Ekspresi dengan logaritma dalam kekuatan. Memecahkan persamaan logaritma

Hari ini kita akan berbicara tentang rumus logaritma dan memberikan demonstrasi contoh solusi.

Dengan sendirinya, mereka menyiratkan pola solusi sesuai dengan sifat dasar logaritma. Sebelum menerapkan rumus logaritma ke solusi, kami ingatkan untuk Anda, pertama-tama semua properti:

Sekarang, berdasarkan rumus (properti) ini, kami menunjukkan contoh penyelesaian logaritma.

Contoh penyelesaian logaritma berdasarkan rumus.

Logaritma bilangan positif b pada basis a (dilambangkan log a b) adalah eksponen di mana a harus dinaikkan untuk mendapatkan b, dengan b > 0, a > 0, dan 1.

Menurut definisi log a b = x, yang ekivalen dengan a x = b, maka log a a x = x.

logaritma, contoh:

log 2 8 = 3, karena 2 3 = 8

log 7 49 = 2 karena 7 2 = 49

log 5 1/5 = -1, karena 5 -1 = 1/5

logaritma desimal adalah logaritma biasa, yang basisnya adalah 10. Dilambangkan sebagai lg.

log 10 100 = 2 karena 10 2 = 100

logaritma natural- juga logaritma logaritma biasa, tetapi dengan basis e (e \u003d 2,71828 ... - bilangan irasional). Disebut sebagai ln.

Diinginkan untuk mengingat rumus atau sifat logaritma, karena kita akan membutuhkannya nanti saat menyelesaikan logaritma, persamaan logaritma, dan pertidaksamaan. Mari kita bekerja melalui setiap formula lagi dengan contoh.

  • Identitas logaritma dasar
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritma produk sama dengan jumlah logaritma
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • Logaritma hasil bagi sama dengan selisih logaritma
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Sifat-sifat derajat suatu bilangan logaritma dan basis logaritma

    Eksponen bilangan logaritma log a b m = mlog a b

    Eksponen basis logaritma log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    jika m = n, kita mendapatkan log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Transisi ke yayasan baru
    log a b = log c b / log c a,

    jika c = b, kita mendapatkan log b b = 1

    maka log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Seperti yang Anda lihat, rumus logaritma tidak serumit kelihatannya. Sekarang, setelah mempertimbangkan contoh penyelesaian logaritma, kita dapat beralih ke persamaan logaritmik. Kami akan mempertimbangkan contoh penyelesaian persamaan logaritmik secara lebih rinci dalam artikel: "". Jangan lewatkan!

Jika Anda memiliki pertanyaan tentang solusinya, tulis di komentar di artikel.

Catatan: memutuskan untuk mendapatkan pendidikan studi kelas lain di luar negeri sebagai pilihan.

Dengan perkembangan masyarakat, kompleksitas produksi, matematika juga berkembang. Gerakan dari sederhana ke kompleks. Dari metode penghitungan penjumlahan dan pengurangan yang biasa, dengan pengulangan yang berulang-ulang, mereka sampai pada konsep perkalian dan pembagian. Pengurangan operasi perkalian berulang menjadi konsep eksponensial. Tabel pertama ketergantungan angka pada basis dan jumlah eksponensial disusun kembali pada abad ke-8 oleh ahli matematika India Varasena. Dari mereka, Anda dapat menghitung waktu terjadinya logaritma.

Garis besar sejarah

Kebangkitan Eropa pada abad ke-16 juga mendorong perkembangan mekanika. T membutuhkan sejumlah besar perhitungan berhubungan dengan perkalian dan pembagian bilangan multi-digit. Tabel kuno melakukan layanan hebat. Mereka memungkinkan untuk mengganti operasi kompleks dengan yang lebih sederhana - penambahan dan pengurangan. Sebuah langkah maju yang besar adalah karya matematikawan Michael Stiefel, yang diterbitkan pada tahun 1544, di mana ia mewujudkan gagasan banyak matematikawan. Ini memungkinkan untuk menggunakan tabel tidak hanya untuk derajat dalam bentuk bilangan prima, tetapi juga untuk bilangan rasional arbitrer.

Pada tahun 1614, orang Skotlandia John Napier, yang mengembangkan ide-ide ini, pertama kali memperkenalkan istilah baru "logaritma suatu bilangan". Tabel kompleks baru dikompilasi untuk menghitung logaritma sinus dan cosinus, serta garis singgung. Ini sangat mengurangi pekerjaan para astronom.

Tabel baru mulai muncul, yang berhasil digunakan oleh para ilmuwan selama tiga abad. Banyak waktu berlalu sebelum operasi baru dalam aljabar memperoleh bentuk akhirnya. Logaritma didefinisikan dan sifat-sifatnya dipelajari.

Baru pada abad ke-20, dengan munculnya kalkulator dan komputer, umat manusia meninggalkan meja-meja kuno yang telah berhasil beroperasi sepanjang abad ke-13.

Hari ini kita memanggil logaritma b untuk mendasarkan a bilangan x, yang merupakan pangkat dari a, untuk mendapatkan bilangan b. Ini ditulis sebagai rumus: x = log a(b).

Misalnya, log 3(9) akan sama dengan 2. Ini jelas jika Anda mengikuti definisi. Jika kita menaikkan 3 pangkat 2, kita mendapatkan 9.

Dengan demikian, definisi yang dirumuskan hanya menempatkan satu batasan, angka a dan b harus nyata.

Varietas logaritma

Definisi klasik disebut logaritma real dan sebenarnya merupakan solusi dari persamaan a x = b. Opsi a = 1 adalah batas dan tidak menarik. Catatan: 1 pangkat berapa pun adalah 1.

Nilai nyata dari logaritma didefinisikan hanya jika basis dan argumen lebih besar dari 0, dan basis tidak boleh sama dengan 1.

Tempat khusus di bidang matematika mainkan logaritma, yang akan dinamai tergantung pada nilai basisnya:

Aturan dan batasan

Sifat dasar logaritma adalah aturannya: logaritma suatu produk sama dengan jumlah logaritma. log abp = log a(b) + log a(p).

Sebagai varian dari pernyataan ini, itu akan menjadi: log c (b / p) \u003d log c (b) - log c (p), fungsi hasil bagi sama dengan perbedaan fungsi.

Sangat mudah untuk melihat dari dua aturan sebelumnya bahwa: log a(b p) = p * log a(b).

Properti lainnya termasuk:

Komentar. Jangan membuat kesalahan umum - logaritma jumlah tidak sama dengan jumlah logaritma.

Selama berabad-abad, operasi menemukan logaritma adalah tugas yang agak memakan waktu. Matematikawan menggunakan rumus terkenal dari teori ekspansi logaritmik menjadi polinomial:

ln (1 + x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 + ... + ((-1)^(n + 1))* (( x^n)/n), di mana n adalah bilangan asli yang lebih besar dari 1, yang menentukan keakuratan perhitungan.

Logaritma dengan basis lain dihitung menggunakan teorema transisi dari satu basis ke basis lain dan properti logaritma produk.

Karena metode ini sangat melelahkan dan saat memecahkan masalah praktis sulit untuk diterapkan, mereka menggunakan tabel logaritma yang telah dikompilasi sebelumnya, yang sangat mempercepat seluruh pekerjaan.

Dalam beberapa kasus, grafik logaritma yang dikompilasi secara khusus digunakan, yang memberikan akurasi yang lebih rendah, tetapi secara signifikan mempercepat pencarian nilai yang diinginkan. Kurva fungsi y = log a(x), dibangun di atas beberapa titik, memungkinkan penggunaan penggaris biasa untuk menemukan nilai fungsi di titik lain. Untuk waktu yang lama, para insinyur menggunakan apa yang disebut kertas grafik untuk tujuan ini.

Pada abad ke-17, kondisi komputasi analog tambahan pertama muncul, yang pada abad ke-19 telah memperoleh bentuk yang sudah jadi. Perangkat yang paling sukses disebut aturan slide. Terlepas dari kesederhanaan perangkat, penampilannya secara signifikan mempercepat proses semua perhitungan teknik, dan sulit untuk melebih-lebihkan ini. Saat ini, hanya sedikit orang yang akrab dengan perangkat ini.

Munculnya kalkulator dan komputer membuatnya tidak ada gunanya menggunakan perangkat lain.

Persamaan dan pertidaksamaan

Rumus berikut digunakan untuk menyelesaikan berbagai persamaan dan pertidaksamaan menggunakan logaritma:

  • Transisi dari satu basis ke basis lainnya: log a(b) = log c(b) / log c(a);
  • Sebagai konsekuensi dari versi sebelumnya: log a(b) = 1 / log b(a).

Untuk menyelesaikan pertidaksamaan, perlu diketahui:

  • Nilai logaritma hanya akan positif jika basis dan argumen keduanya lebih besar atau lebih kecil dari satu; jika setidaknya satu kondisi dilanggar, nilai logaritma akan negatif.
  • Jika fungsi logaritma diterapkan ke sisi kanan dan kiri pertidaksamaan, dan basis logaritma lebih besar dari satu, maka tanda pertidaksamaan dipertahankan; jika tidak, itu berubah.

Contoh tugas

Pertimbangkan beberapa opsi untuk menggunakan logaritma dan propertinya. Contoh dengan menyelesaikan persamaan:

Pertimbangkan opsi untuk menempatkan logaritma dalam derajat:

  • Tugas 3. Hitung 25^log 5(3). Solusi: dalam kondisi soal, notasinya mirip dengan berikut (5^2)^log5(3) atau 5^(2 * log 5(3)). Mari kita tulis secara berbeda: 5^log 5(3*2), atau kuadrat suatu bilangan sebagai argumen fungsi dapat ditulis sebagai kuadrat dari fungsi itu sendiri (5^log 5(3))^2. Menggunakan properti logaritma, ekspresi ini adalah 3^2. Jawaban: dari hasil perhitungan kita mendapatkan 9.

Penggunaan praktis

Menjadi alat matematika murni, tampaknya jauh dari kehidupan nyata bahwa logaritma tiba-tiba menjadi sangat penting dalam menggambarkan objek di dunia nyata. Sulit untuk menemukan ilmu yang tidak digunakan. Ini sepenuhnya berlaku tidak hanya untuk alam, tetapi juga untuk bidang pengetahuan humaniora.

Ketergantungan logaritmik

Berikut adalah beberapa contoh dependensi numerik:

Mekanika dan fisika

Secara historis, mekanika dan fisika selalu berkembang dengan menggunakan metode penelitian matematika dan pada saat yang sama menjadi pendorong bagi perkembangan matematika, termasuk logaritma. Teori sebagian besar hukum fisika ditulis dalam bahasa matematika. Kami hanya memberikan dua contoh deskripsi hukum fisika menggunakan logaritma.

Dimungkinkan untuk memecahkan masalah penghitungan jumlah yang kompleks seperti kecepatan roket menggunakan rumus Tsiolkovsky, yang meletakkan dasar bagi teori eksplorasi ruang angkasa:

V = I * ln(M1/M2), dimana

  • V adalah kecepatan akhir pesawat.
  • I adalah impuls spesifik dari mesin.
  • M 1 adalah massa awal roket.
  • M 2 - massa akhir.

Contoh penting lainnya- ini adalah penggunaan rumus ilmuwan hebat lainnya, Max Planck, yang berfungsi untuk mengevaluasi keadaan setimbang dalam termodinamika.

S = k * ln (Ω), dimana

  • S adalah sifat termodinamika.
  • k adalah konstanta Boltzmann.
  • adalah bobot statistik dari negara bagian yang berbeda.

Kimia

Yang kurang jelas adalah penggunaan rumus dalam kimia yang mengandung rasio logaritma. Berikut ini hanya dua contoh:

  • Persamaan Nernst, kondisi potensial redoks medium dalam kaitannya dengan aktivitas zat dan konstanta kesetimbangan.
  • Perhitungan konstanta seperti indeks autoprolisis dan keasaman larutan juga tidak lengkap tanpa fungsi kita.

Psikologi dan biologi

Dan sama sekali tidak dapat dipahami apa hubungan psikologi dengannya. Ternyata kekuatan sensasi digambarkan dengan baik oleh fungsi ini sebagai rasio kebalikan dari nilai intensitas stimulus dengan nilai intensitas yang lebih rendah.

Setelah contoh-contoh di atas, tidak mengherankan lagi jika tema logaritma juga banyak digunakan dalam biologi. Seluruh volume dapat ditulis tentang bentuk biologis yang sesuai dengan spiral logaritmik.

daerah lain

Tampaknya keberadaan dunia tidak mungkin tanpa hubungan dengan fungsi ini, dan itu mengatur semua hukum. Apalagi jika hukum alam dihubungkan dengan deret geometri. Perlu merujuk ke situs web MatProfi, dan ada banyak contoh seperti itu di bidang aktivitas berikut:

Daftarnya bisa jadi tidak ada habisnya. Setelah menguasai hukum dasar fungsi ini, Anda dapat terjun ke dunia kebijaksanaan tanpa batas.

Privasi Anda penting bagi kami. Untuk alasan ini, kami telah mengembangkan Kebijakan Privasi yang menjelaskan bagaimana kami menggunakan dan menyimpan informasi Anda. Harap baca kebijakan privasi kami dan beri tahu kami jika Anda memiliki pertanyaan.

Pengumpulan dan penggunaan informasi pribadi

Informasi pribadi mengacu pada data yang dapat digunakan untuk mengidentifikasi atau menghubungi orang tertentu.

Anda mungkin diminta untuk memberikan informasi pribadi Anda kapan saja saat Anda menghubungi kami.

Berikut ini adalah beberapa contoh jenis informasi pribadi yang kami kumpulkan dan bagaimana kami dapat menggunakan informasi tersebut.

Informasi pribadi apa yang kami kumpulkan:

  • Saat Anda mengajukan aplikasi di situs, kami dapat mengumpulkan berbagai informasi, termasuk nama, nomor telepon, alamat email, dll.

Bagaimana kami menggunakan informasi pribadi Anda:

  • Informasi pribadi yang kami kumpulkan memungkinkan kami untuk menghubungi Anda dan memberi tahu Anda tentang penawaran unik, promosi, dan acara lainnya serta acara mendatang.
  • Dari waktu ke waktu, kami dapat menggunakan informasi pribadi Anda untuk mengirimkan pemberitahuan dan komunikasi penting kepada Anda.
  • Kami juga dapat menggunakan informasi pribadi untuk tujuan internal, seperti melakukan audit, analisis data, dan berbagai penelitian untuk meningkatkan layanan yang kami berikan dan memberi Anda rekomendasi terkait layanan kami.
  • Jika Anda mengikuti undian berhadiah, kontes, atau insentif serupa, kami dapat menggunakan informasi yang Anda berikan untuk mengelola program tersebut.

Pengungkapan kepada pihak ketiga

Kami tidak mengungkapkan informasi yang diterima dari Anda kepada pihak ketiga.

Pengecualian:

  • Jika perlu - sesuai dengan hukum, perintah pengadilan, dalam proses hukum, dan / atau berdasarkan permintaan publik atau permintaan dari badan-badan negara di wilayah Federasi Rusia - mengungkapkan informasi pribadi Anda. Kami juga dapat mengungkapkan informasi tentang Anda jika kami menentukan bahwa pengungkapan tersebut diperlukan atau sesuai untuk alasan keamanan, penegakan hukum, atau kepentingan publik lainnya.
  • Jika terjadi reorganisasi, merger, atau penjualan, kami dapat mentransfer informasi pribadi yang kami kumpulkan kepada penerus pihak ketiga yang relevan.

Perlindungan informasi pribadi

Kami mengambil tindakan pencegahan - termasuk administratif, teknis, dan fisik - untuk melindungi informasi pribadi Anda dari kehilangan, pencurian, dan penyalahgunaan, serta dari akses, pengungkapan, perubahan, dan penghancuran yang tidak sah.

Menjaga privasi Anda di tingkat perusahaan

Untuk memastikan bahwa informasi pribadi Anda aman, kami mengomunikasikan praktik privasi dan keamanan kepada karyawan kami dan secara ketat menegakkan praktik privasi.

Apa itu logaritma?

Perhatian!
Ada tambahan
materi dalam Bagian Khusus 555.
Bagi mereka yang sangat "tidak terlalu..."
Dan bagi mereka yang "sangat banyak...")

Apa itu logaritma? Bagaimana cara menyelesaikan logaritma? Pertanyaan-pertanyaan ini membingungkan banyak lulusan. Secara tradisional, topik logaritma dianggap kompleks, tidak dapat dipahami, dan menakutkan. Terutama - persamaan dengan logaritma.

Ini sama sekali tidak benar. Sangat! Tidak percaya? Bagus. Sekarang, selama 10 - 20 menit Anda:

1. Pahami apa itu logaritma.

2. Belajar memecahkan seluruh kelas persamaan eksponensial. Bahkan jika Anda belum pernah mendengar tentang mereka.

3. Belajar menghitung logaritma sederhana.

Selain itu, untuk ini Anda hanya perlu mengetahui tabel perkalian, dan bagaimana suatu bilangan dipangkatkan ...

Saya merasa Anda ragu ... Yah, jaga waktu! Pergi!

Pertama, selesaikan persamaan berikut dalam pikiran Anda:

Jika Anda menyukai situs ini...

Omong-omong, saya punya beberapa situs yang lebih menarik untuk Anda.)

Anda dapat berlatih memecahkan contoh dan mengetahui level Anda. Pengujian dengan verifikasi instan. Belajar - dengan penuh minat!)

Anda bisa berkenalan dengan fungsi dan turunannya.

    Mari kita mulai dengan sifat-sifat logaritma kesatuan. Rumusannya adalah sebagai berikut: logaritma persatuan sama dengan nol, yaitu, log a 1=0 untuk setiap a>0 , a≠1 . Buktinya sederhana: karena a 0 =1 untuk setiap a yang memenuhi kondisi di atas a>0 dan a≠1 , maka log persamaan yang terbukti a 1=0 segera mengikuti dari definisi logaritma.

    Mari berikan contoh penerapan properti yang dipertimbangkan: log 3 1=0 , lg1=0 dan .

    Mari kita beralih ke properti berikutnya: logaritma suatu bilangan yang sama dengan alas sama dengan satu, yaitu, log a = 1 untuk a>0 , a≠1 . Memang, karena a 1 =a untuk setiap a , maka dengan definisi logaritma log a a=1 .

    Contoh penggunaan properti logaritma ini adalah log 5 5=1 , log 5.6 5.6 dan lne=1 .

    Misalnya, log 2 2 7 =7 , log10 -4 =-4 dan .

    Logaritma perkalian dua bilangan positif x dan y sama dengan produk dari logaritma dari angka-angka ini: log a (x y)=log a x+log a y, a>0 , a≠1 . Mari kita buktikan sifat logaritma hasil kali. Karena sifat-sifat derajat a log a x+log a y =a log a x a log a y, dan karena dengan identitas logaritma utama a log a x =x dan log a y =y , maka log a x a log a y =x y . Jadi, a log a x+log a y =x y , di mana persamaan yang diperlukan mengikuti definisi logaritma.

    Mari kita tunjukkan contoh penggunaan properti logaritma produk: log 5 (2 3)=log 5 2+log 5 3 dan .

    Properti logaritma produk dapat digeneralisasi ke produk dari bilangan terbatas n bilangan positif x 1 , x 2 , …, x n sebagai log a (x 1 x 2 ... x n)= log a x 1 + log a x 2 +…+ log a x n . Kesetaraan ini mudah dibuktikan.

    Misalnya, logaritma natural dari suatu produk dapat diganti dengan jumlah tiga logaritma natural dari angka 4 , e , dan .

    Logaritma hasil bagi dua bilangan positif x dan y sama dengan perbedaan antara logaritma dari angka-angka ini. Properti logaritma hasil bagi sesuai dengan rumus bentuk , di mana a>0 , a≠1 , x dan y adalah beberapa bilangan positif. Keabsahan rumus ini dibuktikan dengan rumus logaritma hasil kali: karena , maka dengan definisi logaritma .

    Berikut adalah contoh penggunaan properti logaritma ini: .

    Mari kita lanjutkan ke sifat logaritma derajat. Logaritma derajat sama dengan produk eksponen dan logaritma modulus basis derajat ini. Kami menulis properti logaritma derajat ini dalam bentuk rumus: log a b p =p log a |b|, di mana a>0 , a≠1 , b dan p adalah bilangan sedemikian rupa sehingga derajat b p masuk akal dan b p >0 .

    Kami pertama membuktikan properti ini untuk b positif . Identitas logaritma dasar memungkinkan kita untuk merepresentasikan bilangan b sebagai log a b , kemudian b p =(a log a b) p , dan ekspresi yang dihasilkan, karena sifat pangkat, sama dengan a p log a b . Jadi kita sampai pada persamaan b p =a p log a b , yang darinya, menurut definisi logaritma, kita menyimpulkan bahwa log a b p =p log a b .

    Tetap membuktikan sifat ini untuk b negatif. Di sini kita perhatikan bahwa ekspresi log a b p untuk b negatif masuk akal hanya untuk eksponen genap p (karena nilai derajat b p harus lebih besar dari nol, jika tidak, logaritma tidak akan masuk akal), dan dalam kasus ini b p =|b| p . Kemudian b p =|b| p =(a log a |b|) p =a p log a |b|, dari mana log a b p =p log a |b| .

    Sebagai contoh, dan ln(-3) 4 =4 ln|-3|=4 ln3 .

    Ini mengikuti dari properti sebelumnya properti logaritma dari root: logaritma dari akar derajat ke-n sama dengan produk dari pecahan 1/n dan logaritma dari ekspresi akar, yaitu, , di mana a>0 , a≠1 , n adalah bilangan asli yang lebih besar dari satu, b>0 .

    Pembuktian didasarkan pada persamaan (lihat ), yang berlaku untuk setiap positif b , dan sifat logaritma derajat: .

    Berikut adalah contoh penggunaan properti ini: .

    Sekarang mari kita buktikan rumus konversi ke basis baru logaritma jenis . Untuk melakukan ini, cukup membuktikan validitas persamaan log c b=log a b log c a . Identitas logaritma dasar memungkinkan kita untuk merepresentasikan bilangan b sebagai log a b , lalu log c b=log c a log a b . Tetap menggunakan properti logaritma derajat: log c a log a b = log a b log c a. Dengan demikian, persamaan log c b=log a b log c a terbukti, yang berarti bahwa rumus untuk transisi ke basis baru dari logaritma juga terbukti.

    Mari kita tunjukkan beberapa contoh penerapan sifat logaritma ini: dan .

    Rumus untuk pindah ke basis baru memungkinkan Anda untuk melanjutkan bekerja dengan logaritma yang memiliki basis "nyaman". Misalnya, dapat digunakan untuk beralih ke logaritma natural atau desimal sehingga Anda dapat menghitung nilai logaritma dari tabel logaritma. Rumus untuk transisi ke basis baru logaritma juga memungkinkan, dalam beberapa kasus, untuk menemukan nilai logaritma yang diberikan, ketika nilai beberapa logaritma dengan basis lain diketahui.

    Sering digunakan adalah kasus khusus dari rumus untuk transisi ke basis baru dari logaritma untuk c=b dari bentuk . Ini menunjukkan bahwa log a b dan log b a – . Sebagai contoh, .

    Juga sering digunakan adalah rumus , yang berguna untuk mencari nilai logaritma. Untuk mengkonfirmasi kata-kata kami, kami akan menunjukkan bagaimana nilai logaritma dari formulir dihitung dengan menggunakannya. Kita punya . Untuk membuktikan rumus cukup menggunakan rumus transisi ke basis baru logaritma a: .

    Masih membuktikan sifat perbandingan logaritma.

    Mari kita buktikan bahwa untuk sembarang bilangan positif b 1 dan b 2 , b 1 log a b 2 , dan untuk a>1, log pertidaksamaan a b 1

    Akhirnya, masih harus membuktikan yang terakhir dari properti logaritma yang terdaftar. Kami membatasi diri untuk membuktikan bagian pertama, yaitu, kami membuktikan bahwa jika a 1 >1 , a 2 >1 dan a 1 1 benar log a 1 b>log a 2 b . Pernyataan yang tersisa dari sifat logaritma ini dibuktikan dengan prinsip yang sama.

    Mari kita gunakan cara sebaliknya. Misalkan untuk a 1 >1 , a 2 >1 dan a 1 1 log a 1 b≤log a 2 b benar. Dengan sifat-sifat logaritma, pertidaksamaan ini dapat ditulis ulang sebagai: dan masing-masing, dan dari mereka berikut bahwa log b a 1 log b a 2 dan log b a 1 log b a 2, masing-masing. Kemudian, dengan sifat-sifat pangkat dengan basis yang sama, persamaan b log b a 1 b log b a 2 dan b log b a 1 b log b a 2 harus dipenuhi, yaitu, a 1 a 2 . Dengan demikian, kita telah sampai pada kontradiksi dengan kondisi a 1

Bibliografi.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. dan lain-lain Aljabar dan Analisis Awal: Buku Ajar untuk Kelas 10-11 Institusi Pendidikan Umum.
  • Gusev V.A., Mordkovich A.G. Matematika (manual untuk pelamar ke sekolah teknik).