Химические свойства индия. Менделеев об индии


С давних пор в Европе высоко ценилась привозимая из страны чудес Индии ярко-синяя краска «индиго». По чистоте цвета она могла соперничать с синими лучами солнечного спектра. Владельцы текстильных предприятий не скупились на расходы, чтобы приобрести эту королеву красок, применявшуюся для крашения сукна и других тканей. Когда в конце XVIII века Франция оказалась отрезанной английским военным флотом от Индии и других южных стран, многие заморские товары, в том числе и знаменитая краска «индиго», стали весьма дефицитными. Наполеон, желавший сохранить для своей армии традиционные темно-синие мундиры, пообещал колоссальную премию - миллион франков! - тому, кто найдет способ получения чудесной краски из европейского сырья.
Мы не случайно начали рассказ об одном из редких металлов- индии - с упоминания о краске «индиго»: ведь именно ей элемент № 49 обязан своим названием.
В 1863 году в химической лаборатории маленького немецкого городка Фрейберга профессор Фердинанд Рейх и его ассистент Теодор Рихтер занимались спектроскопическим исследованием цинковых минералов Саксонских гор, надеясь обнаружить в них открытый за два года до этого элемент таллий. Ученые подвергали анализу образец за образцом, однако, как ни вглядывались они в возникающие перед ними спектры, сочных зеленых линий, присущих таллию, не было и в помине. Но, видимо, в тот погожий день фортуне очень уж не хотелось поворачиваться спиной к фрейбергским химикам. Почему бы не вознаградить их за долготерпенье и кропотливый труд? И вот в очередном спектре перед взором ученых предстала необыкновенно яркая синяя линия, не принадлежавшая ни одному из известных элементов. Рейху и Рихтеру стало ясно, что им посчастливилось открыть новый элемент. А за сходство его спектральной линии с королевой красок «новорожденного» решено было назвать индием.
Теперь перед учеными встала проблема: выделить металл в чистом виде. Немало потратили они времени и труда, прежде чем сумели получить два образца металлического индия, каждый величиной с карандаш. Кстати, сходство с карандашом было не только внешним: индий оказался удивительно мягким металлом - почти в пять раз мягче свинца и в 20 раз мягче чистого золота. Из десяти минералов, составляющих шкалу твердости по Моосу, девять тверже индия; ему уступает лишь самый податливый из них - тальк. На бумаге индий оставляет заметный след. Однако писать индиевыми «карандашами» было бы таким же безрассудным расточительством, как топить печку ассигнациями: французская Академия наук оценила образцы нового металла в 80 тысяч долларов - по 700 долларов за грамм!
Появляясь на свет, индий, разумеется, не подозревал, что доставит немало хлопот великому русскому химику Д. И. Менделееву. Впрочем, виноват в этом был не столько индий, сколько его первооткрыватели: они приняли новый металл за близкого родственника цинка и поэтому ошибочно решили, что он, как и цинк, двухвалентен. Кроме того, ученые неправильно определили его атомный вес, посчитав его равным 75,6. Но в этом случае для индия не находилось места в периодической таблице, и Менделеев пришел к выводу, что индий трехвалентен, по свойствам он гораздо ближе к алюминию, чем к цинку, а атомный вес его составляет примерно 114.1 Это был далеко не единственный случай, когда великий химик на основе обнаруженного им закона вносил существенные коррективы в характеристики уже известных элементов. И на этот раз жизнь подтвердила его правоту: атомный вес индия, определенный с помощью самых точных методов, оказался равным 114,82. Элементу было отведено место № 49 в третьем ряду периодической системы.
Природный индий состоит из двух изотопов с массовыми числами 113 и 115, причем доля более тяжелого из них значительно солиднее - 95,7%. До середины XX века оба эти изотопа имели репутацию стабильных. Однако в 1951 году ученые установили, что мндий-115 все же подвержен бета-распаду и постепенно превращается в олово-115. Правда, процесс этот протекает крайне медленно: период полураспада ядер индия-115 очень велик - 1014 лет. Вполне понятно, что при таких «темпах» индию долго удавалось скрывать свою радиоактивность. В последние десятилетия физики получили около 20 радиоактивных изотопов индия; период полураспада наиболее долгоживущего из них (индия-114) - 49 дней.
Подобно многим другим металлам, индий долгое время не находил практического применения. И на это были вполне уважительные причины: ведь индий не только довольно редкий элемент (по содержанию в земной коре он среди «обитателей» периодической системы занимает скромное место в седьмом десятке), но и крайне рассеянный: в природе практически нет минералов, в которых главным компонентом (или хотя бы одним из основных) был бы индий. В лучшем случае его можно встретить в виде ничтожных примесей к рудам других металлов, где содержание его не превышает обычно 0,05%. Можно себе представить, какие трудности надо преодолеть, чтобы извлечь из этих руд спрятавшиеся в них крохи индия.
Однако свойства этого металла не могли оставлять равнодушными представителей технического мира. В 1924 году индием всерьез заинтересовался американский инженер Маррей. В поисках индиевых месторождений он вдоль и поперек исколесил Соединенные Штаты Америки, пока, наконец, в песчаных холмах Аризоны не обнаружил хоть и не ахти какие, но все же более высокие, чем в других местах, концентрации этого рассеянного элемента. Вскоре здесь возник завод по производству индия.
Одной из первых областей применения индия стало изготовление высококачественных зеркал, необходимых для астрономических приборов, прожекторов, рефлекторов и тому подобных устройств. Оказывается, обычное зеркало не одинаково отражает световые лучи различных цветов. 1 Это значит, например, что цветная одежда, если ее рассматривать в зеркало, имеет несколько иную окраску, чем на самом деле.
Правда, глаз модницы, сидящей перед трельяжем, не в состоянии зафиксировать такие перемены в ее туалете, но для многих приборов цветовая фальсификация просто недопустима. И серебряные, и оловянные, и ртутно-висмутовые зеркала грешат этим недостатком. Индий же не только обладает чрезвычайно высокой отражательной способностью, но и проявляет при этом полнейшую объективность, совершенно одинаково относясь ко всем цветам радуги - от красного до фиолетового. Вот почему, чтобы свет, излучаемый далекими звездами, доходил до астрономов неискаженным, в телескопах устанавливают индиевые зеркала.
В отличие от серебра, индий не тускнеет на воздухе, сохраняя высокий коэффициент отражения. Между прочим, индий сыграл немаловажную роль при… защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. На первый взгляд, такое утверждение может показаться странным, но именно индиевые зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко пробивать мощными лучами плотный туман, нередко окутывавший британские острова. Поскольку индий имеет низкую температуру плавления - всего 156°С, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворенней» подсчитывая число сбитых вражеских самолетов.
Но часто в технике низкая температура плавления может служить не недостатком, а достоинством. Так, сплав индия с висмутом, свинцом, оловом и кадмием плавится уже при 46,8°С и благодаря этому успешно справляется с-ролью автоматического контролера, предохраняющего ответственные узлы и детали различных механизмов от перегрева. Известен сплав индия с галлием и оловом, который даже при комнатной температуре находится в жидком состоянии: он плавится при 10,6°С. Плавкие предохранители из индиевых сплавов широко используют в системах пожарной сигнализации.
Любопытные эксперименты, связанные с температурой плавления индия, были проведены в Канаде. Исследуя с помощью электронного микроскопа мельчайшие частицы этого металла, канадские физики обнаружили, что, когда размер частиц индия становится меньше некоторой величины, температура плавления его резко понижается. Так, частицы индия размером не более 30 ангстрем плавятся при температуре чуть выше 40°С. Такой колоссальный скачок - от 156 до 40°С - представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к значительным массам вещества, а в опытах канадских физиков расплавлению подвергались «гомеопатические» дозы индия - всего несколько тысяч атомов.
Ценное свойство индия - его высокая стойкость к действию едких щелочей и морской воды.1 Эту способность приобретают и медные сплавы, в которые введено даже небольшое количество индия. Обшивка нижней части корабля, выполненная из такого сплава, легко переносит длительное пребывание в соленом подводном царстве.
Подшипникам, применяемым в современной технике, например в авиационных моторах, приходится трудиться в довольно тяжелых условиях: скорость вращения вала достигает нескольких тысяч оборотов в минуту, металл при этом нагревается и его сопротивление разъедающему действию смазочных масел снижается. Чтобы металл подшипников не подвергался эрозии, ученые предложили наносить на них тонкий слой индия. Его атомы не только плотно покрывают рабочую поверхность металла, но и проникают вглубь, образуя с ним прочный сплав. Такой металл смазке уже не по зубам: срок службы подшипников возрастает в пять раз.
Кстати, о зубах. Из индиевых сплавов (например, с серебром, оловом, медью и цинком), которым свойственны высокая прочность, коррозионная стойкость, долговечность, изготовляют зубные пломбы. В этих сплавах индий играет ответственную роль: он сводит к минимуму усадку металла при затвердевании пломбы.
Авиаторы хорошо знакомы с цинкоиндиевым сплавом, служащим антикоррозионным покрытием для стальных пропеллеров. Своеобразным тончайшим «одеялом» из олова и окиси индия «укутывают» ветровые стекла самолетов. Такое стекло не замерзает - на нем не появляются ледяные узоры, которые вряд ли радовали бы взор пилотов. Сплавы индия широко используют для склеивания стекол или стекла с металлом (например, в вакуумной технике).
Некоторые сплавы индия очень красивы - неудивительно, что они приглянулись ювелирам. Как декоративный металл используют, в частности, сплав 75% золота, 20% серебра и 5% индия - так называемое зеленое золото. Известная американская фирма «Студебеккер» вместо хромирования наруж¬ных деталей автомобилей не без успеха применила индирование. Индиевое покрытие значительно долговечнее хромистого.
В атомных реакторах индиевая фольга служит контролером, измеряющим интенсивность потока тепловых нейтронов и их энергию: сталкиваясь с ядрами стабильных изотопов индия, нейтроны превращают их в радиоактивные; при этом возникает излучение электронов, по интенсивности и энергии которого судят о нейтронном потоке.
Но бесспорно важнейшая область применения индия в современной технике - промышленность полупроводников. Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота- «шесть девяток», т. е. 99,9999%! Некоторые соединения индия (сульфид, селенид, антимонид, фосфид) сами являются полупроводниками; их применяют для изготовления термоэлементов и других приборов. Антимонид индия, например, служит основой инфракрасных детекторов, способных «видеть» в темноте даже едва нагретые предметы.
Индий оказался одним из немногих пока химических элементов, «командированных» в космос, чтобы вписать новые страницы в технологию неорганических материалов. В 1975 году, незадолго до начала совместного советско-американского космического полета по программе «Союз»-«Аполлон», командиры экипажей А. Леонов и Т. Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите. В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ. «Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов - металлических и полупроводниковых, - сказал А. Леонов. - По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы…» «Наши астронавты, - добавил Т. Стаффорд, - на борту орбитальной станции «Скайлэб» проводили опыты по выращиванию кристаллов антимонида индия. Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле». А в 1978-1980 годах на борту советской орбитальной научной станции «Салют-6» были проведены новые технологические эксперименты, в которых «участвовали» индий и его соединения.
Опыты с соединениями индия ведут и на Земле. Так, недавно антимонид индия был подвергнут давлению в 30 тысяч атмосфер. Оказалось, что в результате таких «крепких объятий» изменилась кристаллическая решетка вещества и при этом его электропроводность возросла в миллион раз!
Мировое производство индия пока очень мало - всего несколько десятков тонн в год. Обычно этот ценнейший металл получают как… побочный продукт при переработке руд цинка, свинца, меди, олова. Оригинальный способ получения индия разработали ученые ГДР. Они предложили добывать его из пыли, облака которой «украшали» небо над одним из предприятий по переработке медистых сланцев. Пыль, в которой среди прочих компонентов содержится индий, сначала промывается горячей серной кислотой, затем проходит долгий путь сложных превращений, в результате которых получается чистый индий.
Интерес к индию все время растет. Ученые стремятся как можно больше узнать об этом металле. Несколько лет назад физики США сумели заполнить еще один пробел в характеристике индия, определив конфигурацию его ядра: оказалось, что оно напоминает… футбольный мяч с полоской по «экватору».
…В природе индий встречается редко, но можно с уверенностью утверждать, что в промышленном мире он с каждым годом будет становиться все более и более желанным гостем.

C давних пор в Европе высоко ценилась привозимая из страны чудес Индии ярко-синяя краска «индиго». По чистоте цвета она могла соперничать с синими лучами солнечного спектра. Владельцы текстильных предприятий не скупились на расходы, чтобы приобрести эту королеву красок, применявшуюся для крашения сукна и других тканей.

Когда в конце XVIII века Франция оказалась отрезанной английским военным флотом от Индии и других южных стран, многие заморские товары, в том числе и знаменитая краска «индиго», стали весьма дефицитными. Наполеон, желавший сохранить для своей армии традиционные темно-синие мундиры, пообещал колоссальную премию — миллион франков! -тому, кто найдет способ получения чудесной краски из европейского сырья.

Мы не случайно начали рассказ об одном из редких металлов- индии — с упоминания о краске «индиго»: ведь именно ей элемент № 49 обязан своим названием. В 1863 году в химической лаборатории маленького немецкого городка Фрейберга профессор Фердинанд Рейх и его ассистент Теодор Рихтер занимались спектроскопическим исследованием цинковых минералов Саксонских гор, надеясь обнаружить в них открытый за два года до этого элемент таллий.

Ученые подвергали анализу образец за образцом, однако, как ни вглядывались они в возникающие перед ними спектры, сочных зеленых линий, присущих таллию, не было и в помине. Но, видимо, в тот погожий день фортуне очень уж не хотелось поворачиваться спиной к фрейбергским химикам. Почему бы.не вознаградить их за долготерпенье и кропотливый труд? И вот в очередном спектре перед взором Мученых предстала необыкновенно яркая синяя линия, не принадле-

жавшая ни одному из известных элементов. Рейху и Рихтеру стало ясно, что им посчастливилось открыть новый элемент. А за сходство его спектральной линии с королевой красок «новорожденного» решено было назвать индием.

Теперь перед учеными встала проблема: выделить металл в чистом виде. Немало потратили они времени и труда, прежде чем сумели получить два образца металлического индия, каждый величиной с карандаш. Кстати, сходство с карандашом было не только внешним: индий оказался удивительно мягким металлом — почти в пять раз мягче свинца и в 20 раз мягче чистого золота.

Из десяти минералов, составляющих шкалу твердости по Моосу, девять тверже индия; ему уступает лишь самый податливый из них — тальк. На бумаге индий оставляет заметный след. Однако писать индиевыми «карандашами» было бы таким же безрассудным расточительством, как топить печку ассигнациями: французская Академия наук оценила образцы нового металла в 80 тысяч долларов — по 700 долларов за грамм!

Появляясь на свет, индий, разумеется, не подозревал, что доставит немало хлопот великому русскому химику Д. И. Менделееву. Впрочем, виноват в этом был не столько индий, сколько его первооткрыватели: они приняли новый металл за близкого родственника цинка и поэтому ошибочно решили, что он, как и цинк, двухвалентен. Кроме того, ученые неправильно определили его атомный вес, посчитав его равным 75,6.

Но в этом случае для индия не находилось места в периодической таблице, и Менделеев пришел к выводу, что индий трехвалентен, по свойствам он гораздо ближе к алюминию, чем к цинку, а атомный вес его составляет примерно 114.1 Это был далеко не единственный случай, когда великий химик на основе обнаруженного им закона вносил существенные коррективы в характеристики уже известных элементов. И на этот раз жизнь подтвердила его правоту: атомный вес индия, определенный с помощью самых точных методов, оказался равным 114,82.1 Элементу было отведено место № 49 в третьем ряду периодической системы.

Природный индий состоит из двух изотопов с массовыми числами 113 и 115, причем доля более тяжелого из них значительно солиднее-95,7%. До середины XX века оба эти изотопа имели репутацию стабильных. Однако в 1951 году ученые установили, что индий-115 все же подвержен бета-распаду и постепенно превращается в олово-115. Правда, процесс этот протекает крайне медленно: период полураспада ядер индия-115 очень велик — 6-1014 лет. Вполне понятно, что при таких «темпах» индию долго удавалось скрывать свою радиоактивность. В последние десятилетия физики получили около 20 радиоактивных изотопов индия; период полураспада наиболее долгоживущего из них (индия-114) — 49 дней.

Подобно многим другим металлам, индий долгое время не находил практического применения. И на это были вполне уважительные причины: ведь индий не только довольно редкий элемент (по содержанию в земной коре он среди «обитателей» периодической системы занимает скромное место в седьмом десятке), но и крайне рассеянный: в природе практически нет минералов, в которых главным компонентом (или хотя бы одним из основных) был бы индий. В лучшем случае его можно встретить в виде ничтожных примесей к рудам других металлов, где содержание его не превышает обычно 0,05%. Можно себе представить, какие трудности надо преодолеть, чтобы извлечь из этих руд спрятавшиеся в них крохи индия.

Однако свойства этого металла не могли оставлять равнодушными представителей технического мира. В 1924 году индием всерьез заинтересовался американский инженер Маррей. В поисках индиевых месторождений он вдоль и поперек исколесил Соединенные Штаты Америки, пока, наконец, в песчаных холмах Аризоны не обнаружил хоть и не ахти какие, но все же более высокие, чем в других местах, концентрации этого рассеянного элемента. Вскоре здесь возник завод по производству индия.

Одной из первых областей применения индия стало изготовление высококачественных зеркал, необходимых для астрономических приборов, прожекторов, рефлекторов и тому подобных устройств. Оказывается, обычное зеркало не одинаково отражает световые лучи различных цветов. Это значит, например, что цветная одежда, если ее рассматривать в зеркало, имеет несколько иную окраску, чем на самом деле.

Правда, глаз модницы, сидящей перед трельяжем, не в состоянии зафиксировать такие перемены в ее туалете, но для многих приборов цветовая фальсификация просто недопустима. И серебряные, и оловянные, и ртутно-висмутовые зеркала грешат этим недостатком.

Индий же не только обладает чрезвычайно высокой отражательной способностью, но и проявляет при этом полнейшую объективность, совершенно одинаково относясь ко всем цветам радуги — от красного до фиолетового. Вот почему, чтобы свет, излучаемый далекими звездами, доходил до астрономов неискаженным, в телескопах устанавливают индиевые зеркала.

В отличие от серебра, индий не тускнеет на воздухе, сохраняя высокий коэффициент отражения. Между прочим, индий сыграл немаловажную роль при… защите Лондона от массированных налетов немецкой авиации во время второй мировой войны. На первый взгляд, такое утверждение может показаться странным, но именно индиевые зеркала позволяли прожекторам противовоздушной обороны в поисках воздушных пиратов легко пробивать мощными лучами плотный туман, нередко окутывавший британские острова.

Поскольку индий имеет низкую температуру плавления — всего 156°С, во время работы прожектора зеркало постоянно нуждалось в охлаждении, однако английское военное ведомство охотно шло на дополнительные расходы, с удовлетворением подсчитывая число сбитых вражеских самолетов.

Но часто в технике низкая температура плавления может служить не недостатком, а достоинством. Так, сплав индия с висмутом, свинцом, оловом и кадмием плавится уже при 46,8°С и благодаря этому успешно справляется с ролью автоматического контролера, предохраняющего ответственные узлы и детали различных механизмов от перегрева. Известен сплав индия с галлием и оловом, который даже при комнатной температуре находится в жидком состоянии: он плавится при 10,6°С. Плавкие предохранители из индиевых сплавов широко используют в системах пожарной сигнализации.

Любопытные эксперименты, связанные с температурой плавления индия, были проведены в Канаде. Исследуя с помощью электронного микроскопа мельчайшие частицы этого металла, канадские физики обнаружили, что, когда размер частиц индия становится меньше некоторой величины, температура плавления его резко понижается. Так, частицы индия размером не более 30 ангстрем плавятся при температуре чуть выше 40°С.

Такой колоссальный скачок — от 156 до 40°С — представляет для ученых несомненный интерес. Но природа этого эффекта даже для видавшей виды современной физики пока остается загадкой: ведь теория процессов плавления разрабатывалась применительно к значительным массам вещества, а в опытах канадских физиков расплавлению подвергались «гомеопатические» дозы индия — всего несколько тысяч атомов.

Ценное свойство индия — его высокая стойкость к действию едких щелочей и морской воды.1 Эту способность приобретают и медные сплавы, в которые введено даже небольшое количество индия. Обшивка нижней части корабля, выполненная из такого сплава, легко переносит длительное пребывание в соленом подводном царстве.

Подшипникам, применяемым в современной технике, например в авиационных моторах, приходится трудиться в довольно тяжелых условиях: скорость вращения вала достигает нескольких тысяч оборотов в минуту, металл при этом нагревается и его сопротивление разъедающему действию смазочных масел снижается. Чтобы металл подшипников не подвергался эрозии, ученые предложили наносить на них тонкий слой индия. Его атомы не только плотно покрывают рабочую поверхность металла, но и проникают вглубь, образуя с ним прочный сплав. Такой металл смазке уже не по зубам: срок службы подшипников возрастает в пять раз.

Кстати, о зубах. Из индиевых сплавов (например, с серебром, оловом, медью и цинком), которым свойственны высокая прочность, коррозионная стойкость, долговечность, изготовляют зубные пломбы. В этих сплавах индий играет ответственную роль: он сводит к минимуму усадку металла при затвердевании пломбы.

Авиаторы хорошо знакомы с цинкоиндиевым сплавом, служащим антикоррозионным покрытием для стальных пропеллеров. Своеобразным тончайшим «одеялом» из олова и окиси g индия «укутывают» ветровые стекла самолетов. Такое стекло не замерзает — на нем не появляются ледяные узоры, которые вряд ли радовали бы взор пилотов. Сплавы индия широко используют для склеивания стекол или стекла с металлом (например, в вакуумной технике).

Некоторые сплавы индия очень красивы — неудивительно, что они приглянулись ювелирам. Как декоративный металл используют, в частности, сплав 75% золота, 20% серебра и 5% индия — так называемое зеленое золото. Известная американская фирма «Студебеккер» вместо хромирования наружных деталей автомобилей не без успеха применила индирова-ние. Индиевое покрытие значительно долговечнее хромистого.

В атомных реакторах индиевая фольга служит контролером, измеряющим интенсивность потока тепловых нейтронов и их энергию: сталкиваясь с ядрами стабильных изотопов индия, нейтроны превращают их в радиоактивные; при этом возникает излучение электронов, по интенсивности и энергии которого судят о нейтронном потоке.

Но бесспорно важнейшая область применения индия в современной технике — промышленность полупроводников.

Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота- «шесть девяток», т. е. 99,9999%! Некоторые соединения индия (сульфид, селенид, антимонид, фосфид) сами являются полупроводниками; их применяют для изготовления термоэлементов и других приборов. Антимонид индия, например, служит основой инфракрасных детекторов, способных «видеть» в темноте даже едва нагретые предметы.

Индий оказался одним из немногих пока химических элементов, «командированных» в космос, чтобы вписать новые страницы в технологию неорганических материалов. В 1975 году, незадолго до начала совместного советско-американского космического полета по программе «Союз» — «Аполлон», командиры экипажей А. Леонов и Т. Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите. В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ.

«Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов — металлических и полупроводниковых, — сказал А. Леонов. — По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы…» «Наши астронавты, — добавил Т. Стаффорд, — на борту орбитальной станции «Скайлэб» проводили опыты по выращиванию кристаллов антимонида индия.

Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле». А в 1978-1980 годах на борту советской орбитальной научной станции «Салют-6» были проведены новые технологические эксперименты, в которых «участвовали» индий и его соединения.

Опыты с соединениями индия ведут и на Земле. Так, недавно антимонид индия был подвергнут давлению в 30 тысяч атмосфер. Оказалось, что в результате\’ таких «крепких объятий» изменилась кристаллическая решетка вещества и при этом его электропроводность возросла в миллион раз!

Мировое производство индия пока очень мало — всего несколько десятков тонн в год. Обычно этот ценнейший металл получают как… побочный продукт при переработке руд цинка, свинца, меди, олова. Оригинальный способ получения индия разработали ученые ГДР. Они предложили добывать его из пыли, облака которой «украшали» небо над одним из предприятий по переработке медистых сланцев. Пыль, в которой среди прочих компонентов содержится индий, сначала промывается горячей серной кислотой, затем проходит долгий путь сложных превращений, в результате которых получается чистый индий.

Интерес к индию все время растет. Ученые стремятся как можно больше узнать об этом металле. Несколько лет назад физики США сумели заполнить еще один -пробел в характеристике индия, определив конфигурацию его ядра: оказалось, что оно напоминает… футбольный мяч с полоской по «экватору».

…В природе индий встречается редко, но можно с уверенностью утверждать, что в промышленном мире он с каждым годом будет становиться все более и более желанным гостем.

Содержание статьи

ИНДИЙ (Indium) In – химический элемент 13-й (IIIa) группы периодической системы, атомный номер 49, атомная масса 114,82. Строение внешней электронной оболочки 5s 2 5p 1 . Известно 37 изотопов индия с 98 In по 134 In. Среди них лишь один стабильный 113 In. В природе два изотопа: 113 In (4,29%) и 115 In (95,71%) с периодом полураспада 4,41·10 14 лет. Наиболее устойчивая степень окисления в соединениях: +3.

Открытие индия произошло в эпоху бурного развития спектрального анализа – принципиально нового (в те времена) метода исследования, открытого Кирхгоффом и Бунзеном. Французский философ О.Конт писал, что у человечества нет никакой надежды узнать, из чего состоят Солнце и звезды. Прошло несколько лет, и в 1860 спектроскоп Кирхгоффа опроверг это пессимистичное предсказание. Последующие пятьдесят лет были временем наиболее крупных успехов нового метода. После того как было установлено, что у каждого химического элемента есть свой спектр, являющийся столь же характерным для него свойством, как дактилоскопический отпечаток – признаком человека, началась «погоня» за спектрами. Помимо выдающихся исследований Кирхгоффа (едва не приведших его к полной слепоте) элементного состава Солнца, не менее триумфальными были наблюдения спектров земных объектов: в 1861 были открыты цезий, рубидий и таллий.

В 1863 профессор Фрейбергской минералогической школы (Германия) Фердинанд Рейх (1799–1882) и его ассистент Теодор Рихтер (1824–1898) спектроскопически исследовали образцы цинковой обманки (минерала сфалерита, ZnS), чтобы обнаружить в них таллий . Из образца сфалерита действием соляной кислоты Рейх и Рихтер выделили хлорид цинка и поместили его в спектрограф с надеждой зарегистрировать появление ярко-зеленой линии, характерной для таллия. Профессор Ф.Рейх страдал дальтонизмом и не мог различать цвета спектральных линий, поэтому все наблюдения регистрировал его ассистент Рихтер. Обнаружить присутствие таллия в образцах сфалерита не удалось, но каково же было удивление Рейха, когда Рихтер сообщил ему о появлении в спектре ярко-синей линии (4511Å). Было установлено, что линия не принадлежала ни одному из известных до этого элементов и отличалась даже от ярко-синей линии спектра цезия. В силу сходства цвета характеристической полосы в эмиссионном спектре с цветом красителя индиго (латинское «indicum» – индийская краска) открытый элемент был назван индием.

Так как новый элемент был обнаружен в сфалерите, первооткрыватели сочли его аналогом цинка и приписали ему неверную валентность, равную двум. Они определили и атомный вес эквивалента индия, который оказался 37,8. Исходя из валентности 2, был неверно установлен атомный вес элемента (37,8 × 2 = 75,6). Только в 1870 Д.И.Менделеев на основании периодического закона установил, что индий имеет валентность, равную трем, и является, таким образом, аналогом алюминия, а не цинка.

Таким образом, в 1871 индий стал 49-ым элементом периодической системы.

Индий в природе.

По содержанию в земной коре индий относится к типичным редким элементам, а по характеру распространения – к типичным рассеянным элементам. Кларк индия в земной коре равен 1,4·10 –5 %. Сейчас известно около десяти собственных минералов индия: самородный индий (редчайшие экземпляры), сложные сульфиды индит FeIn 2 S 4 , рокезит CuInS 2 , сакуранит (CuZnFe) 3 InS 4 и патрукит (Cu,Fe,Zn) 2 (Sn,In)S 4 , интерметаллид йиксуит PtIn, джалиндит In(OH) 3 . Эти минералы не имеют практического значения вследствие своей исключительной редкости. Близость ионного радиуса индия с размерами ионов более распространенных металлов (Fe, Zn, Mn, Sn, Mg, Pb и др.) приводит к тому, что в природе индий встраивается в кристаллические решетки минералов этих элементов. Однако, несмотря на такое сходство, содержание индия в подавляющем большинстве минералов-носителей невелико и редко когда выходит за пределы нескольких тысячных долей процента. Количество минералов, в которых содержание индия достигает нескольких десятых долей процента (0,05–1%) чрезвычайно мало. Среди них можно отметить цилиндрит Pb 3 Sn 4 Sb 2 S 14 (0,1–1% In) и франкеит Pb 5 Sn 3 Sb 2 S 14 (до 0,1% In), минералы класса сульфостаннанов, цинковую обманку ZnS (0,1–1% In), халькопирит CuFeS 2 (0,05–0,1% In) и борнит Cu 3 FeS 3 (0,01–0,05% In). Из-за незначительного распространения в природе сульфостаннанов они не имеют значения для промышленных процессов извлечения индия. Концентрация индия в цинковых обманках тем выше, чем больше содержание в них железа и марганца, а из разнообразных по условиям своего образования обманках (марматит, сфалерит, клейофан) богаты индием ранние высокотемпературные, темноокрашенные представители – марматиты. Так, в сфалерите с высоким содержанием железа (темном сфалерите) содержание индия достигает 1%. Однако среднее содержание индия в сфалеритовых месторождениях не превышает и сотой доли процента.

В небольших концентрациях индий обнаружен в золе каменных углей, нефтях некоторых месторождений (до 2,2·10 –6 % In), а также в морской ((0,02–7)·10 –10 % In) и дождевой ((0,002–2)·10 –7 %) воде. Содержание индия во Вселенной оценивается в 3·10 –10 %(масс.) или 3·10 –12 %(ат.).

На сегодняшний день нет достоверных сведений о мировых ресурсах индия, так как его извлечение всегда привязано к переработке цинковых руд. По приблизительным оценкам United States Geological Surveys (по состоянию на июнь 2004) суммарный мировой запас разведанных месторождений индия составляет 2,5·10 3 тонн в пересчете на металл, а объемы резервной базы (с учетом неразведанных ресурсов) – 6·10 3 тонн металла. Мировыми лидерами по запасам индия являются Канада (30% мировых запасов), Китай и США (10% мировых запасов):

Таблица 1. ПРИБЛИЗИТЕЛЬНОЕ РАСПРЕДЕЛЕНИЕ МИРОВЫХ РЕСУРСОВ ИНДИЯ
Страна Ресурсы, тонн Резервная база, тонн
Канада 700 2000
Китай 280 1300
США 300 600
Россия 200 300
Перу 100 150
Япония 100 150
Другие страны 800 1500

Промышленное получение и рынок индия.

Основная доля природного индия приходится на свинцово-цинковые месторождения (70–75%) и лишь небольшая его часть на оловянные месторождения (10–15%), поэтому в настоящее время основным источником первичного индия являются цинковые обманки полиметаллических месторождений. Индий получается как побочный продукт переработки свинцово-цинковых, полиметаллических или оловянных руд, а далее цинковых медных или оловянных концентратов. Схемы извлечения индия сложны и многостадийны, так как для индия, в отличие от большинства других редких металлов, нет специфических химических реакций, позволяющих отделять его от нежелательных примесей, а многочисленные методы цементации, экстракции и ионообменного выделения также не вполне селективны.

Основным индиевым сырьем являются возгоны свинцово-цинковых производств пыль. При обогащении свинцово-цинковых руд индий в основном переходит в цинковые и, в небольшой степени, в свинцовые концентраты, часть индия остается с пустой породой. Полученные цинковые концентраты обжигаются, и практически весь индий, вследствие низкой летучести In 2 O 3 , остается в огарке. При последующем пирометаллургическом получении цинка индий почти полностью переходит в летучие возгоны. Несмотря на различное происхождение, для всех возгонов характерно обогащение цинком, свинцом, кадмием и многими другими элементами, вследствие чего извлечение индия из них затруднено. Кроме того, содержание индия в таких возгонах редко превышает 0,01%. Основным способом разложения возгонов является сернокислотное выщелачивание. Наиболее полное извлечение индия в раствор достигается обработкой большим избытком серной кислоты или с помощью сульфатизации (действием концентрированной серной кислоты на возгоны при нагревании). В процессе сульфатизации в значительной степени удаляются примеси мышьяка, хлора и фтора, но остаются цинк, медь, кадмий, алюминий и другие элементы. Обработанные кислотой возгоны далее обрабатываются водой, в результате которой получаются разбавленные сернокислотные растворы с концентрацией индия около 0,1 г/л. Самой сложной стадией процесса является извлечение индия из таких растворов, для которого предложено множество методов избирательного осаждения и растворения, экстракции и ионного обмена; все они не являются вполне селективными. На практике применяется последовательное сочетание этих методов для наиболее полного и селективного извлечения элемента.

На первом этапе выделения индия из растворов после выщелачивания могут применяться обработка избытком не очень концентрированного раствора гидроксида натрия (отделение Al, Zn, As, Sb, Sn, Ga, Gе), избытком водного аммиака (отделение Cd, Co, Cu, Ni, Zn) или сероводородом в сильнокислой среде.

На втором этапе используются процессы цементации, амальгамного восстановления, экстракционного и ионообменного извлечений. Цементация – вытеснение индия из раствора цинковой пылью, черновым индием или алюминиевыми листами, которое в значительной степени позволяют избавиться от примесей железа и алюминия. В результате цементации получается пирофорный (самовоспламеняющийся на воздухе) губчатый индий, который выдерживают сутки под слоем воды для пассивации. Амальгамный способ заключается в переведении индия из водного раствора в фазу ртути действием амальгамы цинка или электролизом на ртутном катоде. Разложением амальгамы получают металлический индий. Электролизом на ртутном катоде можно выделить практически весь индий даже из сильно разбавленных растворов. В экстракционных методах в качестве органической фазы часто применяется раствор алкилфосфорных кислот в керосине. Таким способом можно экстрагировать почти нацело весь индий из сернокислотных растворов. Совместно с индием в специально подобранных условиях экстрагируются лишь Sb(III), Sn(IV), Fe(III). После повторной экстракции индий из раствора выделяется цементацией. Ионообменное выделение (наряду с экстракцией и цементацией) применяется для очистки индиевых концентратов.

Металлический индий, полученный из побочных продуктов свинцово-цинковых производств, содержит свинец, мышьяк, олово, ртуть, никель, кадмий, железо и другие элементы в качестве значительных примесей Для более глубокой очистки применяются специальные методы – плавка под слоем щелочи (удаление Zn, Al и некоторых других примесей), плавка под слоем глицеринового раствора иодида калия с добавкой иода (удаление Cd, Tl, Fe). Окончательно индия очищается при помощи кристаллофизических методов – зонной плавки и вытягивания из расплава по Чохральскому. При этом происходит глубокая очистка от примесей серебра, меди, никеля и, если вытягивание воздухе, железа.

В последние годы рынок металлического индия отличается крайней нестабильностью. Данные разных авторов по производству и потреблению индия часто отличаются в несколько раз. В 1987 производство первичного рафинированного индия составляло 53 тонны, в 1988 – 106 тонн, в 1994 – 145 тонн, а в 1995 – 240 тонн, в 2000 было произведено 335 тонн металла, в 2001 – 345 тонн, в 2002 – 335 тонн, а в 2003 выплавлено 305 тонн металла. Крупнейшими производителями первичного индия являются Китай, Япония и Канада. США не производят своего индия (все месторождения индия, как стратегического металла, законсервированы), а лишь занимаются рафинированием (заводы в Нью-Йорке и Род-Айленде) ввозимого из-за рубежа низкосортного (99,97 и 99,99%) индия до 99,9999% содержания металла (ITO-качества).

Таблица 2. РАСПРЕДЕЛЕНИЕ МОЩНОСТЕЙ ЕЖЕГОДНОГО МИРОВОГО ПРОИЗВОДСТВА (2003) ПЕРВИЧНОГО ИНДИЯ.
Страна Производство, тонн/год Основные производители
Канада Falconbridge Ltd.’s Kidd Creek, Ontario; Teck Cominco’s Trail, British Colombia.
Бельгия Umicore s.a.; Metallurgie Hoboken-Overpelt.
Китай Zhuzhou Smelter Non-ferrous Co., Ltd; Liuzhou Zinc Product Co., Ltd; Huludao Zinc Smelter Co; China Tin Group Co. Ltd.
Франция Metaleurop S.A.
Япония Dowa Mining Co., Ltd; Nippon Mining & Metals Co., Ltd.
Перу La Oroya Refinery
Россия Новосибирский оловянный комбинат и др.
Германия Preussag
Англия Mining a. Chemical Products; Capper Pass
Голландия Billito
США Indium Corporation of America; Utica; NY; Umicore Indium Products, Providence, RI (a division of n.v. Umicore, s.a.)

В силу ограниченности природных ресурсов индия возникла проблема переработки вторичного сырья (лом от производства ЖК-дисплеев и пр.), с которой сейчас успешно справляется Япония, выплавившая в 2003 160 тонн вторичного индия. Крупнейший потребитель индия – Япония, по некоторым оценкам в 2003 потребление индия в этой стране составило 420 тонн. Внутренние ежегодные потребности США в индии оцениваются в 90–95 тонн, но в 2003 США импортировали 125 тонн металла, экспортировали меньше 10 тонн. Мировое потребление индия в 2003 составило более 500 тонн, и по прогнозам специалистов Roskill к 2008 потребление индия может достигнуть значения 850–870 тонн. В начале 1987 цена на индий составляла 114, а в середине равнялась 250 долларов/кг. В 1995 цена на металл достигла 575 долларов/кг, но в 1999 она снова упала до отметки 200 долларов/кг. К середине 2002 цены на индий достигли рекордно низкого значения 55–60 долларов/кг, но к началу зимы ситуация стала меняться, и стоимость индия перевалила за отметку 100 долларов/кг. К концу 2003 индий стоил 300 долларов/кг, а в 2004 – 400–430 долларов/кг. За последние 14 лет среднемесячная цена на металл составила 250 долларов/кг.

Свойства простого вещества.

Индий – металл серебристо-белого цвета, не тускнеющий на воздухе при длительном хранении и даже в расплавленном состоянии. Плотность кристаллического индия 7310 кг/м 3 , а расплавленного – 7030 кг/м 3 . Кристаллическая решетка тетрагональная. Металл плавится при 156,7° С, кипит при 2072° С. Индий очень мягок и пластичен. Его твердость по шкале Мооса чуть больше 1 (мягче только тальк), поэтому индиевый стержень, если им водить по листу бумаги, оставляет на нем серый след. Индий в 20 раз мягче чистого золота и легко царапается ногтем, а его сопротивление растяжению в 6 раз меньше, чем у свинца. Палочки из индия легко сгибаются и при этом заметно хрустят (громче, чем оловянные). Индий, так же как и галлий, не образует ни с одним из металлов непрерывных твердых растворов. В индии хорошо растворяются металлы-соседи по периодической системе – галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере цинк. Выше 800° С индий горит на воздухе сине-фиолетовым пламенем с образованием оксида индия(III):

2In + 3O 2 = 2In 2 O 3 .

В присутствии кислорода медленно корродирует в воде с образованием гидроксида:

4In + 3O 2 + 6H 2 O = 4In(OH) 3 .

Слабо растворяется на холоде в разбавленных кислотах, значительно лучше при нагревании. Легко растворяется в галогеноводородных кислотах (в HF – в присутствии окислителя):

2In + 6HCl = 2InCl 3 + 3H 2

2In + 6HF + 3H 2 O 2 = 2InF 3 + 6H 2 O.

Реакция индия с концентрированной серной кислотой на холоде протекает с выделением водорода, при нагревании – диоксида серы. В зависимости от добавленного количества кислоты возможно образование нормального сульфата или комплексной кислоты:

2In + 6H 2 SO 4 = In 2 (SO 4) 3 + 3SO 2 + 6H 2 O (при нагревании)

In + 2H 2 SO 4 + 3,5H 2 O = HIn(SO 4) 2 ·3,5H 2 OЇ + 2H 2 (на холоде).

Индий легко растворяется в азотной кислоте различной концентрации с образованием нитрата индия (III):

In + 4HNO 3 = In(NO 3) 3 + NO + 2H 2 O.

Индий не реагирует с уксусной кислотой, но растворяется в растворе щавелевой:

2In + 6H 2 C 2 O 4 = 2H 3 + 3H 2 .

С галогенами при легком нагревании образует тригалогениды:

2In + 3X 2 = 2InX 3 (X = F, Cl, Br, I).

При взаимодействии индия с сероводородом при 1000° С или при сплавлении стехиометрических количеств индия и серы в атмосфере СО 2 можно получить сульфид индия(I):

In + H 2 S = In 2 S + H 2 (1000° С)

2In + S = In 2 S.

Индий не реагирует с бором, углеродом и кремнием, не известны также соответствующие борид, карбид, силицид. Водород с индием также не реагирует и очень плохо в нем растворяется (менее 1 см 3 на 100 г In); известны, однако, гидриды индия – (InH 3) n и InH. При сплавлении индия с его тригалогенидами можно получить галогениды, в которых индий находится в низших степенях окисления +1 и +2 (наряду с нестехиометрическими галогенидами).

Важнейшие соединения индия.

Индий в своих соединениях может находиться во всех степенях окисления от 0 до +3. Химия одновалентного индия сейчас хорошо изучена, однако практическое значение имеют лишь соединения трехвалентного индия, как наиболее устойчивые и распространенные.

Оксид индия (III) In 2 O 3 – светло-желтые или зеленовато-желтые кристаллы, плотность 7180 кг/м 3 . Температура плавления 1910° С. Может быть получен окислением металлического индия кислородом при нагревании, разложением нитрата или гидроксида индия:

In(OH) 3 = In 2 O 3 + H 2 O

4In(NO 3) 3 = 2In 2 O 3 + 12NO 2 + 3O 2 .

Оксид индия не растворим в воде, не реагирует с растворами щелочей, легко взаимодействует с растворами минеральных кислот с образованием соответствующих солей:

In 2 O 3 + 3H 2 SO 4 = In 2 (SO 4) 3 + 3H 2 O

In 2 O 3 + 6HCl = 2InCl 3 + 3H 2 O.

При температурах 700–800° С In 2 O 3 восстанавливается водородом или углеродом до металла:

In 2 O 3 + 3H 2 = 2In + 3H 2 O.

Оксид индия (III) нелетуч, но при сильном нагревании выше 1200° С частично диссоциирует с образованием черного летучего In 2 O:

In 2 O 3 = In 2 O + O 2 .

Сейчас оксид индия (III) – наиболее широко применяемое соединение индия, так как он является основой большинства электропроводящих пленок (легированных диоксидом олова) на стекле, слюде или лавсане, используемых при изготовлении жидкокристаллических дисплеев, мониторов портативных компьютеров, электролюминесцентных ламп, электродов фотопроводящих элементов, топливных элементов (в том числе – высокотемпературных) и т.п. Электропроводящие пленки на основе In 2 O 3 , будучи нанесенными на автомобильные или авиационные стекла, способны нагревать их до 100° С при пропускании тока и, тем самым, предотвращать их обледенение и запотевание. Стекла с такими пленками способны пропускать до 85% падающего на них света. Кроме того, In 2 O 3 находит некоторое применение в стекольной промышленности, так как добавки его придают стеклу желтый или оранжевый цвет. Для монокристалла индий-оловянного оксида получено одно из максимальных значений эффективности преобразования солнечной энергии (12%). Известно еще множество применений оксида индия в качестве электропроводящего элемента.

Полупроводники на основе пниктогенидов индия.

Пниктогениды – соединения индия с элементами главной подгруппы V группы периодической системы (кроме висмута) обладают полупроводниковыми свойствами. Несмотря на снижающийся в последнее десятилетие удельный вес полупроводниковых материалов в общем потреблении индия, они продолжают играть значительную роль в электротехнике.

С фосфором, мышьяком и сурьмой индий образует по одному стехиометрическому соединению (нестехиометрических не образуется вовсе) – InP, InAs и InSb. Все они кристаллизуются в кубической сингонии (типа сфалерита). Известен и нитрид индия InN, но пока он находит весьма ограниченное применение.

Наиболее просто получается антимонид индия по реакции

так как давление насыщенных паров обоих компонент – In и Sb – низкое, можно их синтезировать обычным сплавлением простых веществ в кварцевом реакторе в вакууме (» 0,1 Па) при температуре 800–850° С. Это серые с металлическим блеском кристаллы, температура плавления 525° С, плотность 5775 кг/м 3 . Благодаря тому, что антимонид индия не разлагается при плавлении, его очищают зонной плавкой. Высокочистые кристаллы InSb обычно получают при помощи горизонтальной зонной плавки в атмосфере водорода высокой чистоты.

Помимо зонной плавки, для получения монокристаллов антимонида индия (особенно легированных) применяют метод вытягивания кристаллов из расплава с температурой, близкой к точке кристаллизации (по Чохральскому). Суть (в отличие от аппаратурного оформления) его довольно проста: в расплав вещества с помощью специального магнитного (или другого) держателя опускается затравка (маленький монокристалл InSb), а после начала наращивания вещества на кристалл держатель медленно поднимается из расплава. Следует отметить, что монокристаллы выращиваются в определенных кристаллографических направлениях и, таким образом, можно получить вытянутый монокристалл антимонида индия довольно больших размеров.

Антимонид индия отличается чрезвычайно высокой подвижностью электронов и благодаря этому InSb используется в изготовлении малоинерционных датчиков Холла, находящих разнообразное применение в приборах для измерения напряженности постоянных и переменных магнитных полей и токов. Другой областью применения антимонида индия является изготовление инфракрасных детекторов, поскольку его электропроводность сильно меняется под действием инфракрасного излучения, которое, в большей или меньшей степени, испускают все окружающие тела в зависимости от степени их нагрева. Именно на регистрации ИК-излучения, испускаемого разными телами с различной интенсивностью, основано действие приборов ночного видения. На основе InSb можно создавать фотоприемники, работающие в дальней ИК-области. Такие приемники, однако, работают при сильном охлаждении (до 2–4 К). Антимонид индия с успехом используется и при изготовлении различного рода преобразователей, термоэлектрических генераторов и некоторых других электротехнических устройств.

Арсенид индия – серые кристаллы с металлическим блеском, температура плавления 943° С. Поскольку мышьяк очень летуч, при синтезе соединение разлагается сразу после образования. Чтобы предотвратить разложение, нужно в объеме реактора поддерживать равновесное давление паров мышьяка. Для наиболее удобного регулирования давления паров мышьяка предложена оригинальная конструкция т.н. двухзонной печи. Такая печь обладает двумя температурными зонами, в одной из которых находится расплавленный индий, а в другой мышьяк. Реакция проходит между расплавом индия и парами мышьяка по уравнению

Температура нагревателя в зоне с мышьяком регулируется таким образом, чтобы поддерживалось равновесное давление паров As (32,7 кПа при 800–900° С) при синтезе арсенида индия.

Монокристаллы InAs получают вытягиванием из расплава по Чохральскому из-под слоя флюса (расплав B 2 O 3). Флюс нужен для предотвращения испарения мышьяка из реакционной зоны (своеобразный гидродинамический затвор), а чтобы пузырьки паров мышьяка не пробулькивали через слой флюса, над ним создается давление инертного газа (обычно аргона), втрое превышающее давление паров мышьяка при синтезе. По своим свойствам арсенид индия похож на антимонид, поэтому и области применения у них почти одинаковы.

Фосфид индия – серые кристаллы с металлическим блеском, Т пл = 1070° С, плотность 4787 кг/м 3 . Наиболее трудно получаемый, с точки зрения экспериментального оформления, пниктогенид индия. Высокое давление паров фосфора над расплавом InP значительно затрудняет его синтез и процедуру очистки, поэтому значительное внимание приходится уделять чистоте исходных компонентов – фосфора и индия (их чистота должна быть не ниже, чем 99,9999%). Принципиально (но не с точки зрения аппаратурного оформления – оно сложнее) схемы синтеза фосфида индия не отличаются от таковых для арсенида – синтез проводится в двухзонных печах, а выращивание монокристаллов – по Чохральскому из под слоя флюса. Фосфид индия можно назвать одним из важнейших полупроводниковых материалов. Он сочетает в себе высокую подвижность носителей заряда, относительно большую ширину запрещенной зоны, прямой характер межзонных переходов и благоприятные теплофизические характеристики. Основные сферы использования фосфида индия СВЧ-техника и оптоэлектроника. На основе фосфида индия изготавливают полевые транзисторы, электронные осцилляторы и усилители, его оценивают как один из наиболее перспективных материалов для создания быстродействующих интегральных схем малой энергоемкости. Кроме того, в связи с быстрым развитием волоконно-оптических линий связи, резко возросло использование фосфида индия в качестве подложки для твердых растворов In-Ga-As-P, применяемых для создания эффективных излучателей и приемников электромагнитного излучения для спектральной области, соответствующей прозрачности световодов из кварцевых стекловолокон. Фосфид индия – перспективный материал для превращения солнечной энергии в электрическую.

Сейчас хорошо отработана технология нанесения из жидкой или газовой фазы полупроводящих пленок InP, InAs и InSb на монокристаллическую подложку, так как этот способ изготовления полупроводников имеет ряд важных преимуществ перед методами выращивания объемных монокристалллов (более низкие температуры кристаллизации, снижение содержания примесей и др.). Такие структуры также находят широкое применение в электронике.

Наибольшее применение в полупроводниковой технике находят не чистые пниктогениды индия, а их твердые растворы или растворы с пниктогенидами галлия, например системы GaP-InSb, InAs-InP, InP-GaSb и многие другие. Изменение состава таких растворов позволяет плавно контролировать важнейшие физико-химические свойства получаемых полупроводников, тем самым расширяя функциональные возможности и повышая рабочие параметры электронных устройств на их основе. Принципы синтеза таких растворов сходны с принципами изготовления полупроводников из индивидуальных веществ.

Другие применения индия.

Основная статья потребления (65%) индия в США и Японии – изготовление тонких электропроводящих пленок и ИК-отражающих пленок на основе оксида индия. Доля применения индия для изготовления полупроводников невелика – всего 10%. Помимо этого есть много других областей применения индия. Прежде всего, благодаря пластическим и антикоррозионным свойствам, низкой летучести и маленькой температуре плавления индий используется для получения различных сплавов и припоев (15% от общего потребления индия), находящих самые разнообразные применения от ювелирного дела и зубоврачебной практики до изготовления космических аппаратов. Индий способен легко (даже при натирании) диффундировать в другие металлы и образовывать твердые износостойкие покрытия, поэтому с конца 1940-х индий успешно применяется в изготовлении высококачественных подшипников для двигателей, срок службы которых в пять раз превосходит срок службы обычных. Предложено множество покрытий для нанесения на трущиеся поверхности подшипников – серебряно-индиевые, серебряно-ториево-индиевые, индий-цинковые, свинцово-индиевые, чистый индий и другие. Многие из таких подшипников способны работать без смазки – покрытия на основе индия придают поверхности хорошие смазывающие свойства. Для увеличения сопротивления износу индием покрывают острия контактов различных выключателей, графитовых щеток и т.д. Широко применяется индий как компонент более чем пятидесяти легкоплавких сплавов с температурами плавления от 10,6° С (62,5% Ga, 21,5% In, 16% Sn) до 314° С (95% Pb, 5% In), с успехом применяющихся для лужения и пайки. Кроме того, они используются в качестве высокотемпературной смазки, материалов высоковакуумных и жидкометаллических затворов, жидкометаллических скользящих электроконтактов и среды для термометров и термостатов. Индий – компонент многих припоев, например припои состава Ag 50–65%, Ga 3–12%, In 6–18%, Cu – остальное; In 12–50%, Sn 10–40%, Ag 0,1–10%, Cu 20–60%. Припои на основе индия используются, например, для сварки металла со стеклом. Индий и олово имеют низкое давление пара, поэтому их сплавы используются для пайки высоковакуумной аппаратуры. В ювелирном деле индий применяется в сплавах с золотом, серебром и платиноидами. Добавление индия к золоту значительно увеличивает твердость и прочность изделий, улучшает их декоративный вид. Разработан ряд сплавов индия для замены золота в ювелирных изделиях. Получены сплавы индия с палладием, имеющие золотой и розово-сиреневый цвета. Например известны «зеленое золото» (75%, Au, 20% Ag, 5% In), сплав платины с индием (60% мол. In и 40% Pt) золотисто-желтого цвета, «белое золото» и многие другие сплавы. Добавка индия к серебру предотвращает потускнение серебряных ювелирных изделий на воздухе. Применение индия в стоматологии известно с 1934. При небольших добавках к материалам зубных пломб и протезов индий повышает их коррозионную стойкость и твердость. Добавка индия к материалу зубных протезов позволяет использовать большие количества меди вместо золота при их изготовлении. Соединения индия являются компонентами зубных цементов, порошков и паст для профилактики кариеса зубов. Индиевые покрытия обладают прекрасной отражающей способностью и применяются в изготовлении высококачественных зеркал, необходимых для астрономических приборов (например, телескопов, регистрирующих слабый свет от далеких звезд), прожекторов, рефлекторов и других устройств с высокой измерительной точностью. Обычные бытовые зеркала не одинаково отражают световые лучи различных спектральных областей – другими словами, цветовая гамма несколько искажается, хотя это и не заметно для человеческого глаза. Это недостаток серебряных, оловянных, и ртутно-висмутовыех зеркал, но не индиевых, одинаково точно отражающих лучи с различными длинами волн.

Биологическая роль индия.

О биологической роли индия почти нет сведений, известно лишь, что индий в следовых количествах есть в зубной ткани, и что в больных зубах (кариозных) его концентрация значительно ниже, чем в здоровых. Сведения о токсикологии индия противоречивы, но, скорее всего, при введении в желудок и внутривенно индий малотоксичен. Пыль индия вредна. ПДК индия в воздухе 0,1 мг/м 3 (США) и 4 мг/м 3 (Россия).

Интернет-ресурсы: http://minerals.usgs.gov/minerals/pubs/commodity/indium/

Юрий Крутяков

Литература:

Блешинский С.В., Абрамова В.Ф. Химия индия . Фрунзе, 1958
Фигуровский Н.А. Открытие элементов и происхождение их названий . М., Наука, 1970
Химия и технология редких и рассеянных элементов , т.1. Под. ред. К.А. Большакова. М., 1976
Популярная библиотека химических элементов . Под. ред. Петрянова-Соколова И.В. М., 1983
Федоров П.И., Акчурин Р.Х. Индий . М., 2000



Индий - металл серебристо-белого цвета с сильным блеском, внешне сходный с цинком. По твердости близок к литию, легко режется ножом. Плотность индия 7.31 г/см3, плавится при температуре 156,5°C. При этом, подобно галлию, температура кипения на пару тысяч градусов выше температуры плавления - 2080°C.

По химическим свойствам похож на алюминий и галлий, поскольку эти металлы находятся в одной группе периодической системы химических элементов, но в целом в реакциях менее активен. Устойчив во влажной атмосфере, не растворяется в щелочах. Реагирует почти со всеми кислотами, медленно растворяется даже в слабых органических.

Индий относится к редким и рассеянным элементам, он не образует собственных месторождений и добывается в качестве побочного продукта при переработке руд других металлов. Для получения индия промышленное значение имеют только те минералы, в которых его содержится не меньше, чем 0,1%. Как правило, больше всего его в сфалерите (сульфид цинка), но и там его количество не превышает 0.5 %. Таким образом, производство индия всегда сопутствует производству цинка, в меньшей степени – олова и свинца. Схема извлечения индия при этом довольно сложная, поскольку металл не обладает отличительными химическими свойствами, которые могли бы помочь в его выделении отдельно от других металлов; при этом последовательно применяются такие методы как ионный обмен, экстракция, а также гидролитическое осаждение и цементация, использующие небольшие различия в степени гидролиза солей и стандартных потенциалах разных металлов. Образующийся на последней стадии черновой металл очищают различными методами, в частности зонной плавкой, позволяющей получить индий чистотой до 99.99999%.

Наиболее обширно используется индий и его соединения в технике: изготовление жидкокристаллических экранов (тонкая пленка из оксида индия-олова), микроэлектроника (примесь к германию и кремнию), уплотнитель в технике высокого вакуума (в частности, космических аппаратов), покрытие зеркал (в частности астрономических, где имеет значение постоянство коэффициента отражения в видимой части спектра), термоэлектрические материалы на основе арсенида индия, производство очень стабильных аккумуляторов с высокой удельной энергоёмкостью для специальных целей (система из оксида ртути и индия), покрытие некоторых элементов двигателей для снижения износа. Помимо этого, индий является важным компонентом припоев (вследствие высокой адгезии индия такая добавка позволяет спаивать металлы со стеклом и другими материалами), из его изотопов изготовляют радиофармацевтические препараты, его ортофосфат добавляют в зубные цементы, а ряд соединений индия обладает люминесцентными свойствами, что находит применение в различных областях. Также сплав индия (5%) с золотом и серебром используется в качестве декоративного металла (так называемое зеленое золото)

Таким образом, с развитием техники растет и потребление индия. При этом производство ЖК-экранов потребляет не менее половины от всего добываемого металла Производство первичного индия (от 500 до 800 тонн в год) время от времени догоняет потребность, что вызывает непостоянство цен. По некоторым оценкам, запасы природного индия будут исчерпаны к 2030 году, если не возрастет степень его вторичной переработки и повторного использования.

Индий - элемент главной подгруппы третьей группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 49. Обозначается символом In (лат. Indium ). Относится к группе лёгких металлов. Ковкий, легкоплавкий, очень мягкий металл серебристо-белого цвета. Сходен по химическим свойствам с алюминием и галлием, по внешнему виду с цинком.

Открытие индия

В середине прошлого века два крупных немецких ученых Густав Роберт Кирхгоф и Роберт Вильгельм Бунзен пришли к выводу об индивидуальности линейчатых спектров химических элементов и разработали основы спектрального анализа. Это был один из первых методов исследования химических объектов физическими средствами.

Этим методом Бунзен и Кирхгоф в 1860...1861 гг. открыли рубидий и цезий. Взяли его на вооружение и другие исследователи. В 1862 г. англичанин Уильям Крукс в ходе спектроскопического исследования шлама, присланного с одного из немецких сернокислотных заводов, обнаружил линии нового элемента – таллия. А еще через год был открыт индий, причем самый молодой по тому времени метод анализа и самый молодой элемент сыграли в этом открытии не последние роли.

В 1863 г. немецкие химики Рейх и Рихтер подвергли спектроскопическому анализу цинковую обманку из окрестностей города Фрейберга. Из этого минерала ученые получили хлорид цинка и поместили его в спектрограф, надеясь обнаружить характерную для таллия ярко-зеленую линию. Надежды оправдались, однако не эта линия принесла Рейху и Рихтеру мировую известность.

В спектре оказалась и линия синего цвета (длина волны 4511 Ǻ), примерно такого же, какой дает известный краситель индиго. Ни у одного из известных элементов такой линии не было.

Так был открыт индий – элемент, названный по цвету характерной для него индиговой линии в спектре.

До 1870 г. индий считался двухвалентным элементом с атомным весом 75,6. В 1870 г. Д.И. Менделеев установил, что этот элемент трехвалентен, а его атомный вес 113: так получалось из закономерностей периодического изменения свойств элементов. В пользу этого предположения говорили также новые данные о теплоемкости индия. Какие рассуждения привели к этому выводу, говорится в отрывке из статьи Д.И. Менделеева (см. ниже «Менделеев об индии»).

Позже было установлено, что природный индий состоит из двух изотопов с массовыми числами 113 и 115. Преобладает более тяжелый изотоп – на его долю приходится 95,7%.

До 1950 г. считалось, что оба эти изотопа стабильны. Но в 1951 г. выяснилось, что индий-115 подвержен бета-распаду и постепенно превращается в олово-115. Процесс этот происходит очень медленно: период полураспада ядер индия-115 очень велик – 6·10 14 лет. Из-за этого и не удавалось обнаружить радиоактивность индия раньше.

В последние десятилетия искусственным путем получено около 20 радиоактивных изотопов индия. Самый долгоживущий из них 114 In имеет период полураспада 49 дней.

Геохимия и минералогия индия

Из характера расположения электронов в атоме вытекает, что индий должен быть отнесён к халькофильным элементам (18 электронов в предпоследнем слое). В настоящее время известно 4 индиевых минерала: самородный индий, рокезит CuInS 2 , индит FeIn 2 S 4 , джалиндит In(OH) 3 . В основном индий находится в виде изоморфной примеси в раннем высокожелезистом сфалерите, где его содержание достигает десятых долей процента. В некоторых разновидностях халькопирита и станина содержание индия составляет сотые - десятые процента, а в касситерите и пирротине - тысячные доли процента. В пирите, арсенопирите, вольфрамите и некоторых других минералах концентрация индия граммы на тонну. Промышленное значение на индий пока имеют сфалерит и другие минералы, содержащие не менее 0,1 % индия. Индий самостоятельных месторождений не образует, а входит в состав руд месторождений других металлов. Наиболее высокое содержание индия установлено в рудах касситеритоносных скарнов и сульфидно-касситеритовых месторождений различных типов.

Физические свойства индия

Кристаллическая решетка Индия тетрагональная гранецентрированная с параметрами а = 4,583Å и с= 4,936Å. Атомный радиус 1,66Å; ионные радиусы In 3+ 0,92Å, In + 1,30Å; плотность 7,362 г/см 3 . Индий легкоплавок, его t пл 156,2 °C; t кип 2075 °C. Температурный коэффициент линейного расширения 33·10 -6 (20 °С); удельная теплоемкость при 0-150°С 234,461 дж/(кг·К), или 0,056 кал/(г·° С); удельное электросопротивление при 0°C 8,2·10 -8 ом·м, или 8,2·10 -6 ом·см; модуль упругости 11 н/м 2 , или 1100 кгс/мм 2 ; твердость по Бринеллю 9 Мн/м 2 , или 0,9 кгс/мм 2 .

Получение индия

Извлечь индий из минералов достаточно сложно. Это один из рассеянных элементов. Содержится в минералах: сфалерит, марматит, франклинит, алунит, каламин, родонит, флогопит, мангантанталит, сидерит, касситерит, вольфрамит, самарскит. Ни в одном из перечисленных минералов среднее содержание элемента не превышает десятых долей процента. Собственно индиевые минералы – рокезит CuInS 2 , индит FeIn 2 S 4 и джалиндит In(ОН) 3 – очень редки. Крайне редко встречается и самородный индий, хотя при нормальных условиях этот металл кислородом воздуха не окисляется и вообще ему присуща значительная химическая стойкость.

Получают из отходов и промежуточных продуктов производства цинка, свинца и олова. Это сырьё содержит от 0,001 % до 0,1 % индия.

Технология извлечения индия, как и многих других металлов, обычно состоит из двух стадий: сначала получают концентрат, а затем уже черновой металл.

На первой стадии концентрирования индий отделяют от цинка, меди и кадмия. Это достигается простым регулированием кислотности раствора или, точнее говоря, величины pH. Гидроокись кадмия осаждается из водных растворов при pH, равном 8, гидроокиси меди и цинка – при 6. Для того чтобы «высадить» гидроокись индия, pH раствора нужно довести до 4.

Хотя технологические процессы, основанные на осаждении и фильтровании, известны давно и считаются хорошо отработанными, они не позволяют извлечь из сырья весь индий. К тому же они требуют довольно громоздкого оборудования.

Более перспективным считается метод жидкостной экстракции. Это процесс избирательного перехода одного или нескольких компонентов смеси из водного раствора в слой несмешивающейся с ним органической жидкости. К сожалению, в большинстве случаев в «органику» переходит не один элемент, а несколько. Приходится экстрагировать и реэкстрагировать элементы по нескольку раз – переводить нужный элемент из воды в растворитель, из растворителя снова в воду, оттуда в другой растворитель и так далее, вплоть до полного разделения.

Для некоторых элементов, в том числе и для индия, найдены реактивы-экстрагенты с высокой избирательной способностью. Это позволяет увеличивать концентрацию редких и рассеянных элементов в сотни и тысячи раз. Экстракционные процессы легко автоматизировать, это одно из самых важных их достоинств.

Из сложных по составу сернокислых растворов, в которых индия было намного меньше, чем Zn, Cu, Cd, Fe, As, Sb, Co, Mn, Tl, Ge и Se, индий хорошо, избирательно, экстрагируется алкилфосфорными кислотами. Вместе с индием в них переходят в основном ионы трехвалентного железа и сурьмы.

Избавиться от железа несложно: перед экстракцией раствор нужно обрабатывать таким образом, чтобы все ионы Fe 3+ восстановились до Fe 2+ , а эти ионы индию не попутчики. Сложнее с сурьмой: ее приходится отделять реэкстракцией или на более поздних этапах получения металлического индия.

Метод жидкостной экстракции индия алкилфосфорными кислотами (из них особенно эффективной оказалась ди-2-этилгексилфосфорная кислота) позволил значительно сократить время получения этого редкого металла, уменьшить его себестоимость и, главное, извлекать индии более полно. Черновой индий рафинируют электрохимическими или химическими методами. Сверхчистый индий получают зонной плавкой и методом Чохральского – вытягиванием монокристаллов из тиглей.

Стоимость индия в 2010 году составляла от 25 до 30 тыс. рублей за кг.

Применение индия

В последние годы мировое потребление индия быстро растёт и в 2005 достигло 850 тонн. Электрохимическая система индий-оксид ртути служит для создания чрезвычайно стабильных во времени источников тока (аккумуляторов) высокой удельной энергоёмкости для специальных целей. Важной областью применения индия является техника высокого вакуума, где он используется в качестве уплотнителя (прокладки, покрытия); в частности, при герметизации космических аппаратов и мощных ускорителей элементарных частиц.

Раньше индий применяли главным образом для изготовления подшипников. Добавка индия улучшает механические свойства подшипниковых сплавов, повышает их коррозионную стойкость и смачиваемость.

Широко распространены свинцово-серебряные подшипники с индиевым поверхностным слоем.

Индий нашел применение и в производстве некоторых сплавов, особенно легкоплавких. Известен, например, сплав индия с галлием (соответственно 24 и 76%), который при комнатной температуре находится в жидком состоянии. Его температура плавления всего 16°C. Другой сплав, в состав которого вместе с индием входят висмут, свинец, олово и кадмий, плавится при 46,5°C и применяется для пожарной сигнализации.

Иногда индий и его сплавы применяют в качестве припоя. Будучи расплавленными, они хорошо прилипают ко многим металлам, керамике, стеклу, а после охлаждения «схватываются» с ними накрепко. Такие припои применяются в производстве полупроводниковых приборов и в других отраслях техники. Полупроводниковая промышленность вообще стала основным потребителем индия.

Сплавы индия с серебром нечувствительны к воздействию сероводорода и служат для создания высококачественных отражающих поверхностей. Ряд сплавов индия с галлием, оловом и цинком являются жидкостями при комнатной температуре (один из сплавов плавится при +3 °C) и могут использоваться как жидкометаллический теплоноситель.

Индий имеет высокое сечение захвата тепловых нейтронов и может быть использован для управления атомным реактором, хотя более удобно применение его соединений в комбинации с другими элементами, хорошо захватывающими нейтроны. Так, оксид индия находит применение в атомной технике для изготовления стекла, применяемого для поглощения тепловых нейтронов.

Из-за мягкости индий нельзя применять ни в ювелирном деле, нив строительстве. У индия же предел прочности на растяжение в 6 раз меньше, чем у свинца. Металл в 20 раз мягче чистого золота и легко царапается ногтём. Но добавка индия увеличивает твердость свинца и особенно олова.

Легкоплавкий индий мог бы служить отличной смазкой для трущихся деталей, работающих при температурах выше 160, но ниже 2000°C – такие температуры часто развиваются в современных машинах и механизмах.

Соли индия применяют в качестве добавок к некоторым люминесцентным составам. Они уничтожают фосфоресценцию состава, после того как возбуждение снято. Если обычная люминесцентная лампа после выключения еще некоторое время продолжает светить, то лампа с составом, содержащим соли индия, гаснет сразу после выключения.