अंकगणितीय प्रगति संख्या 649 उदाहरण 54 36. II


उदाहरण के लिए, अनुक्रम \(2\); \(5\); \(आठ\); \(ग्यारह\); \(14\)… एक अंकगणितीय प्रगति है, क्योंकि प्रत्येक अगला तत्व पिछले एक से तीन से भिन्न होता है (पिछले एक से तीन जोड़कर प्राप्त किया जा सकता है):

इस प्रगति में, अंतर \(d\) धनात्मक (\(3\) के बराबर) है, और इसलिए प्रत्येक अगला पद पिछले एक से बड़ा है। ऐसी प्रगति कहलाती है की बढ़ती.

हालाँकि, \(d\) एक ऋणात्मक संख्या भी हो सकती है। उदाहरण के लिए, अंकगणितीय प्रगति में \(16\); \(दस\); \(4\); \(-2\); \(-8\)… प्रगति अंतर \(d\) शून्य से छह के बराबर है।

और इस मामले में, प्रत्येक अगला तत्व पिछले वाले से छोटा होगा। इन प्रगतियों को कहा जाता है घटते.

अंकगणित प्रगति संकेतन

प्रगति को एक छोटे लैटिन अक्षर द्वारा निरूपित किया जाता है।

वे संख्याएँ जो एक प्रगति का निर्माण करती हैं, कहलाती हैं I सदस्यों(या तत्व)।

उन्हें अंकगणितीय प्रगति के समान अक्षर द्वारा निरूपित किया जाता है, लेकिन क्रम में तत्व संख्या के बराबर एक संख्यात्मक सूचकांक के साथ।

उदाहरण के लिए, अंकगणितीय प्रगति \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) में तत्व होते हैं \(a_1=2\); \(a_2=5\); \(a_3=8\) इत्यादि।

दूसरे शब्दों में, प्रगति के लिए \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

अंकगणितीय प्रगति पर समस्याओं को हल करना

सिद्धांत रूप में, उपरोक्त जानकारी पहले से ही एक अंकगणितीय प्रगति पर लगभग किसी भी समस्या को हल करने के लिए पर्याप्त है (ओजीई में प्रस्तावित सहित)।

उदाहरण (ओजीई)। अंकगणितीय प्रगति शर्तों \(b_1=7; d=4\) द्वारा दी गई है। \(b_5\) खोजें।
फेसला:

जवाब: \(b_5=23\)

उदाहरण (ओजीई)। एक समांतर श्रेणी के पहले तीन पद दिए गए हैं: \(62; 49; 36…\) इस प्रगति के पहले ऋणात्मक पद का मान ज्ञात कीजिए।
फेसला:

हमें अनुक्रम के पहले तत्व दिए गए हैं और जानते हैं कि यह एक अंकगणितीय प्रगति है। अर्थात्, प्रत्येक तत्व पड़ोसी से समान संख्या में भिन्न होता है। अगले तत्व से पिछले वाले को घटाकर पता लगाएं: \(d=49-62=-13\)।

अब हम अपनी प्रगति को वांछित (पहले नकारात्मक) तत्व में पुनर्स्थापित कर सकते हैं।

तैयार। आप उत्तर लिख सकते हैं।

जवाब: \(-3\)

उदाहरण (ओजीई)। अंकगणितीय प्रगति के कई क्रमिक तत्व दिए गए हैं: \(...5; x; 10; 12.5...\) अक्षर \(x\) द्वारा निरूपित तत्व का मान ज्ञात कीजिए।
फेसला:


\(x\) को खोजने के लिए, हमें यह जानना होगा कि अगला तत्व पिछले एक से कितना भिन्न है, दूसरे शब्दों में, प्रगति अंतर। आइए इसे दो ज्ञात पड़ोसी तत्वों से खोजें: \(d=12.5-10=2.5\)।

और अब हम बिना किसी समस्या के वह पाते हैं जो हम खोज रहे हैं: \(x=5+2.5=7.5\)।


तैयार। आप उत्तर लिख सकते हैं।

जवाब: \(7,5\).

उदाहरण (ओजीई)। अंकगणितीय प्रगति निम्नलिखित शर्तों द्वारा दी गई है: \(a_1=-11\); \(a_(n+1)=a_n+5\) इस प्रगति के पहले छह पदों का योग ज्ञात कीजिए।
फेसला:

हमें प्रगति के पहले छह पदों का योग ज्ञात करना होगा। लेकिन हम उनका अर्थ नहीं जानते हैं, हमें केवल पहला तत्व दिया गया है। इसलिए, हम पहले हमें दिए गए मानों का उपयोग करके बदले में मूल्यों की गणना करते हैं:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
और हमें आवश्यक छह तत्वों की गणना करने के बाद, हम उनका योग पाते हैं।

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

मांगी गई राशि मिल गई है।

जवाब: \(S_6=9\)।

उदाहरण (ओजीई)। समांतर श्रेणी में \(a_(12)=23\); \(a_(16)=51\)। इस प्रगति का अंतर ज्ञात कीजिए।
फेसला:

जवाब: \(डी=7\)।

महत्वपूर्ण अंकगणितीय प्रगति सूत्र

जैसा कि आप देख सकते हैं, कई अंकगणितीय प्रगति समस्याओं को केवल मुख्य बात को समझकर हल किया जा सकता है - कि एक अंकगणितीय प्रगति संख्याओं की एक श्रृंखला है, और इस श्रृंखला में प्रत्येक अगला तत्व समान संख्या को पिछले एक में जोड़कर प्राप्त किया जाता है (अंतर प्रगति के)।

हालांकि, कभी-कभी ऐसी स्थितियां होती हैं जब "माथे पर" हल करना बहुत असुविधाजनक होता है। उदाहरण के लिए, कल्पना कीजिए कि पहले उदाहरण में, हमें पाँचवाँ तत्व \(b_5\) नहीं, बल्कि तीन सौ छियासी \(b_(386)\) खोजने की आवश्यकता है। यह क्या है, हम \ (385 \) बार चार जोड़ने के लिए? या कल्पना कीजिए कि अंतिम उदाहरण में, आपको पहले सत्तर-तीन तत्वों का योग ज्ञात करना होगा। काउंटिंग उलझी हुई है...

इसलिए, ऐसे मामलों में, वे "माथे पर" हल नहीं करते हैं, लेकिन अंकगणितीय प्रगति के लिए प्राप्त विशेष सूत्रों का उपयोग करते हैं। और मुख्य हैं प्रगति के nवें पद के लिए सूत्र और पहले पदों के योग \(n\) के लिए सूत्र।

\(n\)वें सदस्य के लिए सूत्र: \(a_n=a_1+(n-1)d\), जहां \(a_1\) प्रगति का पहला सदस्य है;
\(n\) - आवश्यक तत्व की संख्या;
\(a_n\) संख्या \(n\) के साथ प्रगति का सदस्य है।


यह सूत्र हमें केवल पहले और प्रगति अंतर को जानकर, कम से कम तीन सौवां, यहां तक ​​​​कि दसवां तत्व भी जल्दी से खोजने की अनुमति देता है।

उदाहरण। अंकगणितीय प्रगति शर्तों द्वारा दी गई है: \(b_1=-159\); \(डी=8,2\)। \(b_(246)\) खोजें।
फेसला:

जवाब: \(b_(246)=1850\)।

पहले n पदों के योग का सूत्र है: \(S_n=\frac(a_1+a_n)(2) \cdot n\), जहां



\(a_n\) अंतिम योग शब्द है;


उदाहरण (ओजीई)। अंकगणितीय प्रगति शर्तों \(a_n=3.4n-0.6\) द्वारा दी गई है। इस प्रगति के पहले \(25\) पदों का योग ज्ञात कीजिए।
फेसला:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

पहले पच्चीस तत्वों के योग की गणना करने के लिए, हमें पहले और पच्चीसवें पद का मान जानना होगा।
हमारी प्रगति इसकी संख्या के आधार पर nवें पद के सूत्र द्वारा दी गई है (विवरण देखें)। आइए \(n\) को एक के साथ बदलकर पहले तत्व की गणना करें।

\(n=1;\) \(a_1=3.4 1-0.6=2.8\)

अब \(n\) के स्थान पर पच्चीस को प्रतिस्थापित करके पच्चीसवाँ पद ज्ञात करते हैं।

\(n=25;\) \(a_(25)=3.4 25-0.6=84.4\)

खैर, अब हम बिना किसी समस्या के आवश्यक राशि की गणना करते हैं।

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

जवाब तैयार है।

जवाब: \(एस_(25)=1090\)।

पहली शर्तों के योग \(n\) के लिए, आप एक और सूत्र प्राप्त कर सकते हैं: आपको बस \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ की आवश्यकता है। (\cdot 25\ ) के बजाय \(a_n\) इसके लिए सूत्र को प्रतिस्थापित करें \(a_n=a_1+(n-1)d\)। हम पाते हैं:

पहले n पदों के योग का सूत्र है: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), जहां

\(S_n\) - पहले तत्वों का आवश्यक योग \(n\);
\(a_1\) पहला पद है जिसका योग किया जाना है;
\(डी\) - प्रगति अंतर;
\(n\) - योग में तत्वों की संख्या।

उदाहरण। अंकगणितीय प्रगति के पहले \(33\)-पूर्व पदों का योग ज्ञात कीजिए: \(17\); \(15,5\); \(चौदह\)…
फेसला:

जवाब: \(एस_(33)=-231\)।

अधिक जटिल अंकगणितीय प्रगति की समस्याएं

अब आपके पास लगभग किसी भी अंकगणितीय प्रगति समस्या को हल करने के लिए आवश्यक सभी जानकारी है। आइए उन समस्याओं पर विचार करके विषय को समाप्त करें जिनमें आपको न केवल सूत्र लागू करने की आवश्यकता है, बल्कि थोड़ा सोचना भी है (गणित में, यह उपयोगी हो सकता है ☺)

उदाहरण (ओजीई)। प्रगति के सभी ऋणात्मक पदों का योग ज्ञात कीजिए: \(-19.3\); \(-उन्नीस\); \(-18.7\)…
फेसला:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

कार्य पिछले एक के समान ही है। हम उसी तरह हल करना शुरू करते हैं: पहले हम \(d\) पाते हैं।

\(d=a_2-a_1=-19-(-19.3)=0.3\)

अब हम योग के सूत्र में \(d\) को प्रतिस्थापित करेंगे ... और यहां एक छोटी सी बारीकियां सामने आती हैं - हम नहीं जानते \(n\)। दूसरे शब्दों में, हम नहीं जानते कि कितने शब्दों को जोड़ने की आवश्यकता होगी। कैसे पता करें? चलो सोचते है। जब हम पहले सकारात्मक तत्व पर पहुंचेंगे तो हम तत्वों को जोड़ना बंद कर देंगे। यही है, आपको इस तत्व की संख्या का पता लगाना होगा। कैसे? आइए अंकगणितीय प्रगति के किसी भी तत्व की गणना के लिए सूत्र लिखें: \(a_n=a_1+(n-1)d\) हमारे मामले के लिए।

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

शून्य से बड़ा होने के लिए हमें \(a_n\) की आवश्यकता है। आइए जानें कि यह किस लिए \(n\) होगा।

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|:0.3\)

हम असमानता के दोनों पक्षों को \(0,3\) से विभाजित करते हैं।

\(n-1>\)\(\frac(19,3)(0,3)\)

हम माइनस वन ट्रांसफर करते हैं, संकेत बदलना नहीं भूलते

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

कम्प्यूटिंग...

\(n>65,333…\)

...और यह पता चला है कि पहले सकारात्मक तत्व की संख्या \(66\) होगी। तदनुसार, अंतिम ऋणात्मक में \(n=65\) है। बस मामले में, आइए इसे देखें।

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

इस प्रकार, हमें पहले \(65\) तत्वों को जोड़ने की जरूरत है।

\(एस_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

जवाब तैयार है।

जवाब: \(एस_(65)=-630.5\)।

उदाहरण (ओजीई)। अंकगणितीय प्रगति शर्तों द्वारा दी गई है: \(a_1=-33\); \(a_(n+1)=a_n+4\)। \(26\)वें से \(42\) तक के योग का योग ज्ञात कीजिए।
फेसला:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

इस समस्या में, आपको तत्वों का योग भी खोजना होगा, लेकिन पहले से नहीं, बल्कि \(26\)वें से शुरू करना होगा। हमारे पास इसका कोई फॉर्मूला नहीं है। कैसे तय करें?
आसान - \(26\)th से \(42\)th तक का योग प्राप्त करने के लिए, आपको पहले \(1\)th से \(42\)th तक का योग निकालना होगा, और फिर उसमें से योग को घटाना होगा पहले से \ (25 \) वें (चित्र देखें)।


हमारी प्रगति \(a_1=-33\), और अंतर \(d=4\) के लिए (आखिरकार, हम अगले तत्व को खोजने के लिए पिछले तत्व में चार जोड़ते हैं)। यह जानने के बाद, हम पहले \(42\)-उह तत्वों का योग पाते हैं।

\(एस_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

अब पहले \(25\)-वें तत्वों का योग।

\(एस_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

और अंत में, हम उत्तर की गणना करते हैं।

\(S=S_(42)-S_(25)=2058-375=1683\)

जवाब: \(एस=1683\)।

अंकगणितीय प्रगति के लिए, कई और सूत्र हैं जिन पर हमने उनकी कम व्यावहारिक उपयोगिता के कारण इस लेख में विचार नहीं किया है। हालाँकि, आप उन्हें आसानी से पा सकते हैं।

ध्यान!
अतिरिक्त हैं
विशेष धारा 555 में सामग्री।
उन लोगों के लिए जो दृढ़ता से "बहुत नहीं ..."
और उन लोगों के लिए जो "बहुत ज्यादा...")

एक अंकगणितीय प्रगति संख्याओं की एक श्रृंखला है जिसमें प्रत्येक संख्या पिछले एक की तुलना में एक ही राशि से अधिक (या कम) होती है।

यह विषय अक्सर कठिन और समझ से बाहर होता है। पत्र अनुक्रमणिका, प्रगति का nवां सदस्य, प्रगति का अंतर - यह सब किसी तरह भ्रमित करने वाला है, हाँ ... आइए अंकगणितीय प्रगति का अर्थ समझें और सब कुछ तुरंत काम करेगा।)

अंकगणितीय प्रगति की अवधारणा।

अंकगणितीय प्रगति एक बहुत ही सरल और स्पष्ट अवधारणा है। संदेह करना? व्यर्थ।) अपने लिए देखें।

मैं संख्याओं की एक अधूरी श्रृंखला लिखूंगा:

1, 2, 3, 4, 5, ...

क्या आप इस लाइन को आगे बढ़ा सकते हैं? पाँच के बाद कौन-सी संख्याएँ आगे बढ़ेंगी? हर कोई ... उह ..., संक्षेप में, सभी को पता चल जाएगा कि संख्या 6, 7, 8, 9, आदि आगे बढ़ेगी।

आइए कार्य को जटिल करें। मैं संख्याओं की एक अधूरी श्रृंखला देता हूं:

2, 5, 8, 11, 14, ...

आप पैटर्न को पकड़ सकते हैं, श्रृंखला का विस्तार कर सकते हैं, और नाम कर सकते हैं सातवींपंक्ति नंबर?

यदि आपको पता चला कि यह संख्या 20 है - मैं आपको बधाई देता हूं! आपने न केवल महसूस किया अंकगणितीय प्रगति के प्रमुख बिंदु,लेकिन व्यापार में भी उनका सफलतापूर्वक उपयोग किया! अगर आप नहीं समझते हैं, तो पढ़ें।

आइए अब संवेदनाओं से गणित में प्रमुख बिंदुओं का अनुवाद करें।)

पहला मुख्य बिंदु।

अंकगणितीय प्रगति संख्याओं की श्रृंखला से संबंधित है।यह पहली बार में भ्रमित करने वाला है। हम समीकरणों को हल करने, रेखांकन बनाने और वह सब करने के आदी हैं ... और फिर श्रृंखला का विस्तार करें, श्रृंखला की संख्या ज्ञात करें ...

ठीक है। यह सिर्फ इतना है कि प्रगति गणित की एक नई शाखा के साथ पहला परिचय है। अनुभाग को "श्रृंखला" कहा जाता है और यह संख्याओं और भावों की श्रृंखला के साथ काम करता है। इस्की आद्त डाल लो।)

दूसरा मुख्य बिंदु।

एक अंकगणितीय प्रगति में, कोई भी संख्या पिछली संख्या से भिन्न होती है उसी राशि से।

पहले उदाहरण में, यह अंतर एक है। आप जो भी संख्या लें, वह पिछले वाले से एक अधिक है। दूसरे में - तीन। कोई भी संख्या पिछली संख्या से तीन गुना अधिक होती है। दरअसल, यह वह क्षण है जो हमें पैटर्न को पकड़ने और बाद की संख्याओं की गणना करने का अवसर देता है।

तीसरा प्रमुख बिंदु।

यह क्षण हड़ताली नहीं है, हाँ ... लेकिन बहुत, बहुत महत्वपूर्ण। वो रहा वो: प्रत्येक प्रगति संख्या अपने स्थान पर है।पहली संख्या है, सातवीं है, पैंतालीसवां है, और इसी तरह। यदि आप उन्हें बेतरतीब ढंग से भ्रमित करते हैं, तो पैटर्न गायब हो जाएगा। अंकगणितीय प्रगति भी गायब हो जाएगी। यह सिर्फ संख्याओं की एक श्रृंखला है।

यह पूरी बात है।

बेशक, नए विषय में नए शब्द और संकेतन दिखाई देते हैं। उन्हें जानने की जरूरत है। अन्यथा, आप कार्य को नहीं समझेंगे। उदाहरण के लिए, आपको कुछ ऐसा तय करना होगा:

समांतर श्रेणी (a n) के पहले छह पद लिखिए यदि a 2 = 5, d = -2.5 है।

क्या यह प्रेरित करता है?) पत्र, कुछ अनुक्रमित ... और कार्य, वैसे, आसान नहीं हो सकता। आपको बस शब्दों और संकेतन के अर्थ को समझने की जरूरत है। अब हम इस मामले में महारत हासिल करेंगे और काम पर लौटेंगे।

शर्तें और पदनाम।

अंकगणितीय प्रगतिसंख्याओं की एक श्रृंखला है जिसमें प्रत्येक संख्या पिछले एक से भिन्न होती है उसी राशि से।

इस मान को कहा जाता है . आइए इस अवधारणा से अधिक विस्तार से निपटें।

अंकगणितीय प्रगति अंतर।

अंकगणितीय प्रगति अंतरवह राशि है जिसके द्वारा कोई प्रगति संख्या अधिकपिछला वाला।

एक महत्वपूर्ण बिंदु। कृपया शब्द पर ध्यान दें "अधिक"।गणितीय रूप से, इसका अर्थ है कि प्रत्येक प्रगति संख्या प्राप्त होती है जोड़नेपिछली संख्या से अंकगणितीय प्रगति का अंतर।

गणना करने के लिए, मान लें दूसरापंक्ति की संख्या, यह आवश्यक है प्रथमसंख्या जोड़ेंअंकगणितीय प्रगति का यह बहुत अंतर। गणना के लिए पांचवां- अंतर आवश्यक है जोड़ेंको चौथीअच्छा, आदि

अंकगणितीय प्रगति अंतरशायद सकारात्मकतब श्रृंखला की प्रत्येक संख्या वास्तविक निकलेगी पिछले एक से अधिक।इस प्रगति को कहा जाता है की बढ़ती।उदाहरण के लिए:

8; 13; 18; 23; 28; .....

यहाँ प्रत्येक संख्या है जोड़नेसकारात्मक संख्या, पिछले एक के लिए +5।

अंतर हो सकता है नकारात्मकतो श्रृंखला में प्रत्येक संख्या होगी पिछले वाले से कम।इस प्रगति को कहा जाता है (आप इस पर विश्वास नहीं करेंगे!) घट रहा है।

उदाहरण के लिए:

8; 3; -2; -7; -12; .....

यहां हर नंबर भी मिलता है जोड़नेपिछले करने के लिए, लेकिन पहले से ही ऋणात्मक संख्या, -5।

वैसे, प्रगति के साथ काम करते समय, इसकी प्रकृति को तुरंत निर्धारित करना बहुत उपयोगी होता है - चाहे वह बढ़ रहा हो या घट रहा हो। यह निर्णय में आपके असर को खोजने, अपनी गलतियों का पता लगाने और बहुत देर होने से पहले उन्हें ठीक करने में बहुत मदद करता है।

अंकगणितीय प्रगति अंतरआमतौर पर पत्र द्वारा दर्शाया जाता है डी।

कैसे ढूंढें डी? बहुत आसान। श्रृंखला की किसी भी संख्या में से घटाना आवश्यक है पहले कासंख्या। घटाना। वैसे, घटाव के परिणाम को "अंतर" कहा जाता है।)

आइए परिभाषित करें, उदाहरण के लिए, डीबढ़ती हुई अंकगणितीय प्रगति के लिए:

2, 5, 8, 11, 14, ...

हम जितनी भी पंक्ति चाहते हैं, उसकी कोई भी संख्या लेते हैं, उदाहरण के लिए, 11. इसमें से घटाना पिछली संख्यावे। आठ:

यह सही जवाब है। इस अंकगणितीय प्रगति के लिए, अंतर तीन है।

आप बस ले सकते हैं प्रगति की कोई भी संख्या,क्योंकि एक विशिष्ट प्रगति के लिए डी-हमेशा एक ही।कम से कम कहीं पंक्ति की शुरुआत में, कम से कम बीच में, कम से कम कहीं भी। आप केवल पहला नंबर नहीं ले सकते। सिर्फ इसलिए कि सबसे पहले नंबर पिछला नहीं।)

वैसे, यह जानते हुए कि डी = 3, इस प्रगति की सातवीं संख्या ज्ञात करना बहुत सरल है। हम पांचवें नंबर में 3 जोड़ते हैं - हमें छठा मिलता है, यह 17 होगा। हम छठे नंबर में तीन जोड़ते हैं, हमें सातवां नंबर मिलता है - बीस।

आइए परिभाषित करें डीघटती हुई अंकगणितीय प्रगति के लिए:

8; 3; -2; -7; -12; .....

मैं आपको याद दिलाता हूं कि, संकेतों की परवाह किए बिना, निर्धारित करने के लिए डीकिसी भी नंबर से चाहिए पिछले एक को दूर ले जाओ।हम प्रगति की कोई भी संख्या चुनते हैं, उदाहरण के लिए -7। उनका पिछला अंक -2 है। फिर:

डी = -7 - (-2) = -7 + 2 = -5

अंकगणितीय प्रगति का अंतर कोई भी संख्या हो सकता है: पूर्णांक, भिन्नात्मक, अपरिमेय, कोई भी।

अन्य शर्तें और पदनाम।

श्रृंखला में प्रत्येक संख्या को कहा जाता है एक अंकगणितीय प्रगति के सदस्य।

प्रगति के प्रत्येक सदस्य उसका नंबर है।बिना किसी तरकीब के, संख्याएँ सख्ती से क्रम में हैं। पहला, दूसरा, तीसरा, चौथा, आदि। उदाहरण के लिए, प्रगति में 2, 5, 8, 11, 14, ... दो पहला सदस्य है, पांच दूसरा है, ग्यारह चौथा है, ठीक है, आप समझते हैं ...) कृपया स्पष्ट रूप से समझें - नंबर खुदबिल्कुल कोई भी हो सकता है, संपूर्ण, भिन्नात्मक, नकारात्मक, जो भी हो, लेकिन नंबरिंग- कड़ाई से क्रम में!

सामान्य रूप में प्रगति कैसे लिखें? कोई बात नहीं! श्रृंखला में प्रत्येक संख्या एक अक्षर के रूप में लिखी जाती है। एक अंकगणितीय प्रगति को निरूपित करने के लिए, एक नियम के रूप में, अक्षर का उपयोग किया जाता है . सदस्य संख्या नीचे दाईं ओर सूचकांक द्वारा इंगित की जाती है। सदस्यों को अल्पविराम (या अर्धविराम) से अलग करके लिखा जाता है, जैसे:

ए 1, ए 2, ए 3, ए 4, ए 5, .....

एक 1पहला नंबर है एक 3- तीसरा, आदि। कुछ भी पेचीदा नहीं। आप इस श्रंखला को संक्षेप में इस प्रकार लिख सकते हैं: (एक).

प्रगति हैं सीमित और अनंत।

अंतिमप्रगति में सदस्यों की सीमित संख्या है। पाँच, अड़तीस, जो भी हो। लेकिन यह एक सीमित संख्या है।

अनंतप्रगति - में अनंत संख्या में सदस्य हैं, जैसा कि आप अनुमान लगा सकते हैं।)

आप इस तरह की श्रृंखला, सभी सदस्यों और अंत में एक बिंदु के माध्यम से अंतिम प्रगति लिख सकते हैं:

ए 1, ए 2, ए 3, ए 4, ए 5।

या इस तरह, यदि कई सदस्य हैं:

ए 1 , ए 2 , ... ए 14 , ए 15 ।

एक छोटी प्रविष्टि में, आपको सदस्यों की संख्या को अतिरिक्त रूप से इंगित करना होगा। उदाहरण के लिए (बीस सदस्यों के लिए), इस तरह:

(ए एन), एन = 20

पंक्ति के अंत में दीर्घवृत्त द्वारा एक अनंत प्रगति को पहचाना जा सकता है, जैसा कि इस पाठ के उदाहरणों में है।

अब आप पहले से ही कार्यों को हल कर सकते हैं। कार्य सरल हैं, विशुद्ध रूप से अंकगणितीय प्रगति के अर्थ को समझने के लिए।

अंकगणितीय प्रगति के कार्यों के उदाहरण।

आइए उपरोक्त कार्य पर करीब से नज़र डालें:

1. समांतर श्रेणी (a n) के पहले छह सदस्यों को लिखिए, यदि a 2 = 5, d = -2.5 है।

हम कार्य को समझने योग्य भाषा में अनुवाद करते हैं। एक अनंत अंकगणितीय प्रगति को देखते हुए। इस प्रगति की दूसरी संख्या ज्ञात है: ए 2 = 5.ज्ञात प्रगति अंतर: डी = -2.5।हमें इस प्रगति के पहले, तीसरे, चौथे, पांचवें और छठे सदस्यों को खोजने की जरूरत है।

स्पष्टता के लिए, मैं समस्या की स्थिति के अनुसार एक श्रृंखला लिखूंगा। पहले छह सदस्य, जहां दूसरा सदस्य पांच है:

एक 1 , 5 , ए 3 , ए 4 , ए 5 , ए 6 ,....

एक 3 = एक 2 + डी

हम व्यंजक में स्थानापन्न करते हैं ए 2 = 5और घ=-2.5. माइनस मत भूलना!

एक 3=5+(-2,5)=5 - 2,5 = 2,5

तीसरा पद दूसरे से छोटा है। सब कुछ तार्किक है। यदि संख्या पिछले एक से अधिक है नकारात्मकमान, इसलिए संख्या स्वयं पिछले वाले से कम होगी। प्रगति घट रही है। ठीक है, आइए इसे ध्यान में रखते हैं।) हम अपनी श्रृंखला के चौथे सदस्य पर विचार करते हैं:

एक 4 = एक 3 + डी

एक 4=2,5+(-2,5)=2,5 - 2,5 = 0

एक 5 = एक 4 + डी

एक 5=0+(-2,5)= - 2,5

एक 6 = एक 5 + डी

एक 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

तो, तीसरे से छठे तक की शर्तों की गणना की गई है। इसके परिणामस्वरूप एक श्रृंखला हुई:

ए 1, 5, 2.5, 0, -2.5, -5, ....

यह पहला पद खोजने के लिए बनी हुई है एक 1प्रसिद्ध दूसरे के अनुसार। यह दूसरी दिशा में एक कदम है, बाईं ओर।) इसलिए, अंकगणितीय प्रगति का अंतर डीमें नहीं जोड़ा जाना चाहिए एक 2, ए ले लेना:

एक 1 = एक 2 - डी

एक 1=5-(-2,5)=5 + 2,5=7,5

यही सब है इसके लिए। कार्य प्रतिक्रिया:

7,5, 5, 2,5, 0, -2,5, -5, ...

गुजरते समय, मैं ध्यान देता हूं कि हमने इस कार्य को हल कर लिया है आवर्तकमार्ग। इस भयानक शब्द का अर्थ है, केवल, प्रगति के सदस्य की खोज पिछली (आसन्न) संख्या से।प्रगति के साथ काम करने के अन्य तरीकों पर बाद में चर्चा की जाएगी।

इस सरल कार्य से एक महत्वपूर्ण निष्कर्ष निकाला जा सकता है।

याद है:

यदि हम कम से कम एक सदस्य और एक अंकगणितीय प्रगति का अंतर जानते हैं, तो हम इस प्रगति के किसी भी सदस्य को ढूंढ सकते हैं।

याद है? यह सरल निष्कर्ष हमें इस विषय पर स्कूल पाठ्यक्रम की अधिकांश समस्याओं को हल करने की अनुमति देता है। सभी कार्य तीन मुख्य मापदंडों के इर्द-गिर्द घूमते हैं: एक अंकगणितीय प्रगति का सदस्य, एक प्रगति का अंतर, एक प्रगति के सदस्य की संख्या।हर चीज़।

बेशक, पिछले सभी बीजगणित रद्द नहीं किए गए हैं।) असमानताएं, समीकरण और अन्य चीजें प्रगति से जुड़ी हुई हैं। लेकिन प्रगति के अनुसार- सब कुछ तीन मापदंडों के इर्द-गिर्द घूमता है।

उदाहरण के लिए, इस विषय पर कुछ लोकप्रिय कार्यों पर विचार करें।

2. एक श्रृंखला के रूप में अंतिम अंकगणितीय प्रगति लिखें यदि n=5, d=0.4, और a 1=3.6 है।

यहाँ सब कुछ सरल है। सब कुछ पहले ही दिया जा चुका है। आपको यह याद रखने की आवश्यकता है कि अंकगणितीय प्रगति के सदस्यों की गणना कैसे की जाती है, गिनें और लिखें। यह सलाह दी जाती है कि कार्य की स्थिति में शब्दों को न छोड़ें: "अंतिम" और " एन = 5"। जब तक आप पूरी तरह से नीले रंग के न हों, तब तक गिनती न करने के लिए।) इस प्रगति में केवल 5 (पांच) सदस्य हैं:

ए 2 \u003d ए 1 + डी \u003d 3.6 + 0.4 \u003d 4

ए 3 \u003d ए 2 + डी \u003d 4 + 0.4 \u003d 4.4

एक 4 = एक 3 + डी = 4.4 + 0.4 = 4.8

एक 5 = एक 4 + डी = 4.8 + 0.4 = 5.2

उत्तर लिखना बाकी है:

3,6; 4; 4,4; 4,8; 5,2.

एक अन्य कार्य:

3. निर्धारित करें कि क्या संख्या 7 अंकगणितीय प्रगति (a n) का सदस्य होगा यदि ए 1 \u003d 4.1; घ = 1.2.

हम्म... कौन जानता है? किसी चीज को कैसे परिभाषित करें?

कैसे-कैसे ... हाँ, एक श्रंखला के रूप में प्रगति लिखिए और देखिए कि सात होंगे या नहीं! हमें यकीन है:

ए 2 \u003d ए 1 + डी \u003d 4.1 + 1.2 \u003d 5.3

ए 3 \u003d ए 2 + डी \u003d 5.3 + 1.2 \u003d 6.5

एक 4 = एक 3 + डी = 6.5 + 1.2 = 7.7

4,1; 5,3; 6,5; 7,7; ...

अब साफ तौर पर देखा जा रहा है कि हम सिर्फ सात के हैं के माध्यम से फिसल 6.5 और 7.7 के बीच! सात हमारी संख्याओं की श्रृंखला में शामिल नहीं हुए, और इसलिए, सात दी गई प्रगति के सदस्य नहीं होंगे।

उत्तर: नहीं।

और यहाँ GIA के वास्तविक संस्करण पर आधारित एक कार्य है:

4. अंकगणितीय प्रगति के कई क्रमागत सदस्यों को लिखा जाता है:

...; पंद्रह; एक्स; नौ; 6; ...

यहाँ अंत और शुरुआत के बिना एक श्रृंखला है। कोई सदस्य संख्या नहीं, कोई अंतर नहीं डी. ठीक है। समस्या को हल करने के लिए, एक अंकगणितीय प्रगति के अर्थ को समझना पर्याप्त है। आइए देखें और देखें कि हम क्या कर सकते हैं खोज करनाइस लाइन से? तीन मुख्य के पैरामीटर क्या हैं?

सदस्य संख्या? यहां एक भी नंबर नहीं है।

लेकिन तीन नंबर हैं और - ध्यान! - शब्द "लगातार"इस शर्त। इसका मतलब है कि संख्याएं बिना अंतराल के सख्ती से क्रम में हैं। क्या इस पंक्ति में दो हैं? पड़ोसीज्ञात संख्या? हाँ मेरे पास है! ये 9 और 6 हैं। अतः हम एक समान्तर श्रेणी के अंतर की गणना कर सकते हैं! हम छह . से घटाते हैं पहले कासंख्या, यानी नौ:

खाली जगह बाकी हैं। x के लिए पिछली संख्या कौन सी होगी? पंद्रह। तो x को सरल जोड़ द्वारा आसानी से पाया जा सकता है। अंकगणितीय प्रगति के अंतर को 15 में जोड़ें:

बस इतना ही। जवाब: एक्स = 12

हम निम्नलिखित समस्याओं को स्वयं हल करते हैं। नोट: ये पहेलियाँ फॉर्मूले के लिए नहीं हैं। विशुद्ध रूप से एक अंकगणितीय प्रगति के अर्थ को समझने के लिए।) हम केवल संख्या-अक्षरों की एक श्रृंखला लिखते हैं, देखते हैं और सोचते हैं।

5. समांतर श्रेणी का पहला धनात्मक पद ज्ञात कीजिए यदि a 5 = -3; घ = 1.1.

6. यह ज्ञात है कि संख्या 5.5 अंकगणितीय प्रगति (ए एन) का सदस्य है, जहां 1 = 1.6; डी = 1.3। इस सदस्य की संख्या n ज्ञात कीजिए।

7. यह ज्ञात है कि एक समांतर श्रेणी में 2 = 4; ए 5 \u003d 15.1। एक 3 खोजें।

8. अंकगणितीय प्रगति के कई क्रमागत सदस्यों को लिखा जाता है:

...; 15.6; एक्स; 3.4; ...

अक्षर x द्वारा निरूपित प्रगति का पद ज्ञात कीजिए।

9. ट्रेन ने स्टेशन से चलना शुरू किया, धीरे-धीरे अपनी गति 30 मीटर प्रति मिनट बढ़ा दी। पांच मिनट में ट्रेन की गति क्या होगी? अपना उत्तर किमी/घंटा में दें।

10. यह ज्ञात है कि एक समांतर श्रेणी में 2 = 5; एक 6 = -5। 1 . खोजें.

उत्तर (अव्यवस्था में): 7.7; 7.5; 9.5; नौ; 0.3; 4.

सब कुछ ठीक हो गया? अद्भुत! आप निम्न पाठों में उच्च स्तर पर अंकगणितीय प्रगति सीख सकते हैं।

क्या सब कुछ ठीक नहीं हुआ? कोई बात नहीं। विशेष धारा 555 में, इन सभी समस्याओं को टुकड़ों में तोड़ दिया गया है।) और निश्चित रूप से, एक सरल व्यावहारिक तकनीक का वर्णन किया गया है जो ऐसे कार्यों के समाधान को तुरंत स्पष्ट रूप से स्पष्ट रूप से उजागर करती है, जैसे आपके हाथ की हथेली में!

वैसे ट्रेन को लेकर पहेली में दो ऐसी समस्याएं हैं जिन पर अक्सर लोग ठोकर खा जाते हैं। एक - विशुद्ध रूप से प्रगति से, और दूसरा - गणित, और भौतिकी में भी किसी भी कार्य के लिए सामान्य। यह आयामों का एक से दूसरे में अनुवाद है। यह दिखाता है कि इन समस्याओं को कैसे हल किया जाना चाहिए।

इस पाठ में, हमने अंकगणितीय प्रगति के प्रारंभिक अर्थ और उसके मुख्य मापदंडों की जांच की। यह इस विषय पर लगभग सभी समस्याओं को हल करने के लिए पर्याप्त है। जोड़ें डीसंख्याओं के लिए, एक श्रृंखला लिखें, सब कुछ तय हो जाएगा।

श्रृंखला के बहुत छोटे टुकड़ों के लिए उंगली का समाधान अच्छी तरह से काम करता है, जैसा कि इस पाठ के उदाहरणों में है। यदि श्रृंखला लंबी है, तो गणना अधिक कठिन हो जाती है। उदाहरण के लिए, यदि प्रश्न में समस्या 9 में, प्रतिस्थापित करें "पाँच मिनट"पर "पैंतीस मिनट"समस्या और भी विकट हो जाएगी।)

और ऐसे कार्य भी हैं जो संक्षेप में सरल हैं, लेकिन गणना के संदर्भ में पूरी तरह से बेतुके हैं, उदाहरण के लिए:

एक अंकगणितीय प्रगति (ए एन) को देखते हुए। यदि a 1 =3 और d=1/6 हो तो 121 ज्ञात कीजिए।

और क्या, हम 1/6 कई, कई बार जोड़ेंगे ?! क्या खुद को मारना संभव है !?

आप कर सकते हैं।) यदि आप एक सरल सूत्र नहीं जानते हैं जिसके द्वारा आप ऐसे कार्यों को एक मिनट में हल कर सकते हैं। यह सूत्र अगले पाठ में होगा। और वह समस्या वहीं हल हो जाती है। एक मिनट में।)

अगर आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।

माध्यमिक विद्यालय (ग्रेड 9) में बीजगणित का अध्ययन करते समय, महत्वपूर्ण विषयों में से एक संख्यात्मक अनुक्रमों का अध्ययन है, जिसमें प्रगति शामिल है - ज्यामितीय और अंकगणित। इस लेख में, हम एक अंकगणितीय प्रगति और समाधान के साथ उदाहरणों पर विचार करेंगे।

एक अंकगणितीय प्रगति क्या है?

इसे समझने के लिए विचाराधीन प्रगति की परिभाषा देना आवश्यक है, साथ ही मूल सूत्र देना भी आवश्यक है जो आगे चलकर समस्याओं को हल करने में काम आएगा।

यह ज्ञात है कि कुछ बीजीय प्रगति में पहला पद 6 के बराबर है, और 7 वां पद 18 के बराबर है। अंतर को खोजना और इस क्रम को 7 वें पद पर पुनर्स्थापित करना आवश्यक है।

आइए अज्ञात शब्द निर्धारित करने के लिए सूत्र का उपयोग करें: a n = (n - 1) * d + a 1 । हम स्थिति से ज्ञात डेटा को इसमें स्थानापन्न करते हैं, अर्थात संख्या 1 और 7, हमारे पास है: 18 \u003d 6 + 6 * d। इस व्यंजक से, आप आसानी से अंतर की गणना कर सकते हैं: d = (18 - 6) / 6 = 2। इस प्रकार, समस्या के पहले भाग का उत्तर दिया गया था।

7वें सदस्य के अनुक्रम को पुनर्स्थापित करने के लिए, आपको बीजगणितीय प्रगति की परिभाषा का उपयोग करना चाहिए, अर्थात, 2 = a 1 + d, a 3 = a 2 + d, और इसी तरह। नतीजतन, हम पूरे अनुक्रम को पुनर्स्थापित करते हैं: एक 1 = 6, एक 2 = 6 + 2=8, एक 3 = 8 + 2 = 10, एक 4 = 10 + 2 = 12, एक 5 = 12 + 2 = 14 , एक 6 = 14 + 2 = 16 और 7 = 18।

उदाहरण #3: प्रगति करना

आइए समस्या की स्थिति को और भी जटिल करें। अब आपको इस प्रश्न का उत्तर देना है कि अंकगणितीय प्रगति कैसे ज्ञात की जाए। निम्नलिखित उदाहरण दिया जा सकता है: दो संख्याएँ दी गई हैं, उदाहरण के लिए, 4 और 5। बीजगणितीय प्रगति करना आवश्यक है ताकि इनके बीच तीन और शब्द रखे जा सकें।

इस समस्या को हल करने से पहले, यह समझना आवश्यक है कि भविष्य की प्रगति में दी गई संख्याएं किस स्थान पर होंगी। चूँकि उनके बीच तीन और शब्द होंगे, तो 1 \u003d -4 और 5 \u003d 5। इसे स्थापित करने के बाद, हम उस कार्य के लिए आगे बढ़ते हैं जो पिछले एक के समान है। फिर से, nवें पद के लिए, हम सूत्र का उपयोग करते हैं, हमें मिलता है: a 5 \u003d a 1 + 4 * d। प्रेषक: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25। यहाँ अंतर एक पूर्णांक मान नहीं है, बल्कि यह एक परिमेय संख्या है, इसलिए बीजगणितीय प्रगति के सूत्र समान रहते हैं।

अब हम पाए गए अंतर को 1 में जोड़ते हैं और प्रगति के लापता सदस्यों को पुनर्स्थापित करते हैं। हमें मिलता है: ए 1 = - 4, ए 2 = - 4 + 2.25 = - 1.75, ए 3 = -1.75 + 2.25 = 0.5, 4 = 0.5 + 2.25 = 2.75, ए 5 \u003d 2.75 + 2.25 \u003d 5, जो समस्या की स्थिति से मेल खाता है।

उदाहरण #4: प्रगति का पहला सदस्य

हम हल के साथ अंकगणितीय प्रगति के उदाहरण देना जारी रखते हैं। पिछली सभी समस्याओं में, बीजीय प्रगति की पहली संख्या ज्ञात थी। अब एक अलग प्रकार की समस्या पर विचार करें: दो संख्याएँ दी गई हैं, जहाँ एक 15 = 50 और एक 43 = 37 है। यह पता लगाना आवश्यक है कि यह क्रम किस संख्या से शुरू होता है।

अब तक जो सूत्र प्रयोग किए गए हैं वे 1 और d का ज्ञान ग्रहण करते हैं। समस्या की स्थिति में इन नंबरों के बारे में कुछ पता नहीं है। फिर भी, आइए प्रत्येक पद के लिए व्यंजक लिखें जिसके बारे में हमें जानकारी है: a 15 = a 1 + 14 * d और a 43 = a 1 + 42 * d। हमें दो समीकरण मिले जिनमें 2 अज्ञात मात्राएँ (a 1 और d) हैं। इसका मतलब है कि समस्या रैखिक समीकरणों की एक प्रणाली को हल करने के लिए कम हो गई है।

निर्दिष्ट प्रणाली को हल करना सबसे आसान है यदि आप प्रत्येक समीकरण में 1 व्यक्त करते हैं, और फिर परिणामी अभिव्यक्तियों की तुलना करते हैं। पहला समीकरण: a 1 = a 15 - 14 * d = 50 - 14 * d; दूसरा समीकरण: ए 1 \u003d ए 43 - 42 * डी \u003d 37 - 42 * डी। इन भावों की बराबरी करते हुए, हमें मिलता है: 50 - 14 * डी \u003d 37 - 42 * डी, जहाँ से अंतर d \u003d (37 - 50) / (42 - 14) \u003d - 0.464 (केवल 3 दशमलव स्थान दिए गए हैं)।

d को जानने के बाद, आप 1 के लिए ऊपर दिए गए 2 भावों में से किसी का भी उपयोग कर सकते हैं। उदाहरण के लिए, पहला: ए 1 \u003d 50 - 14 * डी \u003d 50 - 14 * (- 0.464) \u003d 56.496।

यदि परिणाम के बारे में संदेह है, तो आप इसकी जांच कर सकते हैं, उदाहरण के लिए, प्रगति के 43 वें सदस्य को निर्धारित करें, जो कि स्थिति में निर्दिष्ट है। हमें मिलता है: एक 43 \u003d ए 1 + 42 * डी \u003d 56.496 + 42 * (- 0.464) \u003d 37.008। एक छोटी सी त्रुटि इस तथ्य के कारण है कि गणना में गोलाई से हजारवें हिस्से का उपयोग किया गया था।

उदाहरण #5: योग

आइए अब अंकगणितीय प्रगति के योग के समाधान के साथ कुछ उदाहरण देखें।

मान लीजिए कि निम्नलिखित रूप की संख्यात्मक प्रगति दी गई है: 1, 2, 3, 4, ...,। इन संख्याओं में से 100 के योग की गणना कैसे करें?

कंप्यूटर प्रौद्योगिकी के विकास के लिए धन्यवाद, इस समस्या को हल किया जा सकता है, अर्थात्, क्रमिक रूप से सभी नंबरों को जोड़ दें, जो कि जैसे ही कोई व्यक्ति एंटर कुंजी दबाता है, कंप्यूटर करेगा। हालाँकि, समस्या को मानसिक रूप से हल किया जा सकता है यदि आप ध्यान दें कि संख्याओं की प्रस्तुत श्रृंखला एक बीजगणितीय प्रगति है, और इसका अंतर 1 है। योग के सूत्र को लागू करने पर, हम प्राप्त करते हैं: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050।

यह ध्यान देने योग्य है कि इस समस्या को "गॉसियन" कहा जाता है, क्योंकि 18 वीं शताब्दी की शुरुआत में प्रसिद्ध जर्मन, अभी भी केवल 10 वर्ष की आयु में, कुछ ही सेकंड में इसे अपने दिमाग में हल करने में सक्षम था। लड़के को बीजगणितीय प्रगति के योग का सूत्र नहीं पता था, लेकिन उसने देखा कि यदि आप अनुक्रम के किनारों पर स्थित संख्याओं के जोड़े जोड़ते हैं, तो आपको हमेशा एक ही परिणाम मिलता है, अर्थात 1 + 100 = 2 + 99 = 3 + 98 = ..., और चूंकि ये योग ठीक 50 (100/2) होंगे, तो सही उत्तर प्राप्त करने के लिए, यह 50 को 101 से गुणा करने के लिए पर्याप्त है।

उदाहरण #6: n से m . तक के पदों का योग

अंकगणितीय प्रगति के योग का एक अन्य विशिष्ट उदाहरण निम्नलिखित है: संख्याओं की एक श्रृंखला दी गई है: 3, 7, 11, 15, ..., आपको यह पता लगाना होगा कि 8 से 14 तक के पदों का योग क्या होगा।

समस्या का समाधान दो तरह से होता है। उनमें से पहले में 8 से 14 तक अज्ञात शब्दों को खोजना और फिर उन्हें क्रमिक रूप से जोड़ना शामिल है। चूंकि कुछ शब्द हैं, इसलिए यह विधि पर्याप्त श्रमसाध्य नहीं है। फिर भी, इस समस्या को दूसरी विधि द्वारा हल करने का प्रस्ताव है, जो अधिक सार्वभौमिक है।

विचार m और n के बीच बीजीय प्रगति के योग के लिए एक सूत्र प्राप्त करना है, जहां n> m पूर्णांक हैं। दोनों स्थितियों के लिए, हम योग के लिए दो व्यंजक लिखते हैं:

  1. एस एम \u003d एम * (ए एम + ए 1) / 2।
  2. एस एन \u003d एन * (ए एन + ए 1) / 2।

चूंकि n > m, यह स्पष्ट है कि 2 योग में पहली राशि शामिल है। अंतिम निष्कर्ष का अर्थ है कि यदि हम इन योगों के बीच के अंतर को लेते हैं, और इसमें शब्द m जोड़ते हैं (अंतर लेने की स्थिति में, इसे योग S n से घटाया जाता है), तो हमें समस्या का आवश्यक उत्तर मिलता है। हमारे पास है: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + ए एन * एन / 2 + ए एम * (1- एम / 2)। इस व्यंजक में n और m के लिए सूत्रों को स्थानापन्न करना आवश्यक है। तब हम प्राप्त करते हैं: एस एमएन = ए 1 * (एन - एम) / 2 + एन * (ए 1 + (एन -1) * डी) / 2 + (ए 1 + (एम -1) * डी) * (1 - एम / 2) = ए 1 * (एन - एम + 1) + डी * एन * (एन -1) / 2 + डी * (3 * एम - एम 2 - 2) / 2।

परिणामी सूत्र कुछ बोझिल है, हालांकि, योग S mn केवल n, m, a 1 और d पर निर्भर करता है। हमारे मामले में, a 1 = 3, d = 4, n = 14, m = 8. इन संख्याओं को प्रतिस्थापित करने पर, हम प्राप्त करते हैं: S mn = 301।

जैसा कि उपरोक्त समाधानों से देखा जा सकता है, सभी समस्याएँ nवें पद के व्यंजक के ज्ञान और प्रथम पदों के समुच्चय के योग के सूत्र पर आधारित हैं। इससे पहले कि आप इनमें से किसी भी समस्या को हल करना शुरू करें, यह अनुशंसा की जाती है कि आप शर्त को ध्यान से पढ़ें, स्पष्ट रूप से समझें कि आप क्या खोजना चाहते हैं, और उसके बाद ही समाधान के साथ आगे बढ़ें।

एक और युक्ति सरलता के लिए प्रयास करना है, अर्थात, यदि आप जटिल गणितीय गणनाओं का उपयोग किए बिना प्रश्न का उत्तर दे सकते हैं, तो आपको बस यही करने की आवश्यकता है, क्योंकि इस मामले में गलती करने की संभावना कम है। उदाहरण के लिए, समाधान संख्या 6 के साथ अंकगणितीय प्रगति के उदाहरण में, कोई सूत्र S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, पर रुक सकता है। और सामान्य कार्य को अलग-अलग उप-कार्यों में विभाजित करें (इस मामले में, पहले n और m शब्द खोजें)।

यदि प्राप्त परिणाम के बारे में संदेह है, तो इसकी जांच करने की सिफारिश की जाती है, जैसा कि दिए गए कुछ उदाहरणों में किया गया था। एक अंकगणितीय प्रगति कैसे खोजें, पता चला। एक बार जब आप इसे समझ लेते हैं, तो यह इतना कठिन नहीं होता है।

अंकगणितीय प्रगतिसंख्याओं के अनुक्रम को नाम दें (प्रगति के सदस्य)

जिसमें प्रत्येक अनुवर्ती पद पिछले एक से एक स्टील शब्द से भिन्न होता है, जिसे भी कहा जाता है कदम या प्रगति अंतर.

इस प्रकार, प्रगति का चरण और उसका पहला पद निर्धारित करके, आप सूत्र का उपयोग करके इसके किसी भी तत्व को पा सकते हैं

एक अंकगणितीय प्रगति के गुण

1) अंकगणितीय प्रगति का प्रत्येक सदस्य, दूसरी संख्या से शुरू होकर, प्रगति के पिछले और अगले सदस्य का अंकगणितीय माध्य है

इसका उलटा भी सच है। यदि प्रगति के पड़ोसी विषम (सम) सदस्यों का अंकगणितीय माध्य उनके बीच खड़े सदस्य के बराबर है, तो संख्याओं का यह क्रम एक अंकगणितीय प्रगति है। इस कथन से किसी भी क्रम की जाँच करना बहुत आसान है।

साथ ही अंकगणितीय प्रगति की संपत्ति से, उपरोक्त सूत्र को निम्नलिखित के लिए सामान्यीकृत किया जा सकता है

यह सत्यापित करना आसान है कि क्या हम शब्दों को समान चिह्न के दाईं ओर लिखते हैं

समस्याओं में गणना को सरल बनाने के लिए इसका उपयोग अक्सर अभ्यास में किया जाता है।

2) अंकगणितीय प्रगति के पहले n पदों के योग की गणना सूत्र द्वारा की जाती है

अंकगणितीय प्रगति के योग के सूत्र को अच्छी तरह याद रखें, यह गणनाओं में अपरिहार्य है और साधारण जीवन स्थितियों में काफी सामान्य है।

3) यदि आपको संपूर्ण योग नहीं, बल्कि उसके k -वें सदस्य से शुरू होने वाले अनुक्रम का एक भाग खोजने की आवश्यकता है, तो निम्न योग सूत्र आपके काम आएगा

4) व्यावहारिक रुचि k-वें संख्या से शुरू होने वाली अंकगणितीय प्रगति के n सदस्यों का योग ज्ञात करना है। ऐसा करने के लिए, सूत्र का उपयोग करें

यह वह जगह है जहां सैद्धांतिक सामग्री समाप्त होती है और हम उन समस्याओं को हल करने के लिए आगे बढ़ते हैं जो व्यवहार में आम हैं।

उदाहरण 1. समांतर श्रेणी 4;7;... का चालीसवाँ पद ज्ञात कीजिए।

फेसला:

शर्त के अनुसार, हमारे पास है

प्रगति चरण को परिभाषित करें

सुप्रसिद्ध सूत्र के अनुसार, हम प्रगति का चालीसवाँ पद पाते हैं

उदाहरण 2। अंकगणितीय प्रगति इसके तीसरे और सातवें सदस्यों द्वारा दी गई है। प्रगति का पहला पद और दस का योग ज्ञात कीजिए।

फेसला:

हम दिए गए अनुक्रम के तत्वों को सूत्रों के अनुसार लिखते हैं

हम पहले समीकरण को दूसरे समीकरण से घटाते हैं, परिणामस्वरूप हम प्रगति चरण पाते हैं

अंकगणितीय प्रगति के पहले पद को खोजने के लिए पाया गया मान किसी भी समीकरण में प्रतिस्थापित किया जाता है

प्रगति के पहले दस पदों के योग की गणना करें

जटिल गणनाओं को लागू किए बिना, हमें सभी आवश्यक मान मिल गए।

उदाहरण 3. हर और उसके एक सदस्य द्वारा एक समांतर श्रेणी दी गई है। प्रगति का पहला पद, 50 से शुरू होने वाले उसके 50 पदों का योग और पहले 100 का योग ज्ञात कीजिए।

फेसला:

आइए प्रगति के सौवें तत्व का सूत्र लिखें

और पहले खोजें

पहले के आधार पर, हम प्रगति का 50वाँ पद पाते हैं

प्रगति के भाग का योग ज्ञात करना

और पहले 100 . का योग

प्रगति का योग 250 है।

उदाहरण 4

एक समान्तर श्रेणी के सदस्यों की संख्या ज्ञात कीजिए यदि:

a3-a1=8, a2+a4=14, Sn=111.

फेसला:

हम समीकरणों को पहले पद और प्रगति के चरण के रूप में लिखते हैं और उन्हें परिभाषित करते हैं

हम योग में सदस्यों की संख्या निर्धारित करने के लिए प्राप्त मूल्यों को योग सूत्र में प्रतिस्थापित करते हैं

सरलीकरण करना

और द्विघात समीकरण को हल करें

पाए गए दो मूल्यों में से केवल संख्या 8 समस्या की स्थिति के लिए उपयुक्त है। इस प्रकार प्रगति के पहले आठ पदों का योग 111 है।

उदाहरण 5

प्रश्न हल करें

1+3+5+...+x=307.

हल: यह समीकरण एक समान्तर श्रेणी का योग है। हम इसका पहला पद लिखते हैं और प्रगति का अंतर पाते हैं

इससे पहले कि हम फैसला करना शुरू करें अंकगणितीय प्रगति की समस्या, विचार करें कि एक संख्या अनुक्रम क्या है, क्योंकि एक अंकगणितीय प्रगति एक संख्या अनुक्रम का एक विशेष मामला है।

एक संख्यात्मक अनुक्रम एक संख्यात्मक सेट है, जिसके प्रत्येक तत्व का अपना क्रमांक होता है. इस सेट के तत्वों को अनुक्रम के सदस्य कहा जाता है। अनुक्रम तत्व की क्रमिक संख्या एक सूचकांक द्वारा इंगित की जाती है:

अनुक्रम का पहला तत्व;

अनुक्रम का पाँचवाँ तत्व;

- अनुक्रम का "nth" तत्व, अर्थात। तत्व "कतार में खड़ा" नंबर n पर।

एक अनुक्रम तत्व के मूल्य और उसकी क्रमिक संख्या के बीच एक निर्भरता है। इसलिए, हम एक अनुक्रम को एक फ़ंक्शन के रूप में मान सकते हैं जिसका तर्क अनुक्रम के एक तत्व की क्रमिक संख्या है। दूसरे शब्दों में, कोई कह सकता है कि अनुक्रम प्राकृतिक तर्क का एक कार्य है:

अनुक्रम को तीन तरीकों से निर्दिष्ट किया जा सकता है:

1 . अनुक्रम को एक तालिका का उपयोग करके निर्दिष्ट किया जा सकता है।इस मामले में, हम केवल अनुक्रम के प्रत्येक सदस्य का मान निर्धारित करते हैं।

उदाहरण के लिए, किसी ने व्यक्तिगत समय प्रबंधन करने का फैसला किया, और शुरुआत करने के लिए, सप्ताह के दौरान गिनें कि वह VKontakte पर कितना समय बिताता है। समय को एक तालिका में लिखने से उसे सात तत्वों का एक क्रम प्राप्त होगा:

तालिका की पहली पंक्ति में सप्ताह के दिनों की संख्या होती है, दूसरी - मिनटों में समय। हम देखते हैं कि, यानी सोमवार को किसी ने VKontakte पर 125 मिनट बिताए, यानी गुरुवार को - 248 मिनट, और, यानी शुक्रवार को, केवल 15।

2 . अनुक्रम को nवें सदस्य सूत्र का उपयोग करके निर्दिष्ट किया जा सकता है।

इस मामले में, अनुक्रम तत्व के मूल्य की संख्या पर निर्भरता सीधे सूत्र के रूप में व्यक्त की जाती है।

उदाहरण के लिए, यदि , तो

किसी दी गई संख्या के साथ अनुक्रम तत्व का मान ज्ञात करने के लिए, हम तत्व संख्या को nवें सदस्य के सूत्र में प्रतिस्थापित करते हैं।

हम ऐसा ही करते हैं यदि हमें किसी फ़ंक्शन का मान ज्ञात करने की आवश्यकता है यदि तर्क का मान ज्ञात है। हम फ़ंक्शन के समीकरण के बजाय तर्क के मान को प्रतिस्थापित करते हैं:

यदि, उदाहरण के लिए, , तब

एक बार फिर, मैं ध्यान देता हूं कि एक क्रम में, एक मनमाना संख्यात्मक कार्य के विपरीत, केवल एक प्राकृतिक संख्या एक तर्क हो सकती है।

3 . अनुक्रम को एक सूत्र का उपयोग करके निर्दिष्ट किया जा सकता है जो पिछले सदस्यों के मूल्य पर संख्या n के साथ अनुक्रम के सदस्य के मूल्य की निर्भरता को व्यक्त करता है। इस मामले में, हमारे लिए इसका मूल्य ज्ञात करने के लिए केवल अनुक्रम सदस्य की संख्या जानना पर्याप्त नहीं है। हमें अनुक्रम के पहले सदस्य या पहले कुछ सदस्यों को निर्दिष्ट करने की आवश्यकता है।

उदाहरण के लिए, अनुक्रम पर विचार करें ,

हम अनुक्रम के सदस्यों के मान पा सकते हैं क्रम में, तीसरे से शुरू:

अर्थात्, हर बार अनुक्रम के nवें सदस्य का मान ज्ञात करने के लिए, हम पिछले दो पर लौटते हैं। अनुक्रमण के इस तरीके को कहा जाता है आवर्तक, लैटिन शब्द . से पुनरावर्ती- वापस लौटें।

अब हम एक अंकगणितीय प्रगति को परिभाषित कर सकते हैं। एक अंकगणितीय प्रगति एक संख्यात्मक अनुक्रम का एक साधारण विशेष मामला है।

अंकगणितीय प्रगति एक संख्यात्मक अनुक्रम कहा जाता है, जिसका प्रत्येक सदस्य, दूसरे से शुरू होकर, पिछले एक के बराबर होता है, उसी संख्या के साथ जोड़ा जाता है।


नंबर कहा जाता है एक अंकगणितीय प्रगति का अंतर. अंकगणितीय प्रगति का अंतर धनात्मक, ऋणात्मक या शून्य हो सकता है।

अगर शीर्षक = "(!LANG:d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} की बढ़ती.

उदाहरण के लिए, 2; 5; आठ; ग्यारह;...

यदि , तो समांतर श्रेणी का प्रत्येक पद पिछले वाले से छोटा है, और प्रगति है घट.

उदाहरण के लिए, 2; -एक; -4; -7;...

यदि , तो प्रगति के सभी सदस्य समान संख्या के बराबर हैं, और प्रगति है अचल.

उदाहरण के लिए, 2;2;2;2;...

अंकगणितीय प्रगति की मुख्य संपत्ति:

आइए तस्वीर को देखें।

हमने देखा कि

, और उस समय पर ही

इन दो समानताओं को जोड़ने पर, हम प्राप्त करते हैं:

.

समीकरण के दोनों पक्षों को 2 से विभाजित करें:

तो, अंकगणितीय प्रगति का प्रत्येक सदस्य, दूसरे से शुरू होकर, दो पड़ोसी लोगों के अंकगणितीय माध्य के बराबर है:

इसके अलावा, क्योंकि

, और उस समय पर ही

, तब

, और इसलिए

शीर्षक से शुरू होने वाली अंकगणितीय प्रगति का प्रत्येक सदस्य = "(!LANG:k>l">, равен среднему арифметическому двух равноотстоящих. !}

वें सदस्य सूत्र।

हम देखते हैं कि अंकगणितीय प्रगति के सदस्यों के लिए, निम्नलिखित संबंध हैं:

और अंत में

हमें मिला nवें पद का सूत्र।

जरूरी!अंकगणितीय प्रगति के किसी भी सदस्य को और के रूप में व्यक्त किया जा सकता है। पहले पद और अंकगणितीय प्रगति के अंतर को जानने के बाद, आप इसके किसी भी सदस्य को ढूंढ सकते हैं।

अंकगणितीय प्रगति के n सदस्यों का योग।

एक मनमानी अंकगणितीय प्रगति में, चरम पदों से समान दूरी वाले पदों का योग एक दूसरे के बराबर होता है:

n सदस्यों के साथ एक अंकगणितीय प्रगति पर विचार करें। मान लीजिए कि इस प्रगति के n सदस्यों का योग बराबर है।

प्रगति के पदों को पहले संख्याओं के आरोही क्रम में और फिर अवरोही क्रम में व्यवस्थित करें:

आइए इसे जोड़ते हैं:

प्रत्येक कोष्ठक में योग है, युग्मों की संख्या n है।

हम पाते हैं:

इसलिए, एक अंकगणितीय प्रगति के n सदस्यों का योग सूत्रों का उपयोग करके पाया जा सकता है:

विचार करना अंकगणितीय प्रगति की समस्याओं को हल करना.

1 . अनुक्रम nवें पद के सूत्र द्वारा दिया गया है: . सिद्ध कीजिए कि यह क्रम एक समांतर श्रेढ़ी है।

आइए हम सिद्ध करें कि अनुक्रम के दो आसन्न सदस्यों के बीच का अंतर समान संख्या के बराबर है।

हमने प्राप्त किया है कि अनुक्रम के दो आसन्न सदस्यों का अंतर उनकी संख्या पर निर्भर नहीं करता है और एक अचर है। इसलिए, परिभाषा के अनुसार, यह अनुक्रम एक अंकगणितीय प्रगति है।

2 . एक समांतर श्रेणी को देखते हुए -31; -27;...

a) प्रगति के 31 पद ज्ञात कीजिए।

बी) निर्धारित करें कि क्या संख्या 41 इस प्रगति में शामिल है।

ए)हमने देखा कि ;

आइए अपनी प्रगति के लिए nवें पद का सूत्र लिखें।

सामान्य रूप में

हमारे मामले में , इसीलिए