Как найти удельное сопротивление меди. Удельное сопротивление стали

Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.
В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики - то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление - это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации - при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

Виды удельного сопротивления

Так как сопротивление бывает:

  • активное - или омическое, резистивное, - происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
  • реактивное - емкостное или индуктивное, - которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП - активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.

Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin - кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.

Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.

Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса - играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10 -6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления - обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Таблица удельных сопротивлений проводников (металлов и сплавов)

Материал провод-ника

Состав (для сплавов)

Удельное сопротивление ρ мом × мм 2 / м

медь, цинк, олово, никель, свинец, марганец, железо и др.

Алюминий

Вольфрам

Молибден

медь, олово, алюминий, кремний, бериллий, свинец и др. (кроме цинка)

железо, углерод

медь, никель, цинк

Манганин

медь, никель, марганец

Константан

медь, никель, алюминий

никель, хром, железо, марганец

железо, хром, алюминий, кремний, марганец

Железо как проводник в электротехнике

Железо - самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

Где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

Будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм 2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10 -6 . Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм 2 .

Как видим, сопротивление железа достаточно большое, проволока получается толстая.

Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Удельное сопротивление - прикладное понятие в электротехнике. Оно обозначает то, какое сопротивление на единицу длины оказывает материал единичного сечения протекающему через него току - другими словами, каким сопротивлением обладает провод миллиметрового сечения длиной один метр. Это понятие используется в различных электротехнических расчетах.

Важно понимать различия между удельным электрическим сопротивлением постоянному току и удельным электросопротивлением переменному току. В первом случае сопротивление вызывается исключительно действием постоянного тока на проводник. Во втором случае переменный ток (он может быть любой формы: синусоидальной, прямоугольной, треугольной или произвольной) вызывает в проводнике дополнительно действующее вихревое поле, которому также создается сопротивление.

Физическое представление

В технических расчетах, предполагающих прокладку кабелей различных диаметров, используются параметры, позволяющие рассчитать необходимую длину кабеля и его электрические характеристики. Одним из основных параметров является удельное сопротивление. Формула удельного электрического сопротивления:

ρ = R * S / l, где:

  • ρ - это удельное сопротивление материала;
  • R - омическое электросопротивление конкретного проводника;
  • S - поперечное сечение;
  • l - длина.

Размерность ρ измеряется в Ом мм 2 /м, или, сократив формулу - Ом м.

Значение ρ для одного и того же вещества всегда одинаковое. Следовательно, это константа, характеризующая материал проводника. Обычно она указывается в справочниках. Исходя из этого уже можно проводить расчет технических величин.

Важно сказать и об удельной электрической проводимости. Эта величина является обратной удельному сопротивлению материала, и используется наравне с ним. Ее также называют электропроводностью. Чем выше эта величина, тем лучше металл проводит ток. Например, удельная проводимость меди равна 58,14 м/(Ом мм 2). Или, в единицах, принятых в системе СИ: 58 140 000 См/м. (Сименс на метр - единица электропроводности в СИ).

Говорить об удельном сопротивлении можно только при наличии элементов, проводящих ток, так как диэлектрики обладают бесконечным или близким к нему электросопротивлением. В отличие от них, металлы - очень хорошие проводники тока. Измерить электросопротивление металлического проводника можно с помощью прибора миллиомметра, или еще более точного - микроомметра. Значение измеряется между их щупами, приложенными к участку проводника. Они позволяют проверить цепи, проводку, обмотки двигателей и генераторов.

Металлы разнятся между собой по способности проводить ток. Удельное сопротивление различных металлов - параметр, характеризующий это отличие. Данные приведены при температуре материала 20 градусов по шкале Цельсия:

Параметр ρ показывает, каким сопротивлением будет обладать метровый проводник с сечением 1 мм 2 . Чем больше это значение, тем больше электросопротивление будет у нужного провода определенной длины. Наименьшее ρ, как видно из списка, у серебра, сопротивление одного метра из этого материала будет равно всего 0,015 Ом, но это слишком дорогой металл для использования его в промышленных масштабах. Следующим идет медь, которая в природе встречается гораздо чаще (не драгоценный, а цветной металл). Поэтому медная проводка очень распространена.

Медь является не только хорошим проводником электрического тока, но и очень пластичным материалом. Благодаря этому свойству медная проводка лучше укладывается, она устойчива к изгибам и растяжению.

Медь очень востребована на рынке. Из этого материала производят множество различных изделий:

  • Огромное многообразие проводников;
  • Автозапчасти (например, радиаторы);
  • Часовые механизмы;
  • Компьютерные составляющие;
  • Детали электрических и электронных приборов.

Удельное электрическое сопротивление меди является одним из лучших среди проводящих ток материалов, поэтому на ее основе создается множество товаров электроиндустрии. К тому же медь легко поддается пайке, поэтому очень распространена в радиолюбительстве.

Высокая теплопроводность меди позволяет использовать ее в охлаждающих и обогревающих устройствах, а пластичность дает возможность создавать мельчайшие детали и тончайшие проводники.

Проводники электрического тока бывают первого и второго рода. Проводники первого рода - это металлы. Проводники второго рода- это проводящие растворы жидкостей. Ток в первых переносят электроны, а переносчики тока в проводниках второго рода -ионы, заряженные частицы электролитической жидкости.

Говорить о проводимости материалов можно только в контексте температуры окружающей среды. При более высокой температуре проводники первого рода увеличивают свое электросопротивление, а второго, напротив, уменьшают. Соответственно, существует температурный коэффициент сопротивления материалов. Удельное сопротивление меди Ом м возрастает при увеличении нагрева. Температурный коэффициент α тоже зависит только от материала, эта величина не имеет размерности и для разных металлов и сплавов равна следующим показателям:

  • Серебро - 0,0035;
  • Железо - 0,0066;
  • Платина - 0,0032;
  • Медь - 0,0040;
  • Вольфрам - 0,0045;
  • Ртуть - 0,0090;
  • Константан - 0,000005;
  • Никелин - 0,0003;
  • Нихром - 0,00016.

Определение величины электросопротивления участка проводника при повышенной температуре R (t), вычисляется по формуле:

R (t) = R (0) · , где:

  • R (0) - сопротивление при начальной температуре;
  • α - температурный коэффициент;
  • t - t (0) - разность температур.

Например, зная электросопротивление меди при 20 градусах Цельсия, можно вычислить, чему оно будет равно при 170 градусах, то есть при нагреве на 150 градусов. Исходное сопротивление увеличится в раз, то есть в 1,6 раз.

При увеличении температуры проводимость материалов, напротив, уменьшается. Так как это величина, обратная электросопротивлению, то и уменьшается она ровно во столько же раз. Например, удельная электропроводность меди при нагреве материала на 150 градусов уменьшится в 1,6 раз.

Существуют сплавы, которые практически не изменяют своего электросопротивления при изменении температуры. Таков, к примеру, константан. При изменении температуры на сто градусов его сопротивление увеличивается всего на 0,5%.

Если проводимость материалов ухудшается с нагревом, она улучшается с понижением температуры. С этим связано такое явление, как сверхпроводимость. Если понизить температуру проводника ниже -253 градусов Цельсия, его электросопротивление резко уменьшится: практически до нуля. В связи с этим падают затраты на передачу электрической энергии. Единственной проблемой оставалось охлаждение проводников до таких температур. Однако в связи с недавними открытиями высокотемпературных сверхпроводников на базе оксидов меди, охлаждать материалы приходится уже до приемлемых значений.

14.04.2018

В качестве токопроводящих частей в электроустановках применяют проводники из меди, алюминия, их сплавов и железа (стали).

Медь является одним из лучших токопроводящих материалов. Плотность меди при 20°С 8,95 г/см 3 , температура плавления 1083° С. Медь химически мало активна, но легко растворяется в азотной кислоте, а в разбавленной соляной и серной кислотах растворяется только в присутствии окислителей (кислорода). На воздухе медь быстро покрывается тонким слоем окиси темного цвета, но это окисление не проникает в глубь металла и служит защитой от дальнейшей коррозии. Медь хорошо поддается ковке и прокатке без нагрева.

Для изготовления применяется электролитическая медь в слитках, содержащих 99,93% чистой меди.

Электропроводность меди сильно зависит от количества и рода примесей и в меньшей степени от механической и термической обработки. при 20° С составляет 0,0172-0,018 ом х мм2/м.

Для изготовления проводников применяют мягкую, полутвердую или твердую медь с удельным весом соответственно 8,9, 8,95 и 8,96 г/см 3 .

Для изготовления деталей токоведущих частей широко используется медь в сплавах с другими металлами . Наибольшее применение получили следующие сплавы.

Латуни - сплав меди с цинком, с содержанием в сплаве не менее 50% меди, с присадкой других металлов. латуни 0,031 - 0,079 ом х мм2/м. Различают латунь - томпак с содержанием меди более 72% (обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами) и специальные латуни с присадкой алюминия, олова, свинца или марганца.

Контакт из латуни

Бронзы - сплав меди с оловом с присадкой различных металлов. В зависимости от содержания в сплаве главного компонента бронзы называют оловянистыми, алюминиевыми, кремниевыми, фосфористыми, кадмиевыми. Удельное сопротивление бронзы 0,021 - 0,052 ом х мм 2 /м.

Латуни и бронзы отличаются хорошими механическими и физико-химическими свойствами. Они легко обрабатываются литьем и давлением, устойчивы против атмосферной коррозии.

Алюминий - по своим качествам второй после меди токопроводящий материал. Температура плавления 659,8° С. Плотность алюминия при температуре 20° - 2,7 г/см 3 . Алюминий легко отливается и хорошо обрабатывается. При температуре 100 - 150° С алюминий ковок и пластичен (может быть прокатан в листы толщиной до 0,01 мм).

Электропроводность алюминия сильно зависит от примесей и мало от механической и тепловой обработки. Чем чище состав алюминия, тем выше его электропроводность и лучше противодействие химическим воздействиям. Обработка, прокатка и отжиг значительно влияют на механическую прочность алюминия. При холодной обработке алюминия увеличивается его твердость, упругость и прочность на растяжение. Удельное сопротивление алюминия при 20° С 0,026 - 0,029 ом х мм 2 /м.

При замене меди алюминием сечение проводника должно быть увеличено в отношении проводимостей, т. е. в 1,63 раза.

При равной проводимости алюминиевый проводник будет в 2 раза легче медного.

Для изготовления проводников применяют алюминий, содержащий не менее 98% чистого алюминия, кремния не более 0,3%, железа не более 0,2%

Для изготовления деталей токоведущих частей используют алюминиевые сплавы с другими металлами , например: Дюралюмины - сплав алюминия с медью и марганцем.

Силумин - легкий литейный сплав из алюминия с примесью кремния, магния, марганца.

Алюминиевые сплавы обладают хорошими литейными свойствами и высокой механической прочностью.

Наибольшее применение в электротехнике получили следующие алюминиевые сплавы :

Алюминиевый деформируемый сплав марки АД, имеющий алюминия не менее 98,8 и прочих примесей до 1,2.

Алюминиевый деформируемый сплав марки АД1 , имеющий алюминия не менее 99,3 н прочих примесей до 0,7.

Алюминиевый деформируемый сплав марки АД31 , имеющий алюминия 97,35 - 98,15 и прочих примесей 1,85 -2,65.

Сплавы марок АД и АД1 применяются для изготовления корпусов и плашек аппаратных зажимов. Из сплава марки АД31 изготовляют профили и шины, применяемые для электрических токопроводов.

Изделия из алюминиевых сплавов в результате термической обработки приобретают высокие пределы прочности н текучести (ползучести).

Железо - температура плавления 1539°С. Плотность железа - 7,87. Железо растворяется в кислотах, окисляется галогенами и кислородом.

В электротехнике применяют стали различных марок, например:

Углеродистые стали - ковкие сплавы железа с углеродом и с другими металлургическими примесями.

Удельное сопротивление углеродистых сталей 0,103 - 0,204 ом х мм 2 /м.

Легированные стали - сплавы с дополнительно вводимыми в углеродистую сталь присадками хрома, никеля и других элементов.

Стали обладают хорошими.

В качестве добавок в сплавы, а также для изготовления припоев и осуществления токопроводящих металлов широко применяют:

Кадмий - ковкий металл. Температура плавления кадмия 321°С. Удельное сопротивление 0,1 ом х мм 2 /м. В электротехнике кадмий применяется для приготовления легкоплавких припоев и для защитных покрытий (кадмировання) поверхности металлов. По своим антикоррозийным свойствам кадмий близок к цинку, но кадмиевые покрытия менее пористы и наносятся более тонким слоем, чем цинковые.

Никель - температура плавления 1455°С. Удельное сопротивление никеля 0,068 - 0,072 ом х мм 2 /м. При обычной температуре не окисляется кислородом воздуха. Никель применяется в сплавах и для защитного покрытия (никелирования) поверхности металлов.

Олово - температура плавления 231,9°С. Удельное сопротивление олова 0,124 - 0,116 ом х мм 2 /м. Олово применяется для пайки защитного покрытия (лужения) металлов в чистом виде и в виде сплавов с другими металлами.

Свинец - температура плавления 327,4°С. Удельное сопротивление 0,217 - 0,227 ом х мм 2 /м. Свинец применяется в сплавах с другими металлами как кислотоупорный материал. Добавляется в паяльные сплавы (припои).

Серебро - очень ковкий, тягучий металл. Температура плавления серебра 960,5°С. Серебро - лучший проводник тепла и электрического тока . Удельное сопротивление серебра 0,015 - 0,016 ом х мм 2 /м. Серебро применяется для защитного покрытия (серебрения) поверхности металлов.

Сурьма - блестящий хрупкий металл, температура плавления 631°С. Сурьма применяется в виде добавок в паяльные сплавы (припои).

Хром - твердый, блестящий металл. Температура плавления 1830°С. На воздухе при обычной температуре не изменяется. Удельное сопротивление хрома 0,026 ом х мм 2 /м. Хром применяется в сплавах и для защитного покрытия (хромирования) металлических поверхностей.

Цинк - температура плавления 419,4°С. Удельное сопротивление цинка 0,053 - 0,062 ом х мм 2 /м. Во влажном воздухе цинк окисляется, покрываясь слоем окиси, являющимся защитным по отношению к последующим химическим воздействиям. В электротехнике цинк применяется в качестве добавок в сплавы и припои, а также для защитного покрытия (цинкования) поверхностей металлических деталей.

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство - корпус или кожух - земля - нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) - метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π ∙ d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R ∙ π ∙ d 2 /4 ∙ L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго - нихром, из которого и изготовим струну резака.

Называют возможность металла пропускать сквозь себя заряженный ток. В свою очередь, сопротивлением называется одна из характеристик материала. Чем больше электрическая резистентность при заданном напряжении, тем меньшей будет Оно характеризует силу противодействия проводника направленному вдоль него движению заряженных электронов. Поскольку свойство пропускания электричества - это величина, обратная сопротивлению, значит выражаться в виде формул оно будет как отношение 1/R.

Удельное сопротивление всегда зависит от качества материала, который используют при изготовлении устройств. Его измеряют, отталкиваясь от параметров проводника, обладающего длиной 1 метр, а также площадью сечения 1 квадратный миллиметр. Например, свойство удельной резистентности для меди всегда равно 0,0175 Ом, для алюминия - 0,029, железа - 0,135, константана - 0,48, нихрома - 1-1,1. Удельное сопротивление стали равно числу 2*10-7 Ом.м

Противодействие току прямо пропорционально длине проводника, по которому он движется. Чем больше длина устройства, тем выше показатель сопротивления. Усвоить эту зависимость будет проще, если представить две воображаемых пары сообщающихся между собой сосудов. У одной пары приборов соединяющая трубка пусть остаётся тоньше, а у другой - толще. При заполнении водой обеих пар переход жидкости в по толстой трубке получится гораздо быстрее, потому что она окажет меньшее сопротивление перетеканию воды. По этой аналогии для ему проще пройти вдоль толстого проводника, чем тонкого.

Удельное сопротивление, как единица СИ, измеряется показателем Ом.м. Проводимость зависит от средней длины свободного пролёта заряженных частиц, которая характеризуется структурой материала. Металлы без примесей, у которых наиболее правильная имеют наименьшие значения противодействия. И наоборот, примеси искажают решётку, чем увеличивают его показатели. Удельное сопротивление металлов расположено в узком диапазоне значений при нормальной температуре: от серебра с 0,016 и до 10 мкОм.м (сплавы железа и хрома с алюминием).

На особенности движения заряженных

электронов в проводнике оказывает влияние температура, поскольку при её увеличении возрастает амплитуда волновых колебаний существующих ионов и атомов. В результате электронам остаётся меньше свободного пространства для нормального хода в кристаллической решётке. А это означает, что препятствие упорядоченному передвижению возрастает. Удельное сопротивление любого проводника по обыкновению линейно возрастает с ростом температуры. А для полупроводников, наоборот, характерно уменьшение с увеличением градусов, так как из-за этого высвобождается много зарядов, создающих непосредственно электрический ток.

Процесс охлаждения некоторых металлических проводников заведомо до нужной температуры доводит их удельное сопротивление до скачкообразного состояния и падает до нуля. Такое явление открыли в 1911 году и назвали сверхпроводимостью.

На опыте установлено, что сопротивление R металлического проводника прямо пропорционально его длине L и обратно пропорционально площади его поперечного сечения А :

R = ρL/А (26.4)

где коэффициент ρ называется удельным сопротивлением и служит характеристикой вещества, из которого изготовлен проводник. Это соответствует здравому смыслу: сопротивление толстого провода должно быть меньше, чем тонкого, поскольку в толстом проводе электроны могут перемещаться по большей площади . И можно ожидать роста сопротивления с увеличением длины проводника, так как увеличивается количество препятствий на пути потока электронов.

Типичные значения ρ для разных материалов приведены в первом столбце табл. 26.2. (Реальные значения зависят от чистоты вещества, термической обработки, температуры и других факторов.)

Таблица 26.2.
Удельное сопротивление и температурный коэффициент сопротивления (ТКС) (при 20 °С)
Вещество ρ ,Ом·м ТКС α ,°C -1
Проводники
Серебро 1,59·10 -8 0,0061
Медь 1,68·10 -8 0,0068
Алюминий 2,65·10 -8 0,00429
Вольфрам 5,6·10 -8 0,0045
Железо 9,71·10 -8 0,00651
Платина 10,6·10 -8 0,003927
Ртуть 98·10 -8 0,0009
Нихром (сплав Ni, Fe, Сг) 100·10 -8 0,0004
Полупроводники 1)
Углерод (графит) (3-60)·10 -5 -0,0005
Германий (1-500)·10 -5 -0,05
Кремний 0,1 - 60 -0,07
Диэлектрики
Стекло 10 9 - 10 12
Резина твердая 10 13 - 10 15
1) Реальные значения сильно зависят от наличия даже малого количества примесей.

Самым низким удельным сопротивлением обладает серебро, которое оказывается, таким образом, наилучшим проводником; однако оно дорого. Немногим уступает серебру медь; ясно, почему провода чаще всего изготовляют из меди.

Удельное сопротивление алюминия выше, чем у меди, однако он имеет гораздо меньшую плотность, и в некоторых случаях ему отдают предпочтение (например, в линиях электропередач), поскольку сопротивление проводов из алюминия той же массы оказывается меньше, чем у медных. Часто пользуются величиной, обратной удельному сопротивлению:

σ = 1/ρ (26.5)

σ называемой удельной проводимостью. Удельная проводимость измеряется в единицах (Ом·м) -1 .

Удельное сопротивление вещества зависит от температуры. Как правило, сопротивление металлов возрастает с температурой. Этому не следует удивляться: с повышением температуры атомы движутся быстрее, их расположение становится менее упорядоченным, и можно ожидать, что они будут сильнее мешать движению потока электронов. В узких диапазонах изменения температуры удельное сопротивление металла увеличивается с температурой практически линейно:

где ρ T - удельное сопротивление при температуре Т , ρ 0 - удельное сопротивление при стандартной температуре Т 0 , а α - температурный коэффициент сопротивления (ТКС). Значения а приведены в табл. 26.2. Заметим, что у полупроводников ТКС может быть отрицательным. Это очевидно, поскольку с ростом температуры увеличивается число свободных электронов и они улучшают проводящие свойства вещества. Таким образом, сопротивление полупроводника с повышением температуры может уменьшаться (хотя и не всегда).

Значения а зависят от температуры, поэтому следует обращать внимание на диапазон температур, в пределах которого справедливо данное значение (например, по справочнику физических величин). Если диапазон изменения температуры окажется широким, то линейность будет нарушаться, и вместо (26.6) надо использовать выражение, содержащее члены, которые зависят от второй и третьей степеней температуры:

ρ T = ρ 0 (1+αТ + + βТ 2 + γТ 3),

где коэффициенты β и γ обычно очень малы (мы положили Т 0 = 0°С), но при больших Т вклад этих членов становится существенным.

При очень низких температурах удельное сопротивление некоторых металлов, а также сплавов и соединений падает в пределах точности современных измерений до нуля. Это свойство называют сверхпроводимостью; впервые его наблюдал нидерландский физик Гейке Камер-линг-Оннес (1853-1926) в 1911 г. при охлаждении ртути ниже 4,2 К. При этой температуре электрическое сопротивление ртути внезапно падало до нуля.

Сверхпроводники переходят в сверхпроводящее состояние ниже температуры перехода, составляющей обычно несколько градусов Кельвина (чуть выше абсолютного нуля). Наблюдался электрический ток в сверхпроводящем кольце, который практически не ослабевал в отсутствие напряжения в течение нескольких лет.

Одним из самых востребованных металлов в отраслях промышленности является медь. Наиболее широкое распространение она получила в электрике и электронике. Чаще всего ее применяют при изготовлении обмоток для электродвигателей и трансформаторов. Основная причина использования именно этого материала заключается в том, что медь обладает самым низким из существующих в настоящий момент материалов удельным электрическим сопротивлением. Пока не появится новый материал с более низкой величиной этого показателя, можно с уверенностью говорить о том, что замены у меди не будет.

Говоря про медь, необходимо сказать, что еще на заре электрической эры она стала использоваться в производстве электротехники. Применять ее стали во многом по причине уникальных свойств, которыми обладает этот сплав. Сам по себе он представляет материал, отличающийся высокими свойствами в плане пластичности и обладающий хорошей ковкостью.

Наряду с теплопроводностью меди, одним из самых главных ее достоинств является высокая электропроводность. Именно благодаря этому свойству медь и получила широкое распространение в энергетических установках , в которых она выступает в качестве универсального проводника. Наиболее ценным материалом является электролитическая медь, обладающая высокой степенью чистоты -99,95%. Благодаря этому материалу появляется возможность для производства кабелей.

Плюсы использования электролитической меди

Применение электролитической меди позволяет добиться следующего:

  • Обеспечить высокую электропроводность;
  • Добиться отличной способности к уложению;
  • Обеспечить высокую степень пластичности.

Сферы применения

Кабельная продукция, изготавливаемая из электролитической меди, получила широкое распространение в различных отраслях. Чаще всего она применяется в следующих сферах:

  • электроиндустрия;
  • электроприборы;
  • автомобилестроение;
  • производство компьютерной техники.

Чему равно удельное сопротивление?

Чтобы понимать, что собой представляет медь и его характеристики, необходимо разобраться с основным параметром этого металла - удельным сопротивлением. Его следует знать и использовать при выполнении расчетов.

Под удельным сопротивлением принято понимать физическую величину, которая характеризуется как способность металла проводить электрический ток.

Знать эту величину необходимо еще и для того, чтобы правильно произвести расчет электрического сопротивления проводника. При расчетах также ориентируются на его геометрические размеры. При проведении расчетов используют следующую формулу:

Это формула многим хорошо знакома. Пользуясь ею, можно легко рассчитать сопротивление медного кабеля , ориентируясь только на характеристики электрической сети . Она позволяет вычислить мощность, которая неэффективно расходуется на нагрев сердечника кабеля. Кроме этого, подобная формула позволяет выполнить расчеты сопротивления любого кабеля. При этом не имеет значения, какой материал использовался для изготовления кабеля - медь, алюминий или какой-то другой сплав.

Такой параметр, как удельное электрическое сопротивление измеряется в Ом*мм2/м. Этот показатель для медной проводки, проложенной в квартире, составляет 0,0175 Ом*мм2/м. Если попробовать поискать альтернативу меди - материал, который можно было бы использовать вместо нее, то единственным подходящим можно считать только серебро , у которого удельное сопротивление составляет 0,016 Ом*мм2/м. Однако необходимо обращать внимание при выборе материала не только на удельное сопротивление, но еще и на обратную проводимость. Эта величина измеряется в Сименсах (См).

Сименс = 1/ Ом.

У меди любого веса этот параметр состав равен 58 100 000 См/м. Что касается серебра, то величина обратной проводимости у нее равна 62 500 000 См/м.

В нашем мире высоких технологий, когда в каждом доме имеется большое количество электротехнических устройств и установок, значение такого материала, как медь просто неоценимо. Этот материал используют для изготовления проводки , без которой не обходится ни одно помещение. Если бы меди не существовало, тогда человеку пришлось использовать провода из других доступных материалов, например, из алюминия. Однако в этом случае пришлось бы столкнуться с одной проблемой. Все дело в том, что у этого материала удельная проводимость гораздо меньше, чем у медных проводников.

Удельное сопротивление

Использование материалов с низкой электро- и теплопроводностью любого веса ведет к большим потерям электроэнергии. А это влияет на потерю мощности у используемого оборудования. Большинство специалистов в качестве основного материала для изготовления проводов с изоляцией называют медь. Она является главным материалом, из которого изготавливаются отдельные элементы оборудования, работающего от электрического тока.

  • Платы, устанавливаемые в компьютерах, оснащаются протравленными медными дорожками.
  • Медь также используется для изготовления самых разных элементов, применяемых в электронных устройствах.
  • В трансформаторах и электродвигателях она представлена обмоткой, которая изготавливается из этого материала.

Можно не сомневаться, что расширение сфер применения этого материала будет происходить с дальнейшим развитием технического прогресса. Хотя, кроме меди, существуют и другие материалы, но все же конструктора при создании оборудования и различных установок используют медь. Главная причина востребованности этого материала заключается в хорошей электрической и теплопроводности этого металла, которую он обеспечивает в условиях комнатной температуры.

Температурный коэффициент сопротивления

Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

ΔR = α*R*ΔT, где α - температурный коэффициент электрического сопротивления.

Заключение

Медь - материал, который широко применяют в электронике. Его используют не только в обмотке и схемах, но и в качестве металла для изготовления кабельной продукции. Чтобы техника и оборудование работали эффективно, необходимо правильно рассчитать удельное сопротивление проводки , прокладываемой в квартире. Для этого существует определенная формула. Зная её, можно произвести расчет, который позволяет узнать оптимальную величину сечения кабеля. В этом случае можно избежать потери мощности оборудования и обеспечить эффективность его использования.

Часто в электротехнической литературе встречается понятие "удельное меди ". И невольно задаешься вопросом, а что же это такое?

Понятие «сопротивление» для любого проводника непрерывно связано с пониманием процесса протекания по нему электрического тока. Так как речь в статье пойдет о сопротивлении меди, то и рассматривать нам следует ее свойства и свойства металлов.

Когда речь идет о металлах, то невольно вспоминаешь, что все они имеют определенное строение - кристаллическую решетку. Атомы находятся в узлах такой решетки и совершают относительно них Расстояния и местоположение этих узлов зависит от сил взаимодействия атомов друг с другом (отталкивания и притяжения), и различны для разных металлов. А вокруг атомов по своим орбитам вращаются электроны. Их удерживает на орбите тоже равновесие сил. Только это к атому и центробежная. Представили себе картинку? Можно назвать ее, в некотором плане, статической.

А теперь добавим динамики. На кусок меди начинает действовать электрическое поле. Что же происходит внутри проводника? Электроны, сорванные силой электрического поля со своих орбит, устремляются к его положительному полюсу. Вот Вам и направленное движение электронов, а вернее, электрический ток. Но на пути своего движения они натыкаются на атомы в узлах кристаллической решетки и электроны, еще продолжающие вращаться вокруг своих атомов. При этом они теряют свою энергию и изменяют направление движения. Теперь становится немного понятнее смысл фразы «сопротивление проводника»? Это атомы решетки и вращающиеся вокруг них электроны оказывают сопротивление направленному движению электронов, сорванных электрическим полем со своих орбит. Но понятие сопротивление проводника можно назвать общей характеристикой. Более индивидуально характеризует каждый проводник удельное сопротивление. Меди в том числе. Эта характеристика индивидуальна для каждого металла, поскольку напрямую зависит только от формы и размеров кристаллической решетки и, в некоторой мере, от температуры. При повышении температуры проводника атомы совершают более интенсивное колебание в узлах решетки. А электроны вращаются вокруг узлов с большей скоростью и на орбитах большего радиуса. И, естественно, что свободные электроны при движении встречают и большее сопротивление . Такова физика процесса.

Для нужд электротехнической сферы налажено широкое производство таких металлов, как алюминий и медь, удельное сопротивление которых достаточно мало. Из этих металлов изготавливают кабели и различного типа провода, которые широко используются в строительстве, для производства бытовых приборов , изготовления шин, обмоток трансформаторов и других электротехнических изделий.

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение - 1 мм2. То же самое представляет собой и удельное сопротивление меди - уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм2/1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника. Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.

Одним из самых востребованных металлов в отраслях промышленности является медь. Наиболее широкое распространение она получила в электрике и электронике. Чаще всего ее применяют при изготовлении обмоток для электродвигателей и трансформаторов. Основная причина использования именно этого материала заключается в том, что медь обладает самым низким из существующих в настоящий момент материалов удельным электрическим сопротивлением. Пока не появится новый материал с более низкой величиной этого показателя, можно с уверенностью говорить о том, что замены у меди не будет.

Общая характеристика меди

Говоря про медь, необходимо сказать, что еще на заре электрической эры она стала использоваться в производстве электротехники. Применять ее стали во многом по причине уникальных свойств, которыми обладает этот сплав. Сам по себе он представляет материал, отличающийся высокими свойствами в плане пластичности и обладающий хорошей ковкостью.

Наряду с теплопроводностью меди, одним из самых главных ее достоинств является высокая электропроводность. Именно благодаря этому свойству медь и получила широкое распространение в энергетических установках , в которых она выступает в качестве универсального проводника. Наиболее ценным материалом является электролитическая медь, обладающая высокой степенью чистоты -99,95%. Благодаря этому материалу появляется возможность для производства кабелей.

Плюсы использования электролитической меди

Применение электролитической меди позволяет добиться следующего:

  • Обеспечить высокую электропроводность;
  • Добиться отличной способности к уложению;
  • Обеспечить высокую степень пластичности.

Сферы применения

Кабельная продукция, изготавливаемая из электролитической меди, получила широкое распространение в различных отраслях. Чаще всего она применяется в следующих сферах:

  • электроиндустрия;
  • электроприборы;
  • автомобилестроение;
  • производство компьютерной техники.

Чему равно удельное сопротивление?

Чтобы понимать, что собой представляет медь и его характеристики, необходимо разобраться с основным параметром этого металла - удельным сопротивлением. Его следует знать и использовать при выполнении расчетов.

Под удельным сопротивлением принято понимать физическую величину, которая характеризуется как способность металла проводить электрический ток.

Знать эту величину необходимо еще и для того, чтобы правильно произвести расчет электрического сопротивления проводника. При расчетах также ориентируются на его геометрические размеры. При проведении расчетов используют следующую формулу:

Это формула многим хорошо знакома. Пользуясь ею, можно легко рассчитать сопротивление медного кабеля, ориентируясь только на характеристики электрической сети. Она позволяет вычислить мощность, которая неэффективно расходуется на нагрев сердечника кабеля. Кроме этого, подобная формула позволяет выполнить расчеты сопротивления любого кабеля. При этом не имеет значения, какой материал использовался для изготовления кабеля - медь, алюминий или какой-то другой сплав.

Такой параметр, как удельное электрическое сопротивление измеряется в Ом*мм2/м. Этот показатель для медной проводки, проложенной в квартире, составляет 0,0175 Ом*мм2/м. Если попробовать поискать альтернативу меди - материал, который можно было бы использовать вместо нее, то единственным подходящим можно считать только серебро , у которого удельное сопротивление составляет 0,016 Ом*мм2/м. Однако необходимо обращать внимание при выборе материала не только на удельное сопротивление, но еще и на обратную проводимость. Эта величина измеряется в Сименсах (См).

Сименс = 1/ Ом.

У меди любого веса этот параметр состав равен 58 100 000 См/м. Что касается серебра, то величина обратной проводимости у нее равна 62 500 000 См/м.

В нашем мире высоких технологий, когда в каждом доме имеется большое количество электротехнических устройств и установок, значение такого материала, как медь просто неоценимо. Этот материал используют для изготовления проводки , без которой не обходится ни одно помещение. Если бы меди не существовало, тогда человеку пришлось использовать провода из других доступных материалов, например, из алюминия. Однако в этом случае пришлось бы столкнуться с одной проблемой. Все дело в том, что у этого материала удельная проводимость гораздо меньше, чем у медных проводников.

Удельное сопротивление

Использование материалов с низкой электро- и теплопроводностью любого веса ведет к большим потерям электроэнергии. А это влияет на потерю мощности у используемого оборудования. Большинство специалистов в качестве основного материала для изготовления проводов с изоляцией называют медь. Она является главным материалом, из которого изготавливаются отдельные элементы оборудования, работающего от электрического тока.

  • Платы, устанавливаемые в компьютерах, оснащаются протравленными медными дорожками.
  • Медь также используется для изготовления самых разных элементов, применяемых в электронных устройствах.
  • В трансформаторах и электродвигателях она представлена обмоткой, которая изготавливается из этого материала.

Можно не сомневаться, что расширение сфер применения этого материала будет происходить с дальнейшим развитием технического прогресса. Хотя, кроме меди, существуют и другие материалы, но все же конструктора при создании оборудования и различных установок используют медь. Главная причина востребованности этого материала заключается в хорошей электрической и теплопроводности этого металла, которую он обеспечивает в условиях комнатной температуры.

Температурный коэффициент сопротивления

Свойством уменьшения проводимости с повышением температуры обладают все металлы с любой теплопроводностью. При понижении температуры проводимость возрастает. Особенно интересным специалисты называют свойство уменьшения сопротивления с понижением температуры. Ведь в этом случае, когда в комнате температура снижается до определенной величины, у проводника может исчезнуть электрическое сопротивление и он перейдет в класс сверхпроводников.

Для того чтобы определить показатель сопротивления конкретного проводника определенного веса в условиях комнатной температуры, существует коэффициент критического сопротивления. Он представляет собой величину, которая показывает изменение сопротивления участка цепи при изменении температуры на один Кельвин. Для выполнения расчета электрического сопротивления медного проводника в определенном временном промежутке используют следующую формулу:

ΔR = α*R*ΔT, где α - температурный коэффициент электрического сопротивления.

Заключение

Медь - материал, который широко применяют в электронике. Его используют не только в обмотке и схемах, но и в качестве металла для изготовления кабельной продукции. Чтобы техника и оборудование работали эффективно, необходимо правильно рассчитать удельное сопротивление проводки , прокладываемой в квартире. Для этого существует определенная формула. Зная её, можно произвести расчет, который позволяет узнать оптимальную величину сечения кабеля. В этом случае можно избежать потери мощности оборудования и обеспечить эффективность его использования.