Изучение движения тела брошенного горизонтально лабораторная работа. Движение тела, брошенного горизонтально, со скоростью

Цель работы: исследование зависимости дальности полета тела, брошенного горизонтально, от высоты, с которой оно начало движение.

Оборудование: штатив с муфтой и лапкой, желоб дугообразный, шарик стальной, пленка отметчик, направляющая прибора для изучения прямолинейного движения, скотч.

Теоретические основы работы

Если тело бросить с некоторой высоты горизонтально, то его движение можно рассматривать, как движение по инерции по горизонтали и равноускоренное движение по вертикали.

По горизонтали тело движется в соответствии первым законом Ньютона, поскольку кроме силы сопротивления со стороны воздуха, которую не учитывают, в этом направлении на него никакие силы не действуют. Силой сопротивления воздуха можно пренебречь, так как за короткое время полета тела, брошенного с небольшой высоты, действие этой силы заметного влияния на движение не окажет.

По вертикали на тело действует сила тяжести, которая сообщает ему ускорение g (ускорение свободного падения).

Рассматривая перемещение тела в таких условиях как результат двух независимых движений по горизонтали и по вертикали, можно установить зависимость дальности полета тела от высоты, с которой его бросают. Если учесть, что скорость тела V в момент броска направлена горизонтально, и вертикальная составляющая начальной скорости отсутствует, то время падения можно найти, используя основное уравнение равноускоренного движения:

Откуда .

За это время тело успевает пролететь по горизонтали, двигаясь равномерно, расстояние . Подставив в эту формулу уже найденное время полета, и получают искомую зависимость дальности полета от высоты и скорости:

Из полученной формулы видно, что дальность броска находиться в квадратичной зависимости от высоты, с которой бросают. Например, при увеличении высоты в четыре раза, дальность полета возрастет вдвое; при увеличении высоты в девять раз, дальность возрастет в три раза и т.д.

Этот вывод можно подтвердить более строго. Пусть при броске с высоты H 1 дальность составит S 1 , при броске с той же скоростью с высоты H 2 = 4H 1 дальность составит S 2 .

По формуле (1):

Тогда поделив второе равенство на первое получим:

или (2)

Эту зависимость, полученную теоретическим путем из уравнений равномерного и равноускоренного движения, в работе проверяют экспериментально.

В работе исследуется движение шарика, который скатывается с желоба. Желоб закреплен на некоторой высоте над столом. Это обеспечивает горизонтальное направление скорости шарика в момент начала его свободного полета.

Проводят две серии опытов, в которых высоты горизонтального участка желоба отличаются в четыре раза, и измеряют расстояния S 1 и S 2 , но которые удаляется шарик от желоба по горизонтали. Для уменьшения влияния на результат побочных факторов определяют среднее значение расстояний S 1ср и S 2ср. Сравнивая средние расстояния, полученные в каждой серии опытов, делают вывод о том, насколько справедливо равенство (2).

Порядок выполнения работы

1. Укрепите желоб на стержне штатива так, чтобы его изогнутая часть располагалась горизонтально на высоте около 10 см от поверхности стола. В месте предполагаемого падения шарика на стол разместите пленку-отметчик.

2. Подготовьте таблицу для записи результатов измерений и вычислений.

№ опыта H 1 , м S 1 , м S 1ср, м H 2 , м S 2 , м S 2ср, м

3. Произведите пробный пуск шарика от верхнего края желоба. Определите место падения шарика на стол. Шарик должен попасть в среднюю часть пленки. При необходимости скорректируйте положение пленки.

4. Измерьте высоту горизонтальной части желоба над столом H 1 .

5. Пустите шарик от верхнего края желоба и измерьте на поверхности стола расстояние от нижнего края желоба до места падения шарика S 1 .

6. Повторите опыт 5-6 раз.

7. Вычислите среднее значение расстояния S 1ср.

8. Увеличьте высоту желоба в 4 раза. Плвторите серию пусков шарика, измерьте и вычислите H 2 , S 2 , S 2ср

9. Проверьте справедливость равенства (2)

10. Вычислите скорость, сообщенную телу в горизонтальном направлении?

Контрольные вопросы

5. Как изменится дальность полета тела, брошенного горизонтально с некоторой высоты, если скорость бросания увеличить вдвое?

6. Как и во сколько раз надо изменить скорость тела, брошенного горизонтально, чтобы при высоте, вдвое меньшей, получить прежнюю дальность полета?

7. При каких условиях возникает криволинейное движение?

8. Как должна действовать сила, чтобы тело, двигавшееся прямолинейно, изменило направление своего движения?

9. По какой траектории движется тело, брошенное горизонтально?

10. Почему тело, брошенное горизонтально, движется по криволинейной траектории?

12. От чего зависит дальность тела, брошенного горизонтально?

Если скорость \(~\vec \upsilon_0\) направлена не вертикально, то движение тела будет криволинейным.

Рассмотрим движение тела, брошенного горизонтально с высоты h со скоростью \(~\vec \upsilon_0\) (рис. 1). Сопротивлением воздуха будем пренебрегать. Для описания движения необходимо выбрать две оси координат - Ox и Oy . Начало отсчета координат совместим с начальным положением тела. Из рисунка 1 видно, что υ 0x = υ 0 , υ 0y = 0, g x = 0, g y = g .

Тогда движение тела опишется уравнениями:

\(~\upsilon_x = \upsilon_0,\ x = \upsilon_0 t; \qquad (1)\) \(~\upsilon_y = gt,\ y = \frac{gt^2}{2}. \qquad (2)\)

Анализ этих формул показывает, что в горизонтальном направлении скорость тела остается неизменной, т. е. тело движется равномерно. В вертикальном направлении тело движется равноускоренно с ускорением \(~\vec g\), т. е. так же, как тело, свободно падающее без начальной скорости. Найдем уравнение траектории. Для этого из уравнения (1) найдем время \(~t = \frac{x}{\upsilon_0}\) и, подставив его значение в формулу (2), получим\[~y = \frac{g}{2 \upsilon^2_0} x^2\] .

Это уравнение параболы. Следовательно, тело, брошенное горизонтально, движется по параболе. Скорость тела в любой момент времени направлена по касательной к параболе (см. рис. 1). Модуль скорости можно рассчитать по теореме Пифагора:

\(~\upsilon = \sqrt{\upsilon^2_x + \upsilon^2_y} = \sqrt{\upsilon^2_0 + (gt)^2}.\)

Зная высоту h , с которой брошено тело, можно найти время t 1 , через которое тело упадет на землю. В этот момент координата y равна высоте: y 1 = h . Из уравнения (2) находим\[~h = \frac{gt^2_1}{2}\]. Отсюда

\(~t_1 = \sqrt{\frac{2h}{g}}. \qquad (3)\)

Формула (3) определяет время полета тела. За это время тело пройдет в горизонтальном направлении расстояние l , которое называют дальностью полета и которое можно найти на основании формулы (1), учитывая, что l 1 = x . Следовательно, \(~l = \upsilon_0 \sqrt{\frac{2h}{g}}\) - дальность полета тела. Модуль скорости тела в этот момент \(~\upsilon_1 = \sqrt{\upsilon^2_0 + 2gh}.\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 15-16.

Лабораторная работа (экспериментальная задача)

ОПРЕДЕЛЕНИЕ НАЧАЛЬНОЙ СКОРОСТИ ТЕЛА,

БРОШЕННОГО ГОРИЗОНТАЛЬНО

О б о р у д о в а н и е: карандашная резинка (ластик), измерительная лента, деревянные бруски.

Цель работы: экспериментально определить величину начальной скорости тела, брошенного горизонтально. Оценить правдоподобность полученного результата.

Уравнения движения материальной точки в проекциях на горизонтальную ось 0х и вертикальную ось 0y выглядят следующим образом:

Горизонтальная составляющая скорости во время движения тела, брошенного горизонтально, не изменяется, поэтому путь тела при свободном полете тела по горизонтали определится так: https://pandia.ru/text/79/468/images/image004_28.gif" width="112" height="44 src="> Из этого уравнения найдем время и подставим полученное выражение в предыдущую формулу. Теперь можно получить расчетную формулу для нахождения начальной скорости тела, брошенного горизонтально:

Порядок выполнения работы

1. Подготовьте листы для отчета о проделанной работе с предварительными записями.

2. Измерьте высоту стола.

3. Положите ластик на край стола. Щелчком приведите его в движение в горизонтальном направлении.

4. Заметьте место, в котором резинка достигнет пола. Измерьте расстояние от точки пола, куда проецируется край стола, до точки падения резинки на полу.

5. Измените высоту полета ластика, подложив под нее на краю стола деревянный брусок (или коробку). Проведите аналогичные действия для нового случая.

6. Проведите не менее 10 опытов, занесите результаты измерений в таблицу, произведите вычисления начальной скорости ластика, считая ускорение свободного падения равным 9,81 м/с2.

Таблица результатов измерений и вычислений

опыта

Высота полета тела

Дальность полета тела

Начальная скорость тела

Абсолютная погрешность скорости

h

s

v 0

D v 0

Среднее

7. Подсчитайте величины абсолютной и относительной погрешностей начальной скорости тела, сделайте выводы о проделанной работе.

Контрольные вопросы

1. Камень брошен вертикально вверх и первую половину пути движется равнозамедленно, а вторую – равноускоренно. Означает ли это, что на первой половине пути его ускорение отрицательно, а на второй – положительно?

2. Как изменяется модуль скорости тела, брошенного горизонтально?

3. В каком случае выпавший из окна вагона предмет упадет на землю раньше: когда вагон стоит на месте или когда он движется: Сопротивлением воздуха пренебречь.

4. В каком случае модуль вектора перемещения материальной точки совпадает с путем?

Литература:

1. Джанколи Д. Физика: В 2-х т. Т. 1: Пер. с англ.- М.: Мир, 1989, с. 89, задача 17.

2. , Экспериментальные задания по физике. 9-11 классы: учебное пособие для учащихся общеобразовательных учреждений.- М.: Вербум-М, 2001, с. 89.

Лабораторная работа №5 по физике 9 класс (ответы) - Изучение движения тела, брошенного горизонтально

5. Измерьте во всех пяти опытах высоту падения и дальность полёта шарика. Данные занесите в таблицу.

Опыт h l v
1 0,33 м 0,195 м
2 0,32 м 0,198 м
3 0,325 м 0,205 м
4 0,33 м 0,21 м
5 0,32 м 0,22 м
Ср. 0,325 м 0,206 м 0,8

7. Рассчитайте абсолютную и относительную погрешности прямого измерения дальности полёта шарика. Результат измерений запишите в интервальной форме.

Ответьте на контрольные вопросы

1. Почему траектория движения тела, брошенного горизонтально, является половина параболы? Приведите доказательства.

Скорость тела, брошенного горизонтально, по оси x не изменяется, а по оси y увеличивается за счёт действия на тело силы g (ускорение свободного падения).

2. Как направлен вектор скорости в различных точках траектории движения тела, брошенного горизонтально?

Вектор тела, брошенного горизонтально, направлен по касательной.

3. Является ли движение тела, брошенного горизонтально, равноускоренным? Почему?

Является. Путь шарика, брошенного горизонтально, является криволинейным и равноускоренным, т. к. для этого пути характерны два независимых направления: горизонтальное и направление свободного падения g, которое оказывает постоянное действие на тело.

Выводы: научился вычислять модуль начальной скорости тела, брошенного в горизонтальном направлении и находящегося по действием сил тяжести.

Суперзадание

Используя результаты работы, определите конечную скорость движения шарика (перед сопротивлением его с листом бумаги). Какой угол с поверхностью листа образует эта скорость?

10 класс

Лабораторные работы №1

Определение ускорения свободного падения.

Оборудование: шарик на нити, штатив с муфтой и кольцом, измерительная лента, часы.

Порядок выполнения работы

Модель математического маятника представляет собой металлический шарик небольшого радиуса, подвешенный на длинной нити.

Длина маятника определяется расстоянием от точки подвеса до центра шарика (по формуле 1)

где - длина нити от точки подвеса до места крепления шарика к нити; - диаметр шарика. Длина нити измеряется линейкой, диаметр шарика - штангельциркулем.

Оставляя нить натянутой, отводят шарик из положения равновесия на расстояние, весьма малое по сравнению с длиной нити. Затем шарик отпускают, не давая ему толчка, и одновременно включают секундомер. Определяют промежуток времени t , в течение которого маятник совершает n = 50 полных колебаний. Опыт повторяют с двумя другими маятниками. Полученные экспериментальные результаты ( ) заносят в таблицу.

Номер измерения

t , с

T, с

g, м/с

По формуле (2)

вычисляют период колебания маятника, а из формулы

(3) вычисляют ускорение свободно падающего тела g .

(3)

Результаты измерений заносят в таблицу.

Вычисляют среднее арифметическое из результатов измерения и среднюю абсолютную ошибку .Окончательный результат измерений и вычислений выражают в виде .

10 класс

Лабораторной работы № 2

Изучение движения тела, брошенного горизонтально

Цель работы: измерить начальную скорость тела, брошенного горизонтально, исследовать зависимость дальности полёта тела, брошенного горизонтально, от высоты, с которой оно начало движение.

Оборудование: штатив с муфтой и зажимом, изогнутый желоб, металлический шарик, лист бумаги, лист копировальной бумаги, отвес, измерительная лента.

Порядок выполнения работы

Шарик скатывается по изогнутому желобу, нижняя часть которого горизонтальна. Расстояние h от нижнего края желоба до стола должно быть равным 40 см. Лапки зажима должны быть расположены вблизи верхнего конца желоба. Положите под желобом лист бумаги, придавив его книгой, чтобы он не сдвигался при проведении опытов. Отметьте на этом листе с помощью отвеса точку А находящуюся на одной вертикали с нижним концом желоба. Отпустите шарик без толчка. Заметьте (примерно) место на столе, куда попадет шарик, скатившись с желоба и пролетев по воздуху. На отмеченное место положите лист бумаги, а на него - лист копировальной бумаги «рабочей» стороной вниз. Придавите эти листы книгой, чтобы они не сдвигались при проведении опытов. Измерьте расстояние от отмеченной точки до точки А . Опустите желоб так, чтобы расстояние от нижнего края желоба до стола было равно 10 см, повторите опыт.

После отрыва от желоба шарик движется по параболе, вершина которой находится в точке отрыва шарика от желоба. Выберем систему координат, как показано на рисунке. Начальная высота шарика и дальность полета связаны соотношением Согласно этой формуле при уменьшении начальной высоты в 4 раза дальность полета уменьшается в 2 раза. Измерив и можно найти скорость шарика в момент отрыва от желоба по формуле