается в виде линии или квадрата, а электроны - в виде стрелок.

Каждый атом последующего химического элемента в периодической системе представляет собой многоэлектронный атом.

Атом лития , так же как и атом водорода и гелия, имеет электронную структуру s-элемента, т.к. последний электрон атома лития «садится» на s-подуровень:

+3 Li 1s 2 2s 1 2p 0

В атоме бора появляется первый электрон в p-состоянии:

+5 В 1s 2 2s 2 2p 1

Запись электронной формулы проще показать на конкретном примере. Допустим, нам надо выяснить электронную формулу элемента с порядковым номером 7. В атоме такого элемента должно быть 7 электронов. Заполним орбитали семью электронами, начиная с нижней 1s-орбитали.

Итак, 2 электрона расположатся на 1s-орбитали, еще 2 электрона - на 2s-орбитали, а оставшиеся 3 электрона смогут разместиться на трех 2p-орбиталях.

Электронная формула элемента с порядковым номером 7 (это элемент азот , имеющий символ “N”) выглядит так:

+7 N 1s 2 2s 2 2p 3

Рассмотрим действие правила Гунда на примере атома азота: N 1s 2 2s 2 2p 3 . На 2-м электронном уровне есть три одинаковых p-орбитали: 2px, 2py, 2pz. Электроны заселят их так, что на каждой из этих p-орбиталей окажется по одному электрону. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы. Полученная нами электронная формула азота несет очень важную информацию: 2-й (внешний) электронный уровень азота заполнен электронами не до конца (на нем 2 + 3 = 5 валентных электронов) и до полного заполнения не хватает трех электронов.

Внешним уровнем атома называется самый далекий от ядра уровень, на котором есть валентные электроны. Именно эта оболочка соприкасается при столкновении с внешними уровнями других атомов в химических реакциях. При взаимодействии с другими атомами азот способен принять 3 дополнительных электрона на свой внешний уровень. При этом атом азота получит завершенный, то есть максимально заполненный внешний электронный уровень, на котором расположатся 8 электронов.

Завершенный уровень энергетически выгоднее незавершенного, поэтому атом азота должен легко реагировать с любым другим атомом, способным предоставить ему 3 дополнительных электрона для завершения его внешнего уровня.

Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:

1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f 5d < 6p < 7s < 5f 6d ...

Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s -орбиталь, имеющую самую низкую энергию.

В атоме калия последний девятнадцатый электрон может заселить либо 3d -, либо 4s -орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s -орбиталь, что подтверждается экспериментом.

Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d . Оказалось, что у одних элементов более низкую энергию имеет 4f -подуровень, а у других - 5d -подуровень. То же самое наблюдается для 5f - и 6d -подуровней.

Принцип Паули

Принцип Паули , который часто называют еще принципом запрета, ограничивает число электронов, которые могут находиться на одной орбитали. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n , l , m l , m s ).

Атом лития имеет три электрона. Орбиталь с самой низкой энергией - 1s -орбиталь - может быть заселена лишь двумя электронами, причем у этих электронов должны быть разные спины. Если обозначать спин +1/2 стрелкой, направленной вверх, а спин −1/2 - стрелкой, направленной вниз, то два электрона с противоположными (антипараллельными ) спинами на одной орбитали можно схематически представить так:

Третий электрон в атоме лития должен занимать орбиталь, следующую по энергии за самой низкой орбиталью, то есть 2s -орбиталь.

Правило Гунда

Правило Гунда (Хунда) определяет порядок заселения электронами орбиталей, имеющих одинаковую энергию. Оно было выведено немецким физиком-теоретиком Ф. Гундом (Хундом) в 1927 г. на основе анализа атомных спектров.

Согласно правилу Гунда, заселение орбиталей, относящихся к одному и тому же энергетическому подуровню, начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заселение орбиталей парами электронов с противоположными спинами. В результате суммарный спин (и сумма спиновых квантовых чисел) всех электронов в атоме будет максимальным.

Например, атом азота имеет три электрона, находящиеся на 2р -подуровне. Согласно правилу Гунда, они должны располагаться поодиночке на каждой из трех 2р -орбиталей. При этом все три электрона должны иметь параллельные спины:

Электронные конфигурации атомов

Схематическое изображение орбиталей с учетом их энергии называется энергетическая диаграммой атома. Она отражает взаимное расположение уровней и подуровней энергии.

На схеме орбитали обозначают в виде ячеек: , а электроны - в виде стрелок:или

Электрон может занять любую свободную орбиталь, но, согласно принципу минимума энергии, всегда предпочитает ту орбиталь, у которой энергия ниже. Принцип запрета Паули ограничивает число электронов на каждой орбитали. Поэтому в одной ячейке (на атомной орбитали) может быть только один или два электрона. На каждом s -подуровне (одна орбиталь) могут находиться два электрона, на каждом p -подуровне (три орбитали) - шесть электронов, на каждом d -подуровне (пять орбиталей) - десять электронов. Правило Гунда определяет порядок заселения орбиталей с одинаковой энергией.

Таким образом, можно получить последовательность заселения атомных орбиталей электронами:

Действуя с помощью принципа минимума энергии, принципа Паули и правила Гунда, можно определить порядок заселения орбиталей электронами и построить электронную формулу любого элемента.

Электронная конфигурация (формула) атома - распределение электронов по орбиталям в основном (невозбужденном) состоянии этого атома и его ионов: 1s 2 2s 2 2p 6 3s 2 3p 6 ... Число электронов на орбиталях данного подуровня указывается в верхнем индексе справа от буквы, например 3d 5 - это 5 электронов на 3d -подуровне.

Для краткости записи электронной конфигурации атома вместо орбиталей, полностью заселенных электронами, иногда записывают символ благородного газа, имеющего соответствующую электронную формулу:

 1s 2 =

 1s 2 2s 2 2p 6 =

 1s 2 2s 2 2p 6 3s 2 3p 6 =

Например, электронная формула атома хлора 1s 2 2s 2 2p 6 3s 2 3p 5 , или 3s 2 3p 5 . За скобки вынесены валентные электроны, принимающие участие в образовании химических связей.

Для больших периодов (особенно шестого и седьмого) построение электронных конфигураций атомов имеет более сложных характер. Например, 4f -электрон появляется не в атоме лантана, а в атоме следующего за ним церия. Последовательное заполнение 4f -подуровня прерывается в атоме гадолиния, где имеется 5d -электрон

Свободная энергия Гиббса (или простоэнергия Гиббса , илипотенциал Гиббса , илитермодинамический потенциал в узком смысле) - этотермодинамический потенциал следующего вида:

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамике ихимии .


Точное решение уравнения Шредингера удается найти лишь в редких случаях, например, для атома водорода и гипотетических одноэлектронных ионов, таких как He + , Li 2+ , Be 3+ . Атом следующего за водородом элемента - гелия - состоит из ядра и двух электронов, каждый из которых притягивается к обоим ядрам и отталкивается от другого электрона. Уже в этом случае волновое уравнение не имеет точного решения.

Поэтому большое значение имеют различные приближенные методы. С помощью таких методов удалось установить электронное строение атомов всех известных элементов. Эти расчеты показывают, что орбитали в многоэлектронных атомах не сильно отличаются от орбиталей атома водорода (эти орбитали называют водородоподобными). Главное отличие - некоторая сжатость орбиталей из-за большего заряда ядра. Кроме того, для многоэлектронных атомов найдено, что для каждого энергетического уровня (при данном значении главного квантового числа n ) происходит расщепление на подуровни . Энергия электрона зависит уже не только от n , но и от орбитального квантового числа l . Она увеличивается в ряду s -, p -, d -, f -орбиталей (рис. 7).

Рис. 7

Для высоких энергетических уровней различия в энергиях подуровней достаточно велики, так что один уровень может проникать в другой, например

6s d4f p.

Заселение атомных орбиталей для многоэлектронного атома в основном (то есть энергетически наиболее выгодном) состоянии происходит в соответствии с определенными правилами.

Принцип минимума энергии

Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:

1s s p s p s d p s d p s f5d p s f6d ...

Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s -орбиталь, имеющую самую низкую энергию.

В атоме калия последний девятнадцатый электрон может заселить либо 3d -, либо 4s -орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s -орбиталь, что подтверждается экспериментом.

Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d . Оказалось, что у одних элементов более низкую энергию имеет 4f -подуровень, а у других - 5d -подуровень. То же самое наблюдается для 5f - и 6d -подуровней.

Если говорить более строго, то относительное расположение подуровней обусловлено не столько их большей или меньшей энергией, сколько требованием минимума полной энергии атома.

Распределение электронов по атомным орбиталям происходит, начиная с орбитали, имеющей наименьшую энергию (принцип минимума энергии), т.е. электрон садится на ближайшую к ядру орбиталь. Это значит, что сначала заполняются электронами те подуровни, для которых сумма значений квантовых чисел (n + l ) была минимальной. Так энергия электрона на 4s-подуровне меньше энергии электрона, находящегося на 3d-подуровне. Следовательно, заполнение электронами подуровней происходит в следующем порядке: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d ~ 4f < 6p < 7s < 6d ~ 5f < 7p.

Исходя из этого требования, минимум энергии достигается у большинства атомов тогда, когда их подуровни заполняются в показанной выше последовательности. Но есть и исключения, которые вы можете найти в таблицах "Электронные конфигурации элементов", однако эти исключения редко приходится принимать во внимание при рассмотрении химических свойств элементов.

Атом хрома имеет электронную конфигурацию не 4s 2 3d 4 , a 4s 1 3d 5 . Это является примером того, как стабилизация состояний с параллельными спинами электронов преобладает над незначительной разницей энергетических состояний подуровней 3d и 4s (правила Гунда), то есть энергетически выгодными состояниями для d-подуровня являются d 5 и d 10 . Энергетические диаграммы валентных подуровней атомов хрома и меди представлены на рис.2.1.1.

Подобный переход одного электрона с s-подуровня на d-подуровень происходит еще у 8 элементов: Cu, Nb, Mo, Ru, Ag, Pt, Au . У атома Pd происходит переход двух s-электронов на d-подуровень: Pd 5s 0 4d 10 .

Рис.2.1.1. Энергетические диаграммы валентных подуровней атомов хрома и меди

Правила заполнения электронных оболочек:

1. Сначала выясняем, сколько всего электронов содержит атом интересующего нас элемента. Для этого достаточно знать заряд его ядра, который, всегда равен порядковому номеру элемента в Периодической таблице Д.И.Менделеева. Порядковый номер (число протонов в ядре) в точности равен и числу электронов во всем атоме.

2. Последовательно заполняем орбитали, начиная с 1s-орбитали, имеющимися электронами, учитывая принцип минимальной энергии. При этом нельзя располагать на каждой орбитали более двух электронов с противоположно направленными спинами (правило Паули).

3. Записываем электронную формулу элемента.

Атом – это сложная, динамически устойчивая микросистема взаимодействующих частиц: протонов р + , нейтронов n 0 и электронов е - .

Рис.2.1.2. Заполнение энергетических уровней электронами элемента фосфора

Электронную структуру атома водорода (z=1) можно изобразить следующим образом:

+1 Н 1s 1 , n = 1 , где квантовая ячейка (атомная орбиталь) обозначается в виде линии или квадрата, а электроны – в виде стрелок.

Каждый атом последующего химического элемента в периодической системе представляет собой многоэлектронный атом.

Атом лития, так же как и атом водорода и гелия, имеет электронную структуру s-элемента, т.к. последний электрон атома лития «садится» на s-подуровень:

+3 Li 1s 2 2s 1 2p 0

В атоме бора появляется первый электрон в p-состоянии:

+5 В 1s 2 2s 2 2p 1

Запись электронной формулы проще показать на конкретном примере. Допустим, нам надо выяснить электронную формулу элемента с порядковым номером 7. В атоме такого элемента должно быть 7 электронов. Заполним орбитали семью электронами, начиная с нижней 1s-орбитали.

Итак, 2 электрона расположатся на 1s-орбитали, еще 2 электрона - на 2s-орбитали, а оставшиеся 3 электрона смогут разместиться на трех 2p-орбиталях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так:

+7 N 1s 2 2s 2 2p 3

Рассмотрим действие правила Гунда на примере атома азота: N 1s 2 2s 2 2p 3 . На 2-м электронном уровне есть три одинаковых p-орбитали: 2px, 2py, 2pz. Электроны заселят их так, что на каждой из этих p-орбиталей окажется по одному электрону. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы. Полученная нами электронная формула азота несет очень важную информацию: 2-й (внешний) электронный уровень азота заполнен электронами не до конца (на нем 2 + 3 = 5 валентных электронов) и до полного заполнения не хватает трех электронов.

Внешним уровнем атома называется самый далекий от ядра уровень, на котором есть валентные электроны. Именно эта оболочка соприкасается при столкновении с внешними уровнями других атомов в химических реакциях. При взаимодействии с другими атомами азот способен принять 3 дополнительных электрона на свой внешний уровень. При этом атом азота получит завершенный, то есть максимально заполненный внешний электронный уровень, на котором расположатся 8 электронов.

Завершенный уровень энергетически выгоднее незавершенного, поэтому атом азота должен легко реагировать с любым другим атомом, способным предоставить ему 3 дополнительных электрона для завершения его внешнего уровня.

Рис.2.1.3. Заполнение энергетических уровней у s-, p-,d- и f- элементов электронами

Энергетические подуровни

Согласно пределам изменений орбитального квантового числа от 0 до (n-1), в каждом энергетическом уровне возможно строго ограниченное число подуровней, а именно: число подуровней равно номеру уровня:

Сочетание главного (n) и орбитального (l) квантовых чисел полностью характеризует энергию электрона. Запас энергии электрона отражается суммой (n+l).

Так, например, электроны 3d-подуровня обладают более высокой энергией, чем электроны 4s-подуровня:

Порядок заполнения уровней и подуровней в атоме электронами определяется правилом В.М. Клечковского: заполнение электронных уровней атома происходит последовательно в порядке возрастания суммы (n+1).

В соответствии с этим определена реальная энергетическая шкала подуровней, по которой построены электронные оболочки всех атомов:

1s ï 2s2p ï 3s3p ï 4s3d4p ï 5s4d5p ï 6s4f5d6p ï 7s5f6d…

3. Магнитное квантовое число (m l) характеризует направление электронного облака (орбитали) в пространстве.

Чем сложнее форма электронного облака (т.е. чем выше значение l), тем больше вариаций в ориентации данного облака в пространстве и тем больше существует отдельных энергетических состояний электрона, характеризующихся определенным значением магнитного квантового числа.

Математически m l принимает целочисленные значения от -1 до +1, включая 0, т.е. всего (21+1) значений.

Обозначим каждую отдельную атомную орбиталь в пространстве как энергетическую ячейку ð, тогда число таких ячеек в подуровнях составит:

Подуровень Возможные значения m l Число отдельных энергетических состояний (орбиталей, ячеек) в подуровне
s (l=0) одно
p (l=1) -1, 0, +1 три
d (l=2) -2, -1, 0, +1, +2 пять
f (l=3) -3, -2, -1, 0, +1, +2, +3 семь

Например, шарообразная s-орбиталь однозначно направлена в пространстве. Гантелеобразные орбитали каждого p-подуровня ориентируются по трем осям координат

4. Спиновое квантовое число m s характеризует собственное вращение электрона вокруг своей оси и принимает всего два значения: + 1 / 2 и – 1 / 2 , в зависимости от направления вращения в ту или другую сторону. Согласно принципу Паули, в одной орбитали может расположиться не более 2 электронов с противоположно направленными (антипараллельными)

p- подуровень спинами: .

Такие электроны называютсяспаренными.Неспаренныйэлектрон схематически изображается одной стрелкой: .

Зная емкость одной орбитали (2 электрона) и число энергетических состояний в подуровне (m s), можно определить количество электронов в подуровнях:

Можно записать результат иначе: s 2 p 6 d 10 f 14 .

Эти цифры необходимо хорошо запомнить для правильного написания электронных формул атома.

Итак, четыре квантовых числа – n, l, m l , m s – полностью определяют состояние каждого электрона в атоме. Все электроны в атоме с одинаковым значением n составляют энергетический уровень, с одинаковыми значениями n и l – энергетический подуровень, с одинаковыми значениями n, l и m l – отдельную атомную орбиталь (квантовую ячейку). Электроны одной орбитали отличаются спинами.

Учитывая значения всех четырех квантовых чисел, определим максимальное количество электронов в энергетических уровнях (электронных слоях):

Большие количества электронов (18,32) содержатся только в глубоко лежащих электронных слоях атомов, внешний электронный слой может содержать от 1 (у водорода и щелочных металлов) до 8 электронов (инертные газы).

Важно помнить, что заполнение электронами электронных оболочек происходит по принципу наименьшей энергии : сначала заполняются подуровни с минимальным значением энергии, затем с более высокими значениями. Эта последовательность соответствует энергетической шкале подуровней В.М. Клечковского.

Электронную структуру атома отображают электронные формулы, в которых указываются энергетические уровни, подуровни и число электронов в подуровнях.

Например, у атома водорода 1 H всего 1 электрон, который располагается в первом от ядра слое на s-подуровне; электронная формула атома водорода 1s 1 .

У атома лития 3 Li всего 3 электрона, из них 2 находятся в s-подуровне первого слоя, а 1 помещается во второй слой, который также начинается s-подуровнем. Электронная формула атома лития 1s 2 2s 1 .

Атом фосфора 15 P имеет 15 электронов, расположенных в трех электронных слоях. Помня, что s-подуровень содержит не более 2 электронов, а p-подуровень содержит не более 6, постепенно размещаем все электроны по подуровням и составляем электронную формулу атома фосфора: 1s 2 2s 2 2p 6 3s 2 3p 3 .

При составлении электронной формулы атома марганца 25 Mn необходимо учесть последовательность возрастания энергии подуровней: 1s2s2p3s3p4s3d…

Распределяем постепенно все 25 электронов Mn: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 .

Окончательная электронная формула атома марганца (с учетом удаленности электронов от ядра) выглядит так:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2

Электронная формула марганца полностью соответствует положению его в периодической системе: число электронных слоев (энергетических уровней) – 4 равно номеру периода; во внешнем слое 2 электрона, предпоследний слой не завершен, что характерно для металлов побочных подгрупп; общее количество подвижных, валентных электронов (3d 5 4s 2) – 7 равно номеру группы.



В зависимости от того, какой из энергетических подуровней в атоме –s-, p-, d- или f- застраивается в последнюю очередь, все химические элементы подразделяются на электронные семейства: s-элементы (H, He, щелочные металлы, металлы главной подгруппы 2-й группы периодической системы); p-элементы (элементы главных подгрупп 3, 4, 5, 6, 7, 8-й групп периодической системы); d-элементы (все металлы побочных подгрупп); f- элементы (лантаноиды и актиноиды).

Электронные структуры атомов являются глубоким теоретическим обоснованием структуры периодической системы, длина периодов (т.е. количество элементов в периодах) непосредственно вытекает из емкости электронных слоев и последовательности возрастания энергии подуровней:

Каждый период начинается s-элементом со структурой внешнего слоя s 1 (щелочной металл) и заканчивается p-элементом со структурой внешнего слоя …s 2 p 6 (инертный газ). I-й период содержит только два s-элемента (H и He), II-й и III-й малые периоды содержат по два s-элемента и шесть p-элемента. В IV-м и V-м больших периодах между s- и p-элементами «вклиниваются» по 10 d-элементов – переходных металлов, выделенных в побочные подгруппы. В VI и VII периодах к аналогичной структуре добавляется еще по 14 f-элементов, по свойствам близких соответственно лантану и актинию и выделенных в виде подгрупп лантаноидов и актиноидов.

При изучении электронных структур атомов обратите внимание на их графическое изображение, например:

13 Аl 1s 2 2s 2 2p 6 3s 2 3p 1

N=2 1s 2s 2p 3s 3p

применяют оба варианта изображения: а) и б):

Для правильного расположения электронов на орбиталях необходимо знать правило Гунда: электроны в подуровне располагаются так, чтобы их суммарный спин был максимальным. Иными словами, электроны прежде по одному занимают все свободные ячейки данного подуровня.

Например, если необходимо разместить три p-электрона (p 3) в p-подуровне, который всегда имеет три орбитали, то из двух возможных вариантов правилу Гунда отвечает первый вариант:

В качестве примера рассмотрим графическую электронную схему атома углерода:

6 C·1s 2 2s 2 2p 2

Количество неспаренных электронов в атоме – очень важная характеристика. Согласно теории ковалентной связи, только неспаренные электроны могут образовывать химические связи и определяют валентные возможности атома.

Если в подуровне имеются свободные энергетические состояния (незанятые орбитали), атом при возбуждении «распаривает», разъединяет спаренные электроны, и его валентные возможности повышаются:

6 C· 1s 2 2s 2 2p 3

Углерод в нормальном состоянии 2-х-валентен, в возбужденном – 4-х-валентен. Атом фтора не имеет возможностей для возбуждения (т.к. все орбитали внешнего электронного слоя заняты), поэтому фтор в своих соединениях одновалентен.

Пример 1. Что такое квантовые числа? Какие значения они могут принимать?

Решение. Движение электрона в атоме имеет вероятностный характер. Околоядерное пространство, в котором с наибольшей вероятностью (0,9-0,95) может находиться электрон, называется атомной орбиталью (АО). Атомная орбиталь, как любая геометрическая фигура, характеризуется тремя параметрами (координатами), получившими название квантовых чисел (n, l, m l ). Квантовые числа принимают не любые, а определенные, дискретные (прерывные) значения. Соседние значения квантовых чисел различаются на единицу. Квантовые числа определяют размер (n), форму (l) и ориентацию (m l) атомной орбитали в пространстве. Занимая ту или иную атомную орбиталь, электрон образует электронное облако, которое у электронов одного и того же атома может иметь различную форму (рис. 1). Формы электронных облаков аналогичны АО. Их также называют электронными или атомными орбиталями. Электронное облако характеризуется четырьмя числами (n, l, m 1 и m 5).