Взаимное расположение прямой и окружности двух окружностей. Учебный лист по геометрии "Взаимное расположение прямой и окружности

В данном уроке мы изучим различные варианты взаимодействия окружности и прямой. Напомним определения, широко используемые в этом случае. Прямой называется неопределяемая аксиоматическая геометрическая фигура, представляющая собой ровную прямую линию без начала и конца. Окружностью именуется множество точек, равноудаленно лежащих от общего центра (центра окружности), соединенных общей кривой. Иначе говоря, окружность - это правильная замкнутая кривая, обрисовывающая максимально возможную площадь.

Собственно говоря, существуют три варианта взаимного расположения окружности и прямой. В первом случае, прямая пролегает полностью вне заданной окружности, нигде её не пересекая и не затрагивая. Если же прямая затрагивает ровно одну определенную точку из множества на окружности, то эта линия именуется касательной, по отношению к данной окружности.

Касательная имеет одно важнейшее свойство. Радиус, проведенный к точке касания, является перпендикуляром к самой прямой. На видео представлена окружность с центром О, прямой А и точкой касания К. Так как эта точка в единственном числе, то прямая А касательна данной окружности. А угол при К, образованный радиусом и любой частью прямой, является прямым - равен 90 градусам. Стоит также отметить важную особенность - касательная имеет исключительно одну точку касания. Невозможно провести прямую так, чтобы касательно затронуть две точки на окружности.
Если же наша прямая А проходит через всю окружность, затрагивая её внутреннюю область, то это уже третий частный случай взаимодействия данных фигур. При этом, прямая проходит строго через две точки на окружности - скажем, В и С. Она именуется секущей окружности. Секущая всегда проходит только через две любые точки из множества на кривой. Так как точек в окружности множество, то реализуемо провести бесконечное число секущих (равно как и касательных) для заданной окружности.

Внутренняя часть секущей прямой, по сути отрезок ВС, является хордой для окружности. Если секущая проходит через центр окружности, то внутренняя ее часть представлена наибольшей хордой - диаметром. При этом, точки пересечения В и С находятся на наибольшем удалении друг от друга (по свойству диаметра). Легко понять, что противоположный частный случай - это секущая, образующая хорду с бесконечно малым значением, по сути, - это уже касательная.

В задачах часто встречается отрезок Р - он соединяет наиболее коротким путем подходящую точку на прямой и центр самой окружности. Иначе говоря, Р - это отрезок ТО, где Т - точка на прямой ВС. Этот отрезок является перпендикуляром для прямой, его продолжение до самой окружности - ее радиусом. Линейное значение этого отрезка можно вычислить через косинус угла, образованного радиусом и секущей прямой, с вершиной в точке сечения.

Напомним важное определение - определение окружности]

Определение:

Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R.

Обратим внимание на то, что окружностью называют именно множество всех точек, удовлетворяющих описанному условию. Рассмотрим пример:

Точки A, B, C, D квадрата равноудалены от точки Е, но они не являются окружностью (рис. 1).

Рис. 1. Иллюстрация к примеру

В данном случае фигура является окружностью, так как это все множество точек, равноудаленных от центра.

Если соединить любые две точки окружности - получаем хорду. Хорда, проходящая через центр, называется диаметром.

MB - хорда; АВ - диаметр; MnB - дуга, она стягивается хордой МВ;

Угол называется центральным.

Точка О - центр окружности.

Рис. 2. Иллюстрация к примеру

Таким образом, мы вспомнили, что такое окружность и основные ее элементы. Теперь перейдем к рассмотрению взаимного расположения окружности и прямой.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Считаем, что точка О не лежит на прямой Р.

По заданным окружности и прямой нам необходимо найти число общих точек.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

В первом случае, когда расстояние d меньше радиуса окружности r, точка М лежит внутри окружности. От этой точки мы отложим два отрезка - МА и МВ, длинна которых будет . Значения r и d нам известны, d меньше r, значит, выражение существует и точки А и В существуют. Эти две точки лежат на прямой по построению. Проверим, лежат ли они на окружности. Вычислим по теореме Пифагора расстояние ОА и ОВ:

Рис. 3. Иллюстрация к случаю 1

Расстояние от центра до двух точек равно радиусу окружности, таким образом, мы доказали, что точки А и В принадлежат окружности.

Итак, точки А и В принадлежат прямой по построению, принадлежат окружности по доказанному - окружность и прямая имеют две общих точки. Докажем, что других точек нет (рис. 4).

Рис. 4. Иллюстрация к доказательству

Для этого возьмем на прямой произвольную точку С и предположим, что она лежит на окружности - расстояние ОС=r. В таком случае треугольник равнобедренный и его медиана ON, которая не совпадает с отрезком ОМ, является высотой. Мы получили противоречие: из точки О опущено два перпендикуляра на прямую.

Таким образом, на прямой Р нет других общих точек с окружностью. Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки.

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности (рис. 5):

Рис. 5. Иллюстрация к случаю 2

Напомним, что расстояние от точки до прямой - это длина перпендикуляра, в данном случае ОН - перпендикуляр. Так как, по условию, длина ОН равна радиусу окружности, то точка Н принадлежит окружности, таким образом, точка Н общая для прямой и окружности.

Докажем что других общих точек нет. От противного: предположим, что точка С на прямой принадлежит окружности. В таком случае, расстояние ОС равно r, и тогда ОС равно ОН. Но в прямоугольном треугольнике гипотенуза ОС больше катета ОН. Получили противоречие. Таким образом, предположение неверно и нет никакой точки кроме Н, общей для прямой и окружности. Мы доказали, что в данном случае общая точка единственная.

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Расстояние от точки до прямой - длина перпендикуляра. Проводим из точки О перпендикуляр к прямой Р, получаем точку Н, которая не лежит на окружности, так как ОН по условию больше радиуса окружности. Докажем, что любая другая точка прямой не лежит на окружности. Это хорошо видно из прямоугольного треугольника , гипотенуза ОМ которого больше катета ОН, а значит, больше радиуса окружности, таким образом, точка М не принадлежит окружности, как и любая другая точка на прямой. Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 6).

Рис. 6. Иллюстрация к случаю 3

Рассмотрим теорему . Предположим, что прямая АВ имеет две общих точки с окружностью (рис. 7).

Рис. 7. Иллюстрация к теореме

Имеем хорду АВ. Точка Н, по условию, - середина хорды АВ и лежит на диаметре СD.

Требуется доказать, что в таком случае диметр перпендикулярен хорде.

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как .

Точка Н, по условию, - середина хорды, значит середина медианы АВ равнобедренного треугольника. Мы знаем, что медиана равнобедренного треугольника перпендикулярна его основанию, значит, является высотой: , отсюда , таким образом, доказано, что диаметр, проходящий через середину хорды, перпендикулярен ей.

Справедлива и обратная теорема : если диаметр перпендикулярен хорде, то он проходит через ее середину.

Задана окружность с центром О, ее диаметр СD и хорда АВ. Известно, что диаметр перпендикулярен хорде, нужно доказать, что он проходит через ее середину (рис. 8).

Рис. 8. Иллюстрация к теореме

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как . ОН, по условию, - высота треугольника, так как диаметр перпендикулярен хорде. Высота в равнобедренном треугольнике одновременно является медианой, таким образом, АН=НВ, значит, точка Н является серединой хорды АВ, значит, доказано, что диаметр, перпендикулярный хорде, проходит через ее середину.

Прямую и обратную теорему можно обобщить следующим образом.

Теорема:

Диаметр перпендикулярен хорде тогда и только тогда, когда он проходит через ее середину.

Итак, мы рассмотрели все случаи взаимного расположения прямой и окружности. На следующем уроке мы рассмотрим касательную к окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Edu.glavsprav.ru ().
  2. Webmath.exponenta.ru ().
  3. Fmclass.ru ().

Домашнее задание

Задание 1. Найти длины двух отрезков хорды, на которые разделяет ее диаметр окружности, если длина хорды - 16 см, а диаметр ей перпендикулярен.

Задание 2. Указать количество общих точек прямой и окружности, если:

а) расстояние от прямой до центра окружности - 6 см, а радиус окружности - 6,05 см;

б) расстояние от прямой до центра окружности - 6,05 см, а радиус окружности - 6 см;

в) расстояние от прямой до центра окружности - 8 см, а радиус окружности - 16 см.

Задание 3. Найти длину хорды, если диаметр ей перпендикулярен, а один из отрезков, отсекаемых диаметром от нее, равен 2 см.

Окружность - геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Данная точка (O) называется центром окружности .
Радиус окружности - это отрезок, соединяющий центр с какой-либо точкой окружности. Все радиусы имеют одну и ту же длину (по определению).
Хорда - отрезок, соединяющий две точки окружности. Хорда, проходящая через центр окружности, называется диаметром . Центр окружности является серединой любого диаметра.
Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности . Дуга называется полуокружностью , если отрезок, соединяющий её концы, является диаметром.
Длина единичной полуокружности обозначается через π .
Сумма градусных мер двух дуг окружности с общими концами равна 360º .
Часть плоскости, ограниченная окружностью, называется кругом .
Круговой сектор - часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Дуга, которая ограничивает сектор, называется дугой сектора .
Две окружности, имеющие общий центр, называются концентрическими .
Две окружности, пересекающиеся под прямым углом, называются ортогональными .

Взаимное расположение прямой и окружности

  1. Если расстояние от центра окружности до прямой меньше радиуса окружности (d), то прямая и окружность имеют две общие точки. В этом случае прямая называется секущей по отношению к окружности.
  2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют только одну общую точку. Такая прямая называется касательной к окружности , а их общая точка называется точкой касания прямой и окружности .
  3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общих точек
  4. .

Центральные и вписанные углы

Центральный угол - это угол с вершиной в центре окружности.
Вписанный угол - угол, вершина которого лежит на окружности, а стороны пересекают окружность.

Теорема о вписанном угле

Вписанный угол измеряется половиной дуги, на которую он опирается.

  • Следствие 1.
    Вписанные углы, опирающиеся на одну и ту же дугу, равны.

  • Следствие 2.
    Вписанный угол, опирающийся на полуокружность - прямой.

Теорема о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Основные формулы

  • Длина окружности:
C = 2∙π∙R
  • Длина дуги окружности:
R = С/(2∙π) = D/2
  • Диаметр:
D = C/π = 2∙R
  • Длина дуги окружности:
l = (π∙R) / 180∙α ,
где α - градусная мера длины дуги окружности)
  • Площадь круга:
S = π∙R 2
  • Площадь кругового сектора:
S = ((π∙R 2) / 360)∙α

Уравнение окружности

(x - x о) 2 + (y - y о) 2 = r 2
  • Уравнение окружности радиуса r с центром в начале координат имеет вид:
x 2 + y 2 = r 2

Дидактическая цель: формирование новых знаний.

Цели урока.

Обучающие:

  • сформировать математические понятия: касательная к окружности, взаимное расположение прямой и окружности, добиться понимания и воспроизведения учащимися данных понятий через выполнение практической работы исследовательского характера.

Здоровьесберегающие:

  • создание благоприятного психологического климата на уроке;

Развивающие:

  • развивать у учащихся познавательный интерес, умение объяснять, обобщать полученные результаты, сравнивать, сопоставлять, делать выводы.

Воспитательные:

  • воспитание средствами математики культуры личности.

Формы обучения:

  • по содержанию – беседа, практическая работа;
  • по организации деятельности – индивидуальная, фронтальная.

План урока

Блоки Этапы урока
1 блок Организационный момент.
Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.
2 блок Постановка цели.
3 блок Ознакомление с новым материалом.
Практическая работа исследовательского характера.
4 блок Закрепление нового материала через решение задач
5 блок Рефлексия. Выполнение работы по готовому чертежу.
6 блок Подведение итогов урока. Постановка домашнего задания.

Оборудование:

  • компьютер, экран, проектор;
  • раздаточный материал.

Образовательные ресурсы:

1. Математика. Учебник для 6 класса общеобразовательных учреждений; / Г.В.Дорофеев, М., Просвещение, 2009 г.

2. Маркова В.И. Особенности преподавания геометрии в условиях реализации государственного образовательного стандарта: методические рекомендации, Киров, 2010 г.

3. Атанасян Л.С. Учебник “Геометрия 7-9”.

Ход урока

1. Организационный момент.

Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Приветствие учеников.

Сообщает тему урока.

Выясняет, какие ассоциации возникают со словом “окружность”

Записывают в тетради число и тему урока.

Отвечают на вопрос учителя.

2. Постановка цели урока Обобщает цели, сформулированные учащимися, ставит цели урока Формулируют цели урока.
3. Ознакомление с новым материалом. Организует беседу, на моделях просит показать, как могут располагаться окружность и прямая.

Организует практическую работу.

Организует работу с учебником.

Отвечают на вопросы учителя.

Выполняют практическую работу, делают вывод.

Работают с учебником, находят вывод и сравнивают со своим.

4. Первичное осмысление, закрепление через решение задач. Организует работу по готовым чертежам.

Работа с учебником: с. 103 № 498, №499.

Решение задач

Устно решают задачи и комментируют решение.

Выполняют решение задач, комментируют.

5. Рефлексия. Выполнение работы по готовому чертежу Инструктирует выполнение работы. Самостоятельно выполняют задание. Самопроверка. Подводят итоги.
6. Подведение итогов. Постановка домашнего задания Учащимся предлагается проанализировать кластер, составленный в начале урока, доработать его с учетом полученных знаний. Подводят итоги.

Учащиеся обращаются к целям, которые были поставлены, анализируют результаты: что нового узнали, чему научились на уроке

1. Организационный момент. Актуализация знаний.

Учитель сообщает тему урока. Выясняет, какие ассоциации возникают со словом “окружность”.

Чему равен диаметр окружности, если радиус равен 2,4 см?

Чему равен радиус, если диаметр равен 6,8 см?

2. Целеполагание.

Учащиеся ставят свои цели на урок, учитель обобщает их и ставит цели урока.

Составляется программа деятельности на уроке.

3. Ознакомление с новым материалом.

1) Работа с моделями: “Покажите на моделях, как могут располагаться прямая и окружность на плоскости”.

Сколько они имеют общих точек?

2) Выполнение практической работы исследовательского характера.

Цель. Установить свойство взаимного расположения прямой и окружности.

Оборудование: окружность, нарисованная на листе бумаги и палочка в качестве прямой, линейка.

  1. На рисунке (на листе бумаги) установить взаимное расположение окружности и прямой.
  2. Измерьте радиус окружности R и расстояние от центра окружности до прямой d.
  3. Результаты исследования запишите в таблицу.
Рисунок Взаимное расположение Число общих точек Радиус окружности R Расстояние от центра окружности до прямой d Сравните R и d

4. Сделайте вывод о взаимном расположении прямой и окружности в зависимости от соотношения R и d.

Вывод: Если расстояние от центра окружности до прямой равно радиусу, прямая касается окружности и имеет одну общую т очку с окружностью. Если расстояние от центра окружности до прямой больше радиуса, окружность и прямая не имеют общих точек. Если расстояние от центра окружности до прямой меньше радиуса, прямая пересекает окружность и имеет с ней две общих точки.

5. Первичное осмысление, закрепление через решение задач.

1) Задания учебника: №498, № 499.

2) Определить взаимное расположении прямой и окружности, если:

  • 1. R=16cм, d=12см
  • 2. R=5см, d=4,2см
  • 3. R=7,2дм, d=3,7дм
  • 4. R=8 см, d=1,2дм
  • 5. R=5 см, d=50мм

а) прямая и окружность не имеют общих точек;

б) прямая является касательной к окружности;

в) прямая пересекает окружность.

  • d-расстояние от центра окружности до прямой, R- радиус окружности.

3) Что можно сказать о взаимном расположении прямой и окружности, если диаметр окружности равен 10,3 см, а расстояние от центра окружности до прямой равно 4,15 см; 2 дм; 103 мм; 5,15 см, 1 дм 3 см.

4) Даны окружность с центром О и точка А. Где находится точка А, если радиус окружности равен 7 см, а длина отрезка ОА равна: а) 4 см; б) 10 см; в) 70 мм.

6. Рефлексия

Чему научились на уроке?

Какую закономерность установили?

Выполнить на карточках следующее задание:

Проведите прямые через каждые две точки. Сколько общих точек имеет каждая из прямых с окружностью.

Прямая ______ и окружность не имеют общих точек.

Прямая ______ и окружность имеют только одну ___________ точку.

Прямые ______, _______, ________, _______ и окружность имеют две общие точки.

7. Подведение итогов. Постановка домашнего задания:

1) проанализировать кластер, составленный в начале урока, доработать его с учетом полученных знаний;

2) учебник: № 500;

3) заполнить таблицу (на карточках).

Радиус окружности 4 см 6,2 см 3,5 см 1,8 см
Расстояние от центра окружности до прямой 7 см 5,12 см 3,5 см 9,3 см 8,25 м
Вывод о взаимном расположении окружности и прямой Прямая
пересекает окружность
Прямая
касается окружности
Прямая
не пересекает окружность

Напомним важное определение - определение окружности]

Определение:

Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R.

Обратим внимание на то, что окружностью называют именно множество всех точек, удовлетворяющих описанному условию. Рассмотрим пример:

Точки A, B, C, D квадрата равноудалены от точки Е, но они не являются окружностью (рис. 1).

Рис. 1. Иллюстрация к примеру

В данном случае фигура является окружностью, так как это все множество точек, равноудаленных от центра.

Если соединить любые две точки окружности - получаем хорду. Хорда, проходящая через центр, называется диаметром.

MB - хорда; АВ - диаметр; MnB - дуга, она стягивается хордой МВ;

Угол называется центральным.

Точка О - центр окружности.

Рис. 2. Иллюстрация к примеру

Таким образом, мы вспомнили, что такое окружность и основные ее элементы. Теперь перейдем к рассмотрению взаимного расположения окружности и прямой.

Задана окружность с центром О и радиусом r. Прямая Р, расстояние от центра до прямой, то есть перпендикуляр ОМ, равна d.

Считаем, что точка О не лежит на прямой Р.

По заданным окружности и прямой нам необходимо найти число общих точек.

Случай 1 - расстояние от центра окружности до прямой меньше радиуса окружности:

В первом случае, когда расстояние d меньше радиуса окружности r, точка М лежит внутри окружности. От этой точки мы отложим два отрезка - МА и МВ, длинна которых будет . Значения r и d нам известны, d меньше r, значит, выражение существует и точки А и В существуют. Эти две точки лежат на прямой по построению. Проверим, лежат ли они на окружности. Вычислим по теореме Пифагора расстояние ОА и ОВ:

Рис. 3. Иллюстрация к случаю 1

Расстояние от центра до двух точек равно радиусу окружности, таким образом, мы доказали, что точки А и В принадлежат окружности.

Итак, точки А и В принадлежат прямой по построению, принадлежат окружности по доказанному - окружность и прямая имеют две общих точки. Докажем, что других точек нет (рис. 4).

Рис. 4. Иллюстрация к доказательству

Для этого возьмем на прямой произвольную точку С и предположим, что она лежит на окружности - расстояние ОС=r. В таком случае треугольник равнобедренный и его медиана ON, которая не совпадает с отрезком ОМ, является высотой. Мы получили противоречие: из точки О опущено два перпендикуляра на прямую.

Таким образом, на прямой Р нет других общих точек с окружностью. Мы доказали, что в случае, когда расстояние d меньше радиуса окружности r, прямая и окружность имеют только две общие точки.

Случай второй - расстояние от центра окружности до прямой равно радиусу окружности (рис. 5):

Рис. 5. Иллюстрация к случаю 2

Напомним, что расстояние от точки до прямой - это длина перпендикуляра, в данном случае ОН - перпендикуляр. Так как, по условию, длина ОН равна радиусу окружности, то точка Н принадлежит окружности, таким образом, точка Н общая для прямой и окружности.

Докажем что других общих точек нет. От противного: предположим, что точка С на прямой принадлежит окружности. В таком случае, расстояние ОС равно r, и тогда ОС равно ОН. Но в прямоугольном треугольнике гипотенуза ОС больше катета ОН. Получили противоречие. Таким образом, предположение неверно и нет никакой точки кроме Н, общей для прямой и окружности. Мы доказали, что в данном случае общая точка единственная.

Случай 3 - расстояние от центра окружности до прямой больше радиуса окружности:

Расстояние от точки до прямой - длина перпендикуляра. Проводим из точки О перпендикуляр к прямой Р, получаем точку Н, которая не лежит на окружности, так как ОН по условию больше радиуса окружности. Докажем, что любая другая точка прямой не лежит на окружности. Это хорошо видно из прямоугольного треугольника , гипотенуза ОМ которого больше катета ОН, а значит, больше радиуса окружности, таким образом, точка М не принадлежит окружности, как и любая другая точка на прямой. Мы доказали, что в данном случае окружность и прямая не имеют общих точек (рис. 6).

Рис. 6. Иллюстрация к случаю 3

Рассмотрим теорему . Предположим, что прямая АВ имеет две общих точки с окружностью (рис. 7).

Рис. 7. Иллюстрация к теореме

Имеем хорду АВ. Точка Н, по условию, - середина хорды АВ и лежит на диаметре СD.

Требуется доказать, что в таком случае диметр перпендикулярен хорде.

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как .

Точка Н, по условию, - середина хорды, значит середина медианы АВ равнобедренного треугольника. Мы знаем, что медиана равнобедренного треугольника перпендикулярна его основанию, значит, является высотой: , отсюда , таким образом, доказано, что диаметр, проходящий через середину хорды, перпендикулярен ей.

Справедлива и обратная теорема : если диаметр перпендикулярен хорде, то он проходит через ее середину.

Задана окружность с центром О, ее диаметр СD и хорда АВ. Известно, что диаметр перпендикулярен хорде, нужно доказать, что он проходит через ее середину (рис. 8).

Рис. 8. Иллюстрация к теореме

Доказательство:

Рассмотрим равнобедренный треугольник ОАВ, он равнобедренный, так как . ОН, по условию, - высота треугольника, так как диаметр перпендикулярен хорде. Высота в равнобедренном треугольнике одновременно является медианой, таким образом, АН=НВ, значит, точка Н является серединой хорды АВ, значит, доказано, что диаметр, перпендикулярный хорде, проходит через ее середину.

Прямую и обратную теорему можно обобщить следующим образом.

Теорема:

Диаметр перпендикулярен хорде тогда и только тогда, когда он проходит через ее середину.

Итак, мы рассмотрели все случаи взаимного расположения прямой и окружности. На следующем уроке мы рассмотрим касательную к окружности.

Список литературы

  1. Александров А.Д. и др. Геометрия 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия 8. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Edu.glavsprav.ru ().
  2. Webmath.exponenta.ru ().
  3. Fmclass.ru ().

Домашнее задание

Задание 1. Найти длины двух отрезков хорды, на которые разделяет ее диаметр окружности, если длина хорды - 16 см, а диаметр ей перпендикулярен.

Задание 2. Указать количество общих точек прямой и окружности, если:

а) расстояние от прямой до центра окружности - 6 см, а радиус окружности - 6,05 см;

б) расстояние от прямой до центра окружности - 6,05 см, а радиус окружности - 6 см;

в) расстояние от прямой до центра окружности - 8 см, а радиус окружности - 16 см.

Задание 3. Найти длину хорды, если диаметр ей перпендикулярен, а один из отрезков, отсекаемых диаметром от нее, равен 2 см.