Ал геб ра и че ские выражения. Числовые и алгебраические выражения

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

Решим задачу.

Ученик купил тетрадей по 2 коп. за тетрадь и учебник за 8 коп. Сколько заплатил он за всю покупку?

Чтобы узнать стоимость всех тетрадей, надо цену одной тетради умножить на число тетрадей. Значит, стоимость тетрадей будет равна копейкам.

Стоимость же всей покупки будет равна

Заметим, что перед множителем, выраженным буквой, знак умножения принято опускать, он просто подразумевается. Поэтому предыдущую запись можно представить в таком виде:

Получили формулу решения задачи. Она показывает, что для решения задачи надо цену тетради умножить на число купленных тетрадей и к произведению прибавить стоимость учебника.

Вместо слова «формула» для подобных записей употребляют также название «алгебраическое выражение».

Алгебраическим выражением называется запись, состоящая из чисел, обозначенных цифрами или буквами и соединённых знаками действий.

Для краткости вместо «алгебраическое выражение» говорят иногда просто «выражение».

Приведём ещё примеры алгебраических выражений:

Из этих примеров видим, что алгебраическое выражение может состоять только из одной буквы, а может совсем не содержать чисел, обозначенных буквами (два последних примера). В этом последнем случае выражение называется также арифметическим выражением.

Дадим в полученном нами алгебраическом выражении букве значение 5 (значит, ученик купил 5 тетрадей). Подставив вместо число 5, получим:

что равно 18 (то есть 18 коп.).

Число 18 является значением данного алгебраического выражения при

Значением алгебраического выражения называется число, которое получится, если в это выражение подставить вместо букв данные их значения и произвести над числами указанные действия.

Например, мы можем сказать: значение выражения при равно 12 (12 коп.).

Значение етого же выражения при равно 14 (14 коп.) и т. д.

Мы видим, что значение алгебраического выражения вависит от того, какие значения мы дадим входящим в него буквам. Правда, иногда бывает, что значение выражения не вависит от вначений входящих в него букв. Например, выражение равно 6 при любых значениях а.

Найдём в виде примера числовые значения выражения при различных значениях букв a и b.

Подставим в данное выражение вместо а число 4, а вместо 6 число 2 и вычислим полученное выражение:

Итак, при значение выражения За равно 16.

Таким же образом найдём, что при значение выражения равно 29, при и оно равно 2 и т. д.

Результаты вычислений можно записать в виде таблицы, которая наглядно покажет, как изменяется значение выражения в зависимости от изменения значений входящих в него букв.

Составим таблицу из трёх строк. В первой строке будем записывать значения а, во второй - значения 6 и

в третьей - значения выражения Получим такую таблицу.

Уроки алгебры знакомят нас с различными видами выражений. По мере поступления нового материала выражения усложняются. При знакомстве со степенями они постепенно добавляются в выражение, усложняя его. Также происходит с дробями и другими выражениями.

Чтобы изучение материала было максимально удобным, это производится по определенным названиям для того, чтобы можно было их выделить. Данная статья даст полный обзор всех основных школьных алгебраических выражений.

Одночлены и многочлены

Выражения одночлены и многочлены изучаются в школьной программе, начиная с 7 класса. В учебники были даны определения такого вида.

Определение 1

Одночлены – это числа, переменные, их степени с натуральным показателем, любые произведения, сделанные с их помощью.

Определение 2

Многочленами называют сумму одночленов.

Если взять, к примеру число 5 , переменную x , степень z 7 ,тогда произведения вида 5 · x и 7 · x · 2 · 7 · z 7 считаются одночленами. Когда берется сумма одночленов вида 5 + x или z 7 + 7 + 7 · x · 2 · 7 · z 7 , тогда получаем многочлен.

Чтобы отличать одночлен от многочлена, обращают внимание на степени и их определения. Немаловажно понятие коэффициента. При приведении подобных слагаемых их разделяют на свободный член многочлена или старший коэффициент.

Над одночленами и многочленами чаще всего выполняются какие-то действия, после которых выражение приводится к вижу одночлена. Выполняется сложение, вычитание, умножение и деление, опираясь на алгоритм для выполнения действий с многочленами.

Когда имеется одна переменная, не исключено деление многочлена на многочлен, которые представляются в виде произведения. Такое действие получило название разложение многочлена на множители.

Рациональные (алгебраические) дроби

Понятие рациональные дроби изучаются в 8 классе средней школы. Некоторые авторы называют их алгебраическими дробями.

Определение 3

Рациональной алгебраической дробью называют дробь, в которой на месте числителя и знаменателя выступают многочлены или одночлены, числа.

Рассмотрим на примере записи рациональных дробей типа 3 x + 2 , 2 · a + 3 · b 4 , x 2 + 1 x 2 - 2 и 2 2 · x + - 5 1 5 · y 3 · x x 2 + 4 . Опираясь на определение, можно сказать, что каждая дробь считается рациональной дробью.

Алгебраические дроби можно складывать, вычитать, умножать, делить, возводить в степень. Подробнее это рассматривается в разделе действий с алгебраическими дробями. Если необходимо преобразовать дробь, нередко пользуются свойством сокращения и приведения к общему знаменателю.

Рациональные выражения

В школьном курсе изучается понятие иррациональных дробей, так как необходима работа с рациональными выражениями.

Определение 4

Рациональные выражения считаются числовыми и буквенными выражениями, где используются рациональные числа и буквы со сложением, вычитанием, умножением, делением, возведением в целую степень.

Рациональные выражения могут не иметь знаков, принадлежащих функции, которые приводят к иррациональности. Рациональные выражения не содержат корней, степеней с дробными иррациональными показателями, степеней с переменными в показателе, логарифмических выражений, тригонометрических функций и так далее.

Основываясь на правиле, приведенном выше, приведем примеры рациональных выражений. Из выше сказанного определения имеем, что как числовое выражение вида 1 2 + 3 4 , так и 5 , 2 + (- 0 , 1) 2 · 2 - 3 5 - 4 3 4 + 2: 12 · 7 - 1 + 7 - 2 2 3 3 - 2 1 + 0 , 3 считаются рациональными. Выражения, содержащие буквенные обозначения, также относят к рациональным a 2 + b 2 3 · a - 0 , 5 · b , с переменными вида a · x 2 + b · x + c и x 2 + x y - y 2 1 2 x - 1 .

Все рациональные выражения подразделяют на целые и дробные.

Целые рациональные выражения

Определение 5

Целые рациональные выражения – это такие выражения, не содержащие деления на выражения с переменными отрицательной степени.

Из определения имеем, что целое рациональное выражение – это и выражение, содержащее буквы, например, а + 1 , выражение, содержащее несколько переменных, например, x 2 · y 3 − z + 3 2 и a + b 3 .

Выражения вида x: (y − 1) и 2 x + 1 x 2 - 2 x + 7 - 4 не могут быть целыми рациональными, так как имеют деление на выражение с переменными.

Дробные рациональные выражения

Определение 6

Дробное рациональное выражение – это выражение, которое содержит деление на выражение с переменными отрицательной степени.

Из определения следует, что дробные рациональные выражения могу быть 1: x , 5 x 3 - y 3 + x + x 2 и 3 5 7 - a - 1 + a 2 - (a + 1) (a - 2) 2 .

Если рассматривать выражения такого типа (2 · x − x 2) : 4 и a 2 2 - b 3 3 + c 4 + 1 4 , 2 , то дробными рациональными они не считаются, так как не имеют в знаменателе выражений с переменными.

Выражения со степенями

Определение 7

Выражения, которые содержат степени в любой части записи, называют выражениями со степенями или степенными выражениями .

Для понятия приведем пример такого выражения. В них могут отсутствовать переменные, например, 2 3 , 32 - 1 5 + 1 , 5 3 , 5 · 5 - 2 5 - 1 , 5 . Также характерны степенные выражения вида 3 · x 3 · x - 1 + 3 x , x · y 2 1 3 . Для того, чтобы решить их, необходимо выполнять некоторые преобразования.

Иррациональные выражения, выражения с корнями

Корень, имеющий место быть в выражении, дает ему иное название. Их называют иррациональными.

Определение 8

Иррациональными выражениями называют выражения, которые имеют в записи знаки корней.

Из определения видно, что это выражения вида 64 , x - 1 4 3 + 3 3 , 2 + 1 2 - 1 - 2 + 3 2 , a + 1 a 1 2 + 2 , x · y , 3 x + 1 + 6 x 2 + 5 x и x + 6 + x - 2 3 + 1 4 x 2 3 + 3 - 1 1 3 . В каждом из них имеется хотя бы один значок корня. Корни и степени связаны, поэтому можно видеть такие записи выражений, как x 7 3 - 2 5 , n 4 8 · m 3 5: 4 · m 2 n + 3 .

Тригонометрические выражения

Определение 9

Тригонометрическое выражение – это выражения с содержанием sin , cos , tg и ctg и их обратные – arcsin , arccos , arctg и arcctg .

Примеры тригонометрических функций очевидны: sin π 4 · cos π 6 cos 6 x - 1 и 2 sin x · t g 2 x + 3 , 4 3 · t g π - arcsin - 3 5 .

Для работы с такими функциями необходимо пользоваться свойствами, основными формулами прямых и обратных функций. Статья преобразование тригонометрических функций раскроет этот вопрос подробней.

Логарифмические выражения

После знакомства с логарифмами можно говорить о сложных логарифмических выражениях.

Определение 10

Выражения, которые имеют логарифмы, называют логарифмическими .

Примером таких функций могут быть log 3 9 + ln e , log 2 (4 · a · b) , log 7 2 (x · 7 3) log 3 2 x - 3 5 + log x 2 + 1 (x 4 + 2) .

Можно встретить такие выражения, где есть степени и логарифмы. Это итак понятно, так как из определения логарифма следует, что это является показателем степени. Тогда получаем выражения вида x l g x - 10 , log 3 3 x 2 + 2 x - 3 , log x + 1 (x 2 + 2 x + 1) 5 x - 2 .

Для углубления изучения материала, следует обратиться к материалу о преобразовании логарифмических выражений.

Дроби

Существуют выражения особого вида, которые получили название дроби. Так как они имеют числитель и знаменатель, то они могут содержать не просто числовые значения, а также выражения любого типа. Рассмотрим определение дроби.

Определение 11

Дробью называют такое выражение, имеющее числитель и знаменатель, в которых имеются как числовые, так и буквенные обозначения или выражения.

Примеры дробей, которые имеют числа в числителе и знаменателе, выглядят так 1 4 , 2 , 2 - 6 2 7 , π 2 , - e π , (− 15) (− 2) . Числитель и знаменатель может содержать как численные, так и буквенные выражения вида (a + 1) 3 , (a + b + c) (a 2 + b 2) , 1 3 + 1 - 1 3 - 1 1 1 + 1 1 + 1 5 , cos 2 α - sin 2 α 1 + 3 t g α , 2 + ln 5 ln x .

Хотя такие выражения, как 2 5 − 3 7 , x x 2 + 1: 5 не являются дробями, однако, имеют дробь в своей записи.

Выражение общего вида

Старшие классы рассматривают задачи повышенной трудности, где собраны все комбинированные задания группы С по ЕГЭ. Эти выражения отличаются особой сложностью и различными комбинациями корней, логарифмов, степеней, тригонометрических функций. Это задания типа x 2 - 1 · sin x + π 3 или sin a r c t g x - a · x 1 + x 2 .

Их вид говорит о том, что можно отнести к любому из вышеперечисленных видов. Чаще всего их не относят ни к какому, так как они имеют специфичное комбинированное решение. Их рассматривают как выражения общего вида, причем для описания не используются дополнительные уточнения или выражения.

При решении такого алгебраического выражения всегда необходимо обращать внимание на его запись, наличие дроби, степеней или дополнительных выражений. Это нужно для того, чтобы точно определиться со способом его решения. Если нет уверенности в его названии, то рекомендуется называть его выражением общего типа и решать, согласно выше написанному алгоритму.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Свойства степеней:

(1) a m ⋅ a n = a m + n

Пример:

$${a^2} \cdot {a^5} = {a^7}$$ (2) a m a n = a m − n

Пример:

$$\frac{{{a^4}}}{{{a^3}}} = {a^{4 — 3}} = {a^1} = a$$ (3) (a ⋅ b) n = a n ⋅ b n

Пример:

$${(a \cdot b)^3} = {a^3} \cdot {b^3}$$ (4) (a b) n = a n b n

Пример:

$${\left({\frac{a}{b}} \right)^8} = \frac{{{a^8}}}{{{b^8}}}$$ (5) (a m) n = a m ⋅ n

Пример:

$${({a^2})^5} = {a^{2 \cdot 5}} = {a^{10}}$$ (6) a − n = 1 a n

Примеры:

$${a^{ — 2}} = \frac{1}{{{a^2}}};\;\;\;\;{a^{ — 1}} = \frac{1}{{{a^1}}} = \frac{1}{a}.$$

Свойства квадратного корня:

(1) a b = a ⋅ b , при a ≥ 0 , b ≥ 0

Пример:

18 = 9 ⋅ 2 = 9 ⋅ 2 = 3 2

(2) a b = a b , при a ≥ 0 , b > 0

Пример:

4 81 = 4 81 = 2 9

(3) (a) 2 = a , при a ≥ 0

Пример:

(4) a 2 = | a | при любом a

Примеры:

(− 3) 2 = | − 3 | = 3 , 4 2 = | 4 | = 4 .

Рациональные и иррациональные числа

Рациональные числа – числа, которые можно представить в виде обыкновенной дроби m n где m — целое число (ℤ = 0, ± 1, ± 2, ± 3 …), n — натуральное (ℕ = 1,   2,   3,   4 …).

Примеры рациональных чисел:

1 2 ;   − 9 4 ;   0,3333 … = 1 3 ;   8 ;   − 1236.

Иррациональные числа – числа, которые невозможно представить в виде обыкновенной дроби m n , это бесконечные непериодические десятичные дроби.

Примеры иррациональных чисел:

e = 2,71828182845…

π = 3,1415926…

2 = 1,414213562…

3 = 1,7320508075…

Проще говоря, иррациональные числа – это числа, содержащие в своей записи знак квадратного корня. Но не всё так просто. Некоторые рациональные числа маскируются под иррациональные, например, число 4 содержит в своей записи знак квадратного корня, но мы прекрасно понимаем, что можно упростить форму записи 4 = 2 . Это означает, что число 4 есть число рациональное.

Аналогично, число 4 81 = 4 81 = 2 9 есть число рациональное.

В некоторых задачах требуется определить, какие из чисел являются рациональными, а какие иррациональными. Задание сводится к тому, чтобы понять, какие числа иррациональные, а какие под них маскируются. Для этого нужно уметь совершать операции вынесения множителя из-под знака квадратного корня и внесения множителя под знак корня.

Внесение и вынесение множителя за знак квадратного корня

При помощи вынесения множителя за знак квадратного корня можно ощутимо упростить некоторые математические выражения.

Пример:

Упростить выражение 2 8 2 .

1 способ (вынесение множителя из-под знака корня): 2 8 2 = 2 4 ⋅ 2 2 = 2 4 ⋅ 2 2 = 2 ⋅ 2 = 4

2 способ (внесение множителя под знак корня): 2 8 2 = 2 2 8 2 = 4 ⋅ 8 2 = 4 ⋅ 8 2 = 16 = 4

Формулы сокращенного умножения (ФСУ)

Квадрат суммы

(1) (a + b) 2 = a 2 + 2 a b + b 2

Пример:

(3 x + 4 y) 2 = (3 x) 2 + 2 ⋅ 3 x ⋅ 4 y + (4 y) 2 = 9 x 2 + 24 x y + 16 y 2

Квадрат разности

(2) (a − b) 2 = a 2 − 2 a b + b 2

Пример:

(5 x − 2 y) 2 = (5 x) 2 − 2 ⋅ 5 x ⋅ 2 y + (2 y) 2 = 25 x 2 − 20 x y + 4 y 2

Сумма квадратов не раскладывается на множители

a 2 + b 2 ≠

Разность квадратов

(3) a 2 − b 2 = (a − b) (a + b)

Пример:

25 x 2 − 4 y 2 = (5 x) 2 − (2 y) 2 = (5 x − 2 y) (5 x + 2 y)

Куб суммы

(4) (a + b) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3

Пример:

(x + 3 y) 3 = (x) 3 + 3 ⋅ (x) 2 ⋅ (3 y) + 3 ⋅ (x) ⋅ (3 y) 2 + (3 y) 3 = x 3 + 3 ⋅ x 2 ⋅ 3 y + 3 ⋅ x ⋅ 9 y 2 + 27 y 3 = x 3 + 9 x 2 y + 27 x y 2 + 27 y 3

Куб разности

(5) (a − b) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3

Пример:

(x 2 − 2 y) 3 = (x 2) 3 − 3 ⋅ (x 2) 2 ⋅ (2 y) + 3 ⋅ (x 2) ⋅ (2 y) 2 − (2 y) 3 = x 2 ⋅ 3 − 3 ⋅ x 2 ⋅ 2 ⋅ 2 y + 3 ⋅ x 2 ⋅ 4 y 2 − 8 y 3 = x 6 − 6 x 4 y + 12 x 2 y 2 − 8 y 3

Сумма кубов

(6) a 3 + b 3 = (a + b) (a 2 − a b + b 2)

Пример:

8 + x 3 = 2 3 + x 3 = (2 + x) (2 2 − 2 ⋅ x + x 2) = (x + 2) (4 − 2 x + x 2)

Разность кубов

(7) a 3 − b 3 = (a − b) (a 2 + a b + b 2)

Пример:

x 6 − 27 y 3 = (x 2) 3 − (3 y) 3 = (x 2 − 3 y) ((x 2) 2 + (x 2) (3 y) + (3 y) 2) = (x 2 − 3 y) (x 4 + 3 x 2 y + 9 y 2)

Стандартный вид числа

Для того, чтобы понять, как приводить произвольное рациональное число к стандартному виду, надо знать, что такое первая значащая цифра числа.

Первой значащей цифрой числа называют его первую слева отличную от нуля цифру.

Примеры:
2 5 ; 3 , 05 ; 0 , 1 43 ; 0 , 00 1 2 . Красным цветом выделена первая значащая цифра.

Для того, чтобы привести число к стандартному виду, надо:

  1. Сдвинуть запятую так, чтобы она была сразу за первой значащей цифрой.
  2. Полученное число умножить на 10 n , где n — число, которое определяется следующим образом:
  3. n > 0 , если запятая сдвигалась влево (умножение на 10 n , указывает, что на самом деле запятая должна стоять правее);
  4. n < 0 , если запятая сдвигалась вправо (умножение на 10 n , указывает, что на самом деле запятая должна стоять левее);
  5. абсолютная величина числа n равна количеству разрядов, на которое была сдвинута запятая.

Примеры:

25 = 2 , 5 ← ​ , = 2,5 ⋅ 10 1

Запятая сдвинулась влево на 1 разряд. Так как сдвиг запятой осуществляется влево, степень положительная.

Уже приведено к стандартному виду, делать ничего с ним не нужно. Можно записать, как 3,05 ⋅ 10 0 , но поскольку 10 0 = 1 , оставляем число в первоначальном виде.

0,143 = 0, 1 → , 43 = 1,43 ⋅ 10 − 1

Запятая сдвинулась вправо на 1 разряд. Так как сдвиг запятой осуществляется вправо, степень отрицательная.

− 0,0012 = − 0, 0 → 0 → 1 → , 2 = − 1,2 ⋅ 10 − 3

Запятая сдвинулась вправо на три разряда. Так как сдвиг запятой осуществляется вправо, степень отрицательная.

Алгебраические выражения начинают изучать в 7 классе. Они обладают рядом свойств и используются в решении задач. Изучим эту тему подробнее и рассмотрим пример решения задачи.

Определение понятия

Какие выражения называют алгебраическими? Это математическая запись, составленная из цифр, букв и знаков арифметических действий. Наличие букв – это основное отличие числовых и алгебраических выражений. Примеры:

  • 4а+5;
  • 6b-8;
  • 5с:6*(8+5).

Буква в алгебраических выражений обозначает какое-либо число. Поэтому она называется переменной – в первом примере это буква а, во втором – b, а в третьем – с. Само алгебраическое выражение еще называют выражением с переменной .

Значение выражения

Значение алгебраического выражения – это число, получаемое в результате выполнения всех арифметических действий, которые указаны в этом выражении. Но, чтобы его получить, буквы необходимо заменить числами. Поэтому в примерах всегда указывают, какое число соответствует букве. Рассмотрим, как найти значение выражения 8а-14*(5-а), если а=3.

Подставим вместо буквы а цифру 3. Получаем следующую запись: 8*3-14*(5-3).

Как и в числовых выражениях, решение алгебраического выражения проводится по правилам выполнения арифметических действий. Решим все по порядку.

  • 5-3=2.
  • 8*3=24.
  • 14*2=28.
  • 24-28=-4.

Таким образом, значение выражения 8а-14*(5-а) при а=3 равно -4.

Значение переменной называют допустимым, если при нем выражение имеет смысл, то есть возможно найти его решение.

Пример допустимой переменной для выражения 5:2а – это цифра 1. Подставив ее в выражение, получаем 5:2*1=2,5.

Недопустимая переменная для данного выражения – это 0. Если подставить ноль в выражение, получаем 5:2*0, то есть 5:0. На ноль делить нельзя, значит, выражение не имеет смысла.

Тождественные выражения

Если два выражения при любых значениях входящих в их состав переменных оказываются равны, их называют тождественными .
Пример тождественных выражений :
4(а+с) и 4а+4с.
Какие бы значения ни принимали буквы а и с, выражения всегда окажутся равны. Любое выражение можно заменить другим, тождественным ему. Этот процесс называют тождественным преобразованием.

Пример тождественного преобразования .
4*(5а+14с) – данное выражение можно заменить тождественным, применив математический закон умножения. Чтобы умножить число на сумму двух чисел, нужно это число умножить на каждое слагаемое и сложить полученные результаты.

  • 4*5а=20а.
  • 4*14с=64с.
  • 20а+64с.

Таким образом, выражению 4*(5а+14с) является тождественным 20а+64с.

Число, стоящее в алгебраическом выражении перед буквенной переменной, называется коэффициентом. Коэффициент и переменная – это множители.

Решение задач

Алгебраические выражения используют для решения задач и уравнений.
Рассмотрим задачу. Петя придумал число. Для того, чтобы его отгадал одноклассник Саша, Петя сказал ему: сначала я прибавил к числу 7, затем вычел из него 5 и умножил на 2. В результате я получил число 28. Какое число я загадал?

Для решения задачи нужно загаданное число обозначить буквой а, а затем произвести все указанные действия с ним.

  • (а+7)-5.
  • ((а+7)-5)*2=28.

Теперь решим полученное уравнение.

Петя загадал число 12.

Что мы узнали?

Алгебраическое выражение – запись, составленная из букв, цифр и знаков арифметических действий. Каждое выражение имеет значение, которое находят путем выполнения всех арифметических действий в выражении. Буква в алгебраическом выражении называется переменной, а число перед ней – коэффициентом. Алгебраические выражения используют для решения задач.