არითმეტიკული პროგრესიის პირველი 11 რიცხვის ჯამი. პროგრესირება აღინიშნება პატარა ლათინური ასოებით

არითმეტიკული პროგრესირების პრობლემები არსებობდა უძველესი დროიდან. გამოჩნდნენ და გამოსავალი მოითხოვეს, რადგან პრაქტიკული საჭიროება ჰქონდათ.

ასე რომ, ძველი ეგვიპტის ერთ-ერთ პაპირუსში, რომელსაც აქვს მათემატიკური შინაარსი - რინდის პაპირუსი (ძვ. წ. XIX ს.) - შეიცავს შემდეგ დავალებას: ათი საზომი პური დაყავით ათ ადამიანად, იმ პირობით, რომ თითოეულ მათგანს შორის განსხვავება ერთი იყოს. საზომის მერვე.

და ძველი ბერძნების მათემატიკური ნაშრომებში არის ელეგანტური თეორემები, რომლებიც დაკავშირებულია არითმეტიკულ პროგრესირებასთან. ასე რომ, ალექსანდრიის ჰიპსიკულებმა (II საუკუნე, რომელმაც შეადგინა მრავალი საინტერესო პრობლემა და დაამატა მეთოთხმეტე წიგნი ევკლიდეს "ელემენტებს", ჩამოაყალიბა იდეა: "არითმეტიკული პროგრესიით წევრთა ლუწი რიცხვით, მე-2 ნახევრის წევრების ჯამი. მეტია 1-ის წევრების ჯამს 1/2 წევრის კვადრატით.

თანმიმდევრობა an აღინიშნება. მიმდევრობის ნომრებს უწოდებენ მის წევრებს და ჩვეულებრივ აღინიშნება ასოებით ინდექსებით, რომლებიც მიუთითებს ამ წევრის სერიულ ნომერზე (a1, a2, a3 ... იკითხება: "a 1st", "a 2nd", "a3". ”და ასე შემდეგ).

თანმიმდევრობა შეიძლება იყოს უსასრულო ან სასრული.

რა არის არითმეტიკული პროგრესია? ის გასაგებია, როგორც მიღებული წინა ტერმინის (n) იმავე რიცხვით d-ის მიმატებით, რაც არის პროგრესიის სხვაობა.

თუ დ<0, то мы имеем убывающую прогрессию. Если d>0, მაშინ ასეთი პროგრესი ითვლება მზარდად.

არითმეტიკული პროგრესია ითვლება სასრულად, თუ მხედველობაში მიიღება მხოლოდ რამდენიმე მისი პირველი წევრი. წევრების ძალიან დიდი რაოდენობით, ეს უკვე უსასრულო პროგრესია.

ნებისმიერი არითმეტიკული პროგრესია მოცემულია შემდეგი ფორმულით:

an =kn+b, ხოლო b და k არის რამდენიმე რიცხვი.

განცხადება, რომელიც საპირისპიროა, აბსოლუტურად მართალია: თუ მიმდევრობა მოცემულია მსგავსი ფორმულით, მაშინ ეს არის ზუსტად არითმეტიკული პროგრესია, რომელსაც აქვს თვისებები:

  1. პროგრესიის თითოეული წევრი არის წინა და შემდეგი წევრის საშუალო არითმეტიკული.
  2. საპირისპირო: თუ მე-2-დან დაწყებული, ყოველი წევრი არის წინა წევრის საშუალო არითმეტიკული და შემდეგი, ე.ი. თუ პირობა დაკმაყოფილებულია, მაშინ მოცემული თანმიმდევრობა არის არითმეტიკული პროგრესია. ეს თანასწორობა იმავდროულად პროგრესირების ნიშანია, ამიტომ მას ჩვეულებრივ პროგრესირების დამახასიათებელ თვისებას უწოდებენ.
    ანალოგიურად, ჭეშმარიტია თეორემა, რომელიც ასახავს ამ თვისებას: მიმდევრობა არის არითმეტიკული პროგრესია მხოლოდ იმ შემთხვევაში, თუ ეს ტოლობა მართალია მიმდევრობის რომელიმე წევრისთვის, დაწყებული მე-2-დან.

არითმეტიკული პროგრესიის ნებისმიერი ოთხი რიცხვისთვის დამახასიათებელი თვისება შეიძლება გამოისახოს an + am = ak + al ფორმულით, თუ n + m = k + l (m, n, k არის პროგრესიის რიცხვები).

არითმეტიკული პროგრესიის დროს, ნებისმიერი აუცილებელი (Nth) ტერმინი შეიძლება მოიძებნოს შემდეგი ფორმულის გამოყენებით:

მაგალითად: პირველი წევრი (a1) არითმეტიკულ პროგრესიაში მოცემულია და უდრის სამს, ხოლო სხვაობა (d) უდრის ოთხს. თქვენ უნდა იპოვოთ ამ პროგრესიის ორმოცდამეხუთე ტერმინი. a45 = 1+4 (45-1) = 177

ფორმულა an = ak + d(n - k) საშუალებას გაძლევთ განსაზღვროთ არითმეტიკული პროგრესიის n-ე წევრი მისი ნებისმიერი k-ე წევრის მეშვეობით, იმ პირობით, რომ ეს ცნობილია.

არითმეტიკული პროგრესიის წევრთა ჯამი (საბოლოო პროგრესიის 1-ლი n წევრის გათვალისწინებით) გამოითვლება შემდეგნაირად:

Sn = (a1+an) n/2.

თუ პირველი ტერმინი ასევე ცნობილია, მაშინ სხვა ფორმულა მოსახერხებელია გამოსათვლელად:

Sn = ((2a1+d(n-1))/2)*n.

არითმეტიკული პროგრესიის ჯამი, რომელიც შეიცავს n წევრს, გამოითვლება შემდეგნაირად:

გამოთვლებისთვის ფორმულების არჩევანი დამოკიდებულია ამოცანების პირობებზე და საწყის მონაცემებზე.

ნებისმიერი რიცხვის ბუნებრივი რიგი, როგორიცაა 1,2,3,...,n,... არის არითმეტიკული პროგრესიის უმარტივესი მაგალითი.

არითმეტიკული პროგრესიის გარდა, არსებობს გეომეტრიულიც, რომელსაც აქვს თავისი თვისებები და მახასიათებლები.

არითმეტიკული პროგრესიის ჯამი.

არითმეტიკული პროგრესიის ჯამი მარტივი რამ არის. მნიშვნელობითაც და ფორმულითაც. მაგრამ ამ თემაზე ყველანაირი დავალებაა. ელემენტარულიდან საკმაოდ მყარი.

ჯერ შევეხოთ ჯამის მნიშვნელობას და ფორმულას. და მერე გადავწყვეტთ. საკუთარი სიამოვნებისთვის.) ჯამის მნიშვნელობა დაბლავით მარტივია. არითმეტიკული პროგრესიის ჯამის საპოვნელად, თქვენ უბრალოდ უნდა ყურადღებით დაამატოთ მისი ყველა წევრი. თუ ეს ტერმინები ცოტაა, შეგიძლიათ დაამატოთ ყოველგვარი ფორმულების გარეშე. მაგრამ თუ ბევრია, ან ბევრი... დამატება შემაწუხებელია.) ამ შემთხვევაში ფორმულა ზოგავს.

ჯამის ფორმულა მარტივია:

მოდით გავარკვიოთ, რა სახის ასოები შედის ფორმულაში. ეს ბევრ რამეს გაარკვევს.

S n არის არითმეტიკული პროგრესიის ჯამი. დამატების შედეგი ყველაწევრებთან ერთად პირველი on ბოლო.Ეს არის მნიშვნელოვანი. დაამატე ზუსტად ყველაწევრები ზედიზედ, ხარვეზებისა და ნახტომების გარეშე. და, ზუსტად, დაწყებული პირველი.ისეთ პრობლემებში, როგორიცაა მესამე და მერვე წევრთა ჯამის პოვნა, ან ხუთიდან მეოცემდე ტერმინების ჯამი, ფორმულის პირდაპირი გამოყენება იმედგაცრუებული იქნება.)

a 1 - პირველიპროგრესის წევრი. აქ ყველაფერი გასაგებია, მარტივია პირველირიგის ნომერი.

a n- ბოლოპროგრესის წევრი. რიგის ბოლო ნომერი. არ არის ძალიან ნაცნობი სახელი, მაგრამ, როდესაც გამოიყენება თანხა, ეს ძალიან შესაფერისია. მერე თავად ნახავ.

არის ბოლო წევრის ნომერი. მნიშვნელოვანია გვესმოდეს, რომ ფორმულაში ეს რიცხვი ემთხვევა დამატებული ტერმინების რაოდენობას.

მოდით განვსაზღვროთ კონცეფცია ბოლოწევრი a n. შევსების კითხვა: როგორი წევრი იქნება ბოლო,თუ მიცემულია გაუთავებელიარითმეტიკული პროგრესია?

დარწმუნებული პასუხისთვის, თქვენ უნდა გესმოდეთ არითმეტიკული პროგრესიის ელემენტარული მნიშვნელობა და ... ყურადღებით წაიკითხეთ დავალება!)

არითმეტიკული პროგრესიის ჯამის პოვნის ამოცანაში ყოველთვის ჩნდება ბოლო წევრი (პირდაპირ ან ირიბად), რომელიც შეზღუდული უნდა იყოს.წინააღმდეგ შემთხვევაში, სასრული, კონკრეტული თანხა უბრალოდ არ არსებობს.ამოხსნისთვის არ აქვს მნიშვნელობა რა სახის პროგრესიაა მოცემული: სასრული თუ უსასრულო. არ აქვს მნიშვნელობა როგორ არის მოცემული: რიცხვების რიგით თუ n-ე წევრის ფორმულით.

ყველაზე მნიშვნელოვანი ის არის, რომ გვესმოდეს, რომ ფორმულა მუშაობს პროგრესირების პირველი ტერმინიდან რიცხვით ტერმინამდე ნ.სინამდვილეში, ფორმულის სრული სახელი ასე გამოიყურება: არითმეტიკული პროგრესიის პირველი n წევრის ჯამი.ამ პირველივე წევრების რიცხვი, ე.ი. , განისაზღვრება მხოლოდ ამოცანის მიხედვით. ამოცანაში, მთელი ეს ღირებული ინფორმაცია ხშირად დაშიფრულია, დიახ ... მაგრამ არაფერი, ქვემოთ მოცემულ მაგალითებში ჩვენ გამოვავლენთ ამ საიდუმლოებებს.)

არითმეტიკული პროგრესიის ჯამის ამოცანების მაგალითები.

პირველ რიგში, სასარგებლო ინფორმაცია:

არითმეტიკული პროგრესიის ჯამისთვის ამოცანების მთავარი სირთულე არის ფორმულის ელემენტების სწორი განსაზღვრა.

დავალებების ავტორები სწორედ ამ ელემენტებს შიფრავენ უსაზღვრო ფანტაზიით.) აქ მთავარია არ შეგეშინდეთ. ელემენტების არსის გაგება, საკმარისია მხოლოდ მათი გაშიფვრა. მოდით შევხედოთ რამდენიმე მაგალითს დეტალურად. დავიწყოთ დავალებით, რომელიც დაფუძნებულია რეალურ GIA-ზე.

1. არითმეტიკული პროგრესია მოცემულია პირობით: a n = 2n-3.5. იპოვეთ პირველი 10 წევრის ჯამი.

Ყოჩაღ. მარტივია.) ფორმულის მიხედვით ოდენობის დასადგენად რა უნდა ვიცოდეთ? პირველი წევრი a 1, ბოლო სემესტრი a nდიახ, ბოლო პერიოდის ნომერი ნ.

სად მივიღოთ ბოლო წევრის ნომერი ? დიახ, იქ, მდგომარეობაში! ნათქვამია იპოვე თანხა პირველი 10 წევრი.აბა, რა რიცხვი იქნება ბოლო,მეათე წევრი?) არ დაიჯერებთ, მისი ნომერი მეათეა!) ამიტომ, ნაცვლად a nჩავანაცვლებთ ფორმულაში ა 10, მაგრამ სამაგიეროდ -ათი. ისევ და ისევ, ბოლო წევრის რაოდენობა იგივეა, რაც წევრების რაოდენობა.

რჩება გასარკვევი a 1და ა 10. ეს ადვილად გამოითვლება n-ე წევრის ფორმულით, რომელიც მოცემულია პრობლემის დებულებაში. არ იცით როგორ გააკეთოთ ეს? ეწვიეთ წინა გაკვეთილს, ამის გარეშე - არაფერი.

a 1= 2 1 - 3.5 = -1.5

ა 10\u003d 2 10 - 3.5 \u003d 16.5

S n = S 10.

ჩვენ გავარკვიეთ არითმეტიკული პროგრესიის ჯამის ფორმულის ყველა ელემენტის მნიშვნელობა. რჩება მათი ჩანაცვლება და დათვლა:

სულ ეს არის. პასუხი: 75.

კიდევ ერთი დავალება, რომელიც ეფუძნება GIA-ს. ცოტა უფრო რთული:

2. მოცემულია არითმეტიკული პროგრესია (a n), რომლის სხვაობა არის 3,7; a 1 \u003d 2.3. იპოვეთ პირველი 15 წევრის ჯამი.

ჩვენ დაუყოვნებლივ ვწერთ ჯამის ფორმულას:

ეს ფორმულა საშუალებას გვაძლევს ვიპოვოთ ნებისმიერი წევრის მნიშვნელობა მისი რიცხვით. ჩვენ ვეძებთ მარტივ ჩანაცვლებას:

a 15 \u003d 2.3 + (15-1) 3.7 \u003d 54.1

რჩება ფორმულის ყველა ელემენტის ჩანაცვლება არითმეტიკული პროგრესიის ჯამისთვის და პასუხის გამოთვლა:

პასუხი: 423.

სხვათა შორის, თუ ჯამის ფორმულაში ნაცვლად a nუბრალოდ ჩაანაცვლეთ n-ე წევრის ფორმულა, მივიღებთ:

ჩვენ ვაძლევთ მსგავსებს, ვიღებთ ახალ ფორმულას არითმეტიკული პროგრესიის წევრების ჯამისთვის:

როგორც ხედავთ, n-ე ტერმინი აქ არ არის საჭირო. a n. ზოგიერთ დავალებაში ეს ფორმულა ძალიან გვეხმარება, დიახ... შეგიძლიათ დაიმახსოვროთ ეს ფორმულა. და თქვენ შეგიძლიათ უბრალოდ ამოიღოთ ის საჭირო დროს, როგორც აქ. ყოველივე ამის შემდეგ, ჯამის ფორმულა და n-ე ტერმინის ფორმულა ყველანაირად უნდა ახსოვდეს.)

ახლა დავალება მოკლე დაშიფვრის სახით):

3. იპოვნეთ ყველა დადებითი ორნიშნა რიცხვის ჯამი, რომლებიც სამის ჯერადია.

Როგორ! არც პირველი წევრი, არც უკანასკნელი, არც პროგრესი... როგორ ვიცხოვროთ!?

მოგიწევთ თავით იფიქროთ და მდგომარეობიდან ამოიღოთ არითმეტიკული პროგრესიის ჯამის ყველა ელემენტი. რა არის ორნიშნა რიცხვები - ვიცით. ისინი შედგება ორი რიცხვისაგან.) რა ორნიშნა რიცხვი იქნება პირველი? 10, სავარაუდოდ.) ბოლო რამორნიშნა ნომერი? 99, რა თქმა უნდა! მას სამნიშნა რიცხვები მოჰყვება...

სამის ნამრავლები... ჰმ... ეს ის რიცხვებია, რომლებიც თანაბრად იყოფა სამზე, აი! ათი არ იყოფა სამზე, 11 არ იყოფა... 12... იყოფა! ასე რომ, რაღაც ჩნდება. თქვენ უკვე შეგიძლიათ დაწეროთ სერიები პრობლემის მდგომარეობის მიხედვით:

12, 15, 18, 21, ... 96, 99.

იქნება ეს სერია არითმეტიკული პროგრესია? Რა თქმა უნდა! თითოეული ტერმინი წინასგან მკაცრად განსხვავდება სამით. თუ ტერმინს ემატება 2, ან 4, ვთქვათ, შედეგი, ე.ი. ახალი რიცხვი აღარ გაიყოფა 3-ზე. თქვენ შეგიძლიათ დაუყოვნებლივ განსაზღვროთ არითმეტიკული პროგრესიის სხვაობა გროვამდე: d = 3.სასარგებლო!)

ასე რომ, ჩვენ შეგვიძლია უსაფრთხოდ ჩავწეროთ პროგრესირების რამდენიმე პარამეტრი:

რა რიცხვი იქნება ბოლო წევრი? ვინც ფიქრობს, რომ 99 სასიკვდილოდ ცდება... ნომრები - ისინი ყოველთვის მიდიან ზედიზედ და ჩვენი წევრები ხტებიან სამეულს. ისინი არ ემთხვევა.

აქ ორი გამოსავალია. ერთი გზა არის სუპერ შრომისმოყვარეებისთვის. შეგიძლიათ დახატოთ პროგრესია, რიცხვების მთელი რიგი და თითით დათვალოთ ტერმინების რაოდენობა.) მეორე გზა არის მოაზროვნეებისთვის. თქვენ უნდა გახსოვდეთ ფორმულა n-ე ტერმინისთვის. თუ ფორმულა გამოიყენება ჩვენს პრობლემაზე, მივიღებთ, რომ 99 არის პროგრესიის ოცდამეათე წევრი. იმათ. n = 30.

ჩვენ ვუყურებთ არითმეტიკული პროგრესიის ჯამის ფორმულას:

ვუყურებთ და ვხარობთ.) პრობლემის მდგომარეობიდან ამოიღეთ ყველაფერი, რაც საჭიროა თანხის გამოსათვლელად:

a 1= 12.

30= 99.

S n = S 30.

რჩება ელემენტარული არითმეტიკა. ჩაანაცვლეთ რიცხვები ფორმულაში და გამოთვალეთ:

პასუხი: 1665 წ

სხვა ტიპის პოპულარული თავსატეხები:

4. არითმეტიკული პროგრესია მოცემულია:

-21,5; -20; -18,5; -17; ...

იპოვეთ წევრთა ჯამი მეოცედან ოცდამეოთხემდე.

ვუყურებთ ჯამის ფორმულას და ... ვნერვიულობთ.) ფორმულა, შეგახსენებთ, ითვლის ჯამს. პირველიდანწევრი. და პრობლემაში თქვენ უნდა გამოთვალოთ ჯამი მეოცე წლიდან...ფორმულა არ იმუშავებს.

თქვენ, რა თქმა უნდა, შეგიძლიათ დახატოთ მთელი პროგრესი ზედიზედ და დააყენოთ წევრები 20-დან 34-მდე. მაგრამ ... რატომღაც ეს სულელურად და დიდი ხნის განმავლობაში გამოდის, არა?)

არსებობს უფრო ელეგანტური გადაწყვეტა. მოდით დავყოთ ჩვენი სერია ორ ნაწილად. პირველი ნაწილი იქნება პირველი ტერმინიდან მეცხრამეტემდე.Მეორე ნაწილი - ოცდათოთხმეტი.გასაგებია, რომ თუ გამოვთვლით პირველი ნაწილის წევრთა ჯამს S 1-19, დავუმატოთ მეორე ნაწილის წევრთა ჯამს S 20-34, ვიღებთ პროგრესიის ჯამს პირველი წევრიდან ოცდამეოთხემდე S 1-34. Ამგვარად:

S 1-19 + S 20-34 = S 1-34

ეს გვიჩვენებს, რომ იპოვონ თანხა S 20-34შეიძლება გაკეთდეს მარტივი გამოკლებით

S 20-34 = S 1-34 - S 1-19

განიხილება ორივე ჯამი მარჯვენა მხარეს პირველიდანწევრი, ე.ი. სტანდარტული ჯამის ფორმულა საკმაოდ გამოიყენება მათთვის. ვიწყებთ?

ჩვენ გამოვყოფთ პროგრესირების პარამეტრებს დავალების მდგომარეობიდან:

d = 1.5.

a 1= -21,5.

პირველი 19 და პირველი 34 წევრის ჯამების გამოსათვლელად დაგვჭირდება მე-19 და 34 წევრი. ჩვენ მათ ვითვლით n-ე წევრის ფორმულის მიხედვით, როგორც ამოცანა 2-ში:

19\u003d -21.5 + (19-1) 1.5 \u003d 5.5

a 34\u003d -21.5 + (34-1) 1.5 \u003d 28

აღარაფერი დარჩა. გამოვაკლოთ 19 წევრის ჯამი 34 წევრის ჯამს:

S 20-34 = S 1-34 - S 1-19 = 110.5 - (-152) = 262.5

პასუხი: 262.5

ერთი მნიშვნელოვანი შენიშვნა! ამ პრობლემის გადაჭრაში არის ძალიან სასარგებლო ფუნქცია. პირდაპირი გაანგარიშების ნაცვლად რაც გჭირდებათ (S 20-34),ჩვენ დავთვალეთ რაც, როგორც ჩანს, არ არის საჭირო - S 1-19.და მერე გადაწყვიტეს S 20-34სრული შედეგიდან არასაჭიროს უგულებელყოფა. ასეთი "ყურებით გამონათქვამი" ხშირად ზოგავს ბოროტ თავსატეხებში.)

ამ გაკვეთილზე განვიხილეთ პრობლემები, რომელთა ამოხსნისთვის საკმარისია გავიგოთ არითმეტიკული პროგრესიის ჯამის მნიშვნელობა. კარგად, თქვენ უნდა იცოდეთ რამდენიმე ფორმულა.)

პრაქტიკული რჩევა:

არითმეტიკული პროგრესიის ჯამისთვის რაიმე ამოცანის გადაჭრისას, გირჩევთ დაუყოვნებლივ ამოწეროთ ორი ძირითადი ფორმულა ამ თემიდან.

მე-n წევრის ფორმულა:

ეს ფორმულები დაუყოვნებლივ გეტყვით, რა უნდა მოძებნოთ, რა მიმართულებით იფიქროთ პრობლემის გადასაჭრელად. ეხმარება.

ახლა კი ამოცანები დამოუკიდებელი გადაწყვეტისთვის.

5. იპოვეთ ყველა ორნიშნა რიცხვის ჯამი, რომელიც არ იყოფა სამზე.

მაგარია?) მინიშნება დამალულია 4 პრობლემის შენიშვნაში. კარგი, პრობლემა 3 დაგეხმარებათ.

6. არითმეტიკული პროგრესია მოცემულია პირობით: a 1 =-5.5; a n+1 = a n +0.5. იპოვეთ პირველი 24 წევრის ჯამი.

არაჩვეულებრივი?) ეს განმეორებადი ფორმულაა. ამის შესახებ შეგიძლიათ წაიკითხოთ წინა გაკვეთილზე. ნუ უგულებელყოფთ ბმულს, ასეთი თავსატეხები ხშირად გვხვდება GIA-ში.

7. ვასიამ დაზოგა ფული დღესასწაულისთვის. 4550 რუბლს შეადგენს! მე კი გადავწყვიტე, რომ ყველაზე საყვარელ ადამიანს (საკუთარ თავს) ბედნიერების რამდენიმე დღე მივცე). იცხოვრე ლამაზად, საკუთარი თავის არაფრის უარყოფის გარეშე. დახარჯეთ 500 მანეთი პირველ დღეს და დახარჯეთ 50 მანეთი მეტი ყოველი მომდევნო დღეს, ვიდრე წინა დღეს! სანამ ფული არ ამოიწურება. რამდენი დღე ჰქონდა ვასიას ბედნიერებას?

რთულია?) მე-2 დავალების დამატებითი ფორმულა დაგეხმარებათ.

პასუხები (არეულად): 7, 3240, 6.

თუ მოგწონთ ეს საიტი...

სხვათა შორის, მე მაქვს კიდევ რამდენიმე საინტერესო საიტი თქვენთვის.)

შეგიძლიათ ივარჯიშოთ მაგალითების ამოხსნაში და გაიგოთ თქვენი დონე. ტესტირება მყისიერი გადამოწმებით. სწავლა - ინტერესით!)

შეგიძლიათ გაეცნოთ ფუნქციებს და წარმოებულებს.

პირველი დონე

არითმეტიკული პროგრესია. დეტალური თეორია მაგალითებით (2019)

რიცხვითი თანმიმდევრობა

მოდით დავსხდეთ და დავიწყოთ რამდენიმე რიცხვის წერა. Მაგალითად:
თქვენ შეგიძლიათ დაწეროთ ნებისმიერი რიცხვი და შეიძლება იყოს რამდენიც გსურთ (ჩვენს შემთხვევაში, ისინი). რამდენი რიცხვიც არ უნდა დავწეროთ, ყოველთვის შეგვიძლია ვთქვათ, რომელია პირველი, რომელია მეორე და ასე შემდეგ ბოლომდე, ანუ შეგვიძლია მათი დათვლა. ეს არის რიცხვების თანმიმდევრობის მაგალითი:

რიცხვითი თანმიმდევრობა
მაგალითად, ჩვენი თანმიმდევრობისთვის:

მინიჭებული ნომერი სპეციფიკურია მხოლოდ ერთი რიგითი ნომრისთვის. სხვა სიტყვებით რომ ვთქვათ, მიმდევრობაში არ არის სამი მეორე რიცხვი. მეორე რიცხვი (ისევე როგორც -ე რიცხვი) ყოველთვის იგივეა.
რიცხვის მქონე რიცხვს მიმდევრობის მე-მე წევრი ეწოდება.

ჩვენ ჩვეულებრივ მთელ მიმდევრობას ვუწოდებთ ზოგიერთ ასოს (მაგალითად,) და ამ მიმდევრობის თითოეულ წევრს - იგივე ასო, ამ წევრის რიცხვის ტოლი ინდექსით: .

ჩვენს შემთხვევაში:

ვთქვათ, გვაქვს რიცხვითი მიმდევრობა, რომელშიც სხვაობა მიმდებარე რიცხვებს შორის არის იგივე და ტოლი.
Მაგალითად:

და ა.შ.
ასეთ რიცხვობრივ მიმდევრობას არითმეტიკული პროგრესია ეწოდება.
ტერმინი „პროგრესია“ შემოიღო რომაელმა ავტორმა ბოეტიუსმა ჯერ კიდევ VI საუკუნეში და ფართო გაგებით გაიგო, როგორც გაუთავებელი რიცხვითი თანმიმდევრობა. სახელწოდება "არითმეტიკა" გადავიდა უწყვეტი პროპორციების თეორიიდან, რომლითაც ძველი ბერძნები იყვნენ დაკავებულნი.

ეს არის რიცხვითი თანმიმდევრობა, რომლის თითოეული წევრი უდრის წინას, დამატებული იგივე რიცხვით. ამ რიცხვს ეწოდება არითმეტიკული პროგრესიის სხვაობა და აღინიშნება.

შეეცადეთ დაადგინოთ, რომელი რიცხვების მიმდევრობაა არითმეტიკული პროგრესია და რომელი არა:

ა)
ბ)
გ)
დ)

Გავიგე? შეადარეთ ჩვენი პასუხები:
არისარითმეტიკული პროგრესია - b, c.
Არ არისარითმეტიკული პროგრესია - ა, დ.

დავუბრუნდეთ მოცემულ პროგრესიას () და ვეცადოთ ვიპოვოთ მისი th წევრის მნიშვნელობა. არსებობს ორიმისი პოვნის გზა.

1. მეთოდი

ჩვენ შეგვიძლია დავამატოთ პროგრესიის ნომრის წინა მნიშვნელობა მანამ, სანამ არ მივაღწევთ პროგრესიის -ე ტერმინს. კარგია, რომ შეჯამება ბევრი არ გვაქვს - მხოლოდ სამი მნიშვნელობა:

ასე რომ, აღწერილი არითმეტიკული პროგრესიის მე-მე წევრი უდრის.

2. გზა

რა მოხდება, თუ გვჭირდებოდა პროგრესიის მე-ე ტერმინის მნიშვნელობის პოვნა? შეჯამება ერთ საათზე მეტს დაგვჭირდებოდა და ფაქტი არ არის, რომ რიცხვების შეკრებისას შეცდომას არ დავუშვებდით.
რა თქმა უნდა, მათემატიკოსებმა მოიგონეს გზა, რომლითაც არ დაგჭირდებათ არითმეტიკული პროგრესიის სხვაობის დამატება წინა მნიშვნელობაზე. დააკვირდით დახატულ სურათს... რა თქმა უნდა, თქვენ უკვე შენიშნეთ გარკვეული ნიმუში, კერძოდ:

მაგალითად, ვნახოთ, რა შეადგენს ამ არითმეტიკული პროგრესიის --ე წევრის მნიშვნელობას:


Სხვა სიტყვებით:

შეეცადეთ დამოუკიდებლად იპოვოთ ამ გზით ამ არითმეტიკული პროგრესიის წევრის მნიშვნელობა.

გათვლილი? შეადარეთ თქვენი ჩანაწერები პასუხთან:

მიაქციეთ ყურადღება, რომ ზუსტად იგივე რიცხვი მიიღეთ, რაც წინა მეთოდში, როდესაც ჩვენ თანმიმდევრულად ვამატებთ არითმეტიკული პროგრესიის წევრებს წინა მნიშვნელობას.
შევეცადოთ ამ ფორმულის „დეპერსონალიზაციას“ - მივიღებთ მას ზოგად ფორმაში და მივიღებთ:

არითმეტიკული პროგრესიის განტოლება.

არითმეტიკული პროგრესიები იზრდება ან მცირდება.

მზარდი- პროგრესები, რომლებშიც ტერმინების ყოველი მომდევნო მნიშვნელობა წინაზე მეტია.
Მაგალითად:

Დაღმავალი- პროგრესები, რომლებშიც ტერმინების ყოველი მომდევნო მნიშვნელობა წინაზე ნაკლებია.
Მაგალითად:

მიღებული ფორმულა გამოიყენება არითმეტიკული პროგრესიის როგორც მზარდი, ისე კლებადი ტერმინების გამოთვლაში.
მოდით შევამოწმოთ პრაქტიკაში.
ჩვენ გვეძლევა არითმეტიკული პროგრესია, რომელიც შედგება შემდეგი რიცხვებისგან:


Მას შემდეგ:

ამრიგად, ჩვენ დავრწმუნდით, რომ ფორმულა მუშაობს როგორც შემცირებაში, ასევე არითმეტიკული პროგრესიის გაზრდისას.
ეცადეთ, დამოუკიდებლად იპოვოთ ამ არითმეტიკული პროგრესიის მე-მე-ე წევრები.

შევადაროთ შედეგები:

არითმეტიკული პროგრესიის თვისება

დავალება გავართულოთ – გამოვიყვანთ არითმეტიკული პროგრესიის თვისებას.
დავუშვათ, რომ გვაქვს შემდეგი პირობა:
- არითმეტიკული პროგრესია, იპოვნეთ მნიშვნელობა.
ადვილია, თქვენ ამბობთ, და დაიწყეთ დათვლა იმ ფორმულის მიხედვით, რომელიც უკვე იცით:

მოდით, ა, მაშინ:

Აბსოლუტურად სწორი. გამოდის, რომ ჯერ ვპოულობთ, შემდეგ ვამატებთ პირველ რიცხვს და ვიღებთ იმას, რასაც ვეძებთ. თუ პროგრესია წარმოდგენილია მცირე მნიშვნელობებით, მაშინ ამაში არაფერია რთული, მაგრამ რა მოხდება, თუ პირობით რიცხვებს მივიღებთ? გეთანხმებით, არის გამოთვლებში შეცდომების დაშვების შესაძლებლობა.
ახლა დაფიქრდით, შესაძლებელია თუ არა ამ პრობლემის გადაჭრა რომელიმე ფორმულით ერთი ნაბიჯით? რა თქმა უნდა, დიახ, და ჩვენ შევეცდებით ახლავე გამოვიტანოთ.

ჩვენ აღვნიშნავთ არითმეტიკული პროგრესიის სასურველ ტერმინს, როგორც ვიცით მისი პოვნის ფორმულა - ეს არის იგივე ფორმულა, რომელიც გამოვიყვანეთ დასაწყისში:
, შემდეგ:

  • პროგრესის წინა წევრია:
  • პროგრესის შემდეგი ტერმინი არის:

მოდით შევაჯამოთ პროგრესის წინა და შემდეგი წევრები:

გამოდის, რომ პროგრესიის წინა და მომდევნო წევრების ჯამი ორჯერ აღემატება მათ შორის მდებარე პროგრესიის წევრის მნიშვნელობას. სხვა სიტყვებით რომ ვთქვათ, პროგრესირების წევრის მნიშვნელობის საპოვნელად ცნობილი წინა და თანმიმდევრული მნიშვნელობებით, აუცილებელია მათი დამატება და გაყოფა.

მართალია, იგივე ნომერი მივიღეთ. გავასწოროთ მასალა. თავად გამოთვალეთ პროგრესის ღირებულება, რადგან ეს საერთოდ არ არის რთული.

კარგად გააკეთე! თქვენ თითქმის ყველაფერი იცით პროგრესის შესახებ! რჩება მხოლოდ ერთი ფორმულის გარკვევა, რომელიც, ლეგენდის თანახმად, ყველა დროის ერთ-ერთმა უდიდესმა მათემატიკოსმა, "მათემატიკოსთა მეფემ" - კარლ გაუსმა, თავისთვის ადვილად გამოიტანა...

როდესაც კარლ გაუსი 9 წლის იყო, მასწავლებელმა, რომელიც დაკავებული იყო სხვა კლასის მოსწავლეების მუშაობის შემოწმებით, გაკვეთილზე დაუსვა შემდეგი დავალება: „გამოთვალეთ ყველა ნატურალური რიცხვის ჯამი მდე (სხვა წყაროების მიხედვით) ჩათვლით. " რა იყო მასწავლებელს სიურპრიზი, როდესაც მისმა ერთ-ერთმა მოსწავლემ (ეს იყო კარლ გაუსმა) ერთი წუთის შემდეგ გასცა სწორი პასუხი დავალებას, მაშინ როცა გაბედულის თანაკლასელების უმეტესობამ გრძელი გამოთვლების შემდეგ არასწორი შედეგი მიიღო ...

ახალგაზრდა კარლ გაუსმა შენიშნა ნიმუში, რომელსაც ადვილად შეამჩნევთ.
ვთქვათ, გვაქვს არითმეტიკული პროგრესია, რომელიც შედგება -ti წევრებისაგან: უნდა ვიპოვოთ არითმეტიკული პროგრესიის მოცემული წევრების ჯამი. რა თქმა უნდა, ჩვენ შეგვიძლია ხელით შევაჯამოთ ყველა მნიშვნელობა, მაგრამ რა მოხდება, თუ დავალებაში უნდა ვიპოვოთ მისი ტერმინების ჯამი, როგორც ამას გაუსი ეძებდა?

მოდით გამოვსახოთ ჩვენთვის მოცემული პროგრესი. კარგად დააკვირდით მონიშნულ რიცხვებს და შეეცადეთ მათთან ერთად შეასრულოთ სხვადასხვა მათემატიკური მოქმედებები.


სცადე? რა შეამჩნიე? სწორად! მათი ჯამები ტოლია


ახლა უპასუხეთ, რამდენი ასეთი წყვილი იქნება ჩვენთვის მოცემულ პროგრესში? რა თქმა უნდა, ყველა რიცხვის ზუსტად ნახევარი, ანუ.
იქიდან გამომდინარე, რომ არითმეტიკული პროგრესიის ორი წევრის ჯამი ტოლია და მსგავსი ტოლი წყვილი, მივიღებთ, რომ ჯამი უდრის:
.
ამრიგად, ნებისმიერი არითმეტიკული პროგრესიის პირველი წევრთა ჯამის ფორმულა იქნება:

ზოგიერთ პრობლემაში ჩვენ არ ვიცით ტერმინი, მაგრამ ვიცით პროგრესირების განსხვავება. შეეცადეთ ჯამის ფორმულაში ჩაანაცვლოთ მე-1 წევრის ფორმულა.
Რა მიიღე?

კარგად გააკეთე! ახლა დავუბრუნდეთ პრობლემას, რომელიც მიეცა კარლ გაუსს: თავად გამოთვალეთ რა არის -th-დან დაწყებული რიცხვების ჯამი და -th-დან დაწყებული რიცხვების ჯამი.

რამდენი მიიღეთ?
გაუსმა გაირკვა, რომ წევრთა ჯამი ტოლია და ტერმინთა ჯამი. ასე გადაწყვიტე?

სინამდვილეში, არითმეტიკული პროგრესიის წევრთა ჯამის ფორმულა დაამტკიცა ძველმა ბერძენმა მეცნიერმა დიოფანტმა ჯერ კიდევ მე-3 საუკუნეში და მთელი ამ ხნის განმავლობაში მახვილგონივრული ადამიანები იყენებდნენ არითმეტიკული პროგრესიის თვისებებს დიდი და მთავარი.
მაგალითად, წარმოიდგინეთ ძველი ეგვიპტე და იმ დროის უდიდესი სამშენებლო მოედანი - პირამიდის აგება... ფიგურაში ჩანს მისი ერთი მხარე.

სად არის აქ პროგრესი შენ ამბობ? დააკვირდით და იპოვეთ ნიმუში ქვიშის ბლოკების რაოდენობაში პირამიდის კედლის თითოეულ რიგში.


რატომ არა არითმეტიკული პროგრესია? დათვალეთ რამდენი ბლოკია საჭირო ერთი კედლის ასაშენებლად, თუ ბლოკის აგური მოთავსებულია ბაზაში. იმედი მაქვს, მონიტორზე თითის გადაადგილებით არ ითვლით, გახსოვთ ბოლო ფორმულა და ყველაფერი რაც ვთქვით არითმეტიკული პროგრესიის შესახებ?

ამ შემთხვევაში, პროგრესი ასე გამოიყურება:
არითმეტიკული პროგრესიის სხვაობა.
არითმეტიკული პროგრესიის წევრთა რაოდენობა.
მოდით ჩავანაცვლოთ ჩვენი მონაცემები ბოლო ფორმულებში (ჩვენ ვითვლით ბლოკების რაოდენობას 2 გზით).

მეთოდი 1.

მეთოდი 2.

ახლა თქვენ ასევე შეგიძლიათ გამოთვალოთ მონიტორზე: შეადარეთ მიღებული მნიშვნელობები ჩვენს პირამიდაში არსებული ბლოკების რაოდენობასთან. დათანხმდა? კარგად გააკეთეთ, თქვენ აითვისეთ არითმეტიკული პროგრესიის მე-6 წევრთა ჯამი.
რა თქმა უნდა, თქვენ არ შეგიძლიათ პირამიდის აშენება ბაზაზე არსებული ბლოკებიდან, მაგრამ? შეეცადეთ გამოთვალოთ რამდენი ქვიშის აგურია საჭირო ამ პირობით კედლის ასაშენებლად.
მოახერხე?
სწორი პასუხი არის ბლოკები:

Ვარჯიში

Დავალებები:

  1. მაშა ზაფხულისთვის ფორმაში დგება. ყოველდღე ის ზრდის ჩაჯდომების რაოდენობას. რამდენჯერ დაიძვრება მაშა კვირებში, თუ პირველ ვარჯიშზე ჯდება.
  2. რა არის ყველა კენტი რიცხვის ჯამი, რომელიც შეიცავს.
  3. მორების შენახვისას, მეტყევეები აწყობენ მათ ისე, რომ ყოველი ზედა ფენა შეიცავს წინაზე ერთით ნაკლებ მორს. რამდენი მორი არის ერთ ქვისა, თუ ქვისა ძირი არის მორები.

პასუხები:

  1. მოდით განვსაზღვროთ არითმეტიკული პროგრესიის პარამეტრები. Ამ შემთხვევაში
    (კვირები = დღეები).

    პასუხი:ორ კვირაში მაშა დღეში ერთხელ უნდა იჯდეს.

  2. პირველი კენტი რიცხვი, ბოლო რიცხვი.
    არითმეტიკული პროგრესიის სხვაობა.
    კენტი რიცხვების რაოდენობა ნახევარში, თუმცა, შეამოწმეთ ეს ფაქტი არითმეტიკული პროგრესიის მე-მე წევრის საპოვნელად ფორმულის გამოყენებით:

    რიცხვები შეიცავს კენტ რიცხვებს.
    ჩვენ ვცვლით არსებულ მონაცემებს ფორმულაში:

    პასუხი:ყველა კენტი რიცხვის ჯამი, რომელიც შეიცავს მას უდრის.

  3. გაიხსენეთ პრობლემა პირამიდების შესახებ. ჩვენს შემთხვევაში, a, რადგან თითოეული ზედა ფენა მცირდება ერთი ჟურნალით, არის მხოლოდ რამდენიმე ფენა, ანუ.
    ჩაანაცვლეთ მონაცემები ფორმულაში:

    პასუხი:ქვისა არის მორები.

შეჯამება

  1. - რიცხვითი თანმიმდევრობა, რომელშიც სხვაობა მიმდებარე რიცხვებს შორის არის იგივე და ტოლი. ის იზრდება და მცირდება.
  2. ფორმულის პოვნაარითმეტიკული პროგრესიის მე-1 წევრი იწერება ფორმულით - , სადაც არის რიცხვების რაოდენობა პროგრესიაში.
  3. არითმეტიკული პროგრესიის წევრების თვისება- - სადაც - რიცხვების რაოდენობა პროგრესიაში.
  4. არითმეტიკული პროგრესიის წევრთა ჯამიშეიძლება მოიძებნოს ორი გზით:

    , სადაც არის მნიშვნელობების რაოდენობა.

არითმეტიკული პროგრესია. შუა დონე

რიცხვითი თანმიმდევრობა

დავსხდეთ და დავიწყოთ რამდენიმე რიცხვის წერა. Მაგალითად:

შეგიძლიათ დაწეროთ ნებისმიერი რიცხვი და შეიძლება იყოს რამდენიც გსურთ. მაგრამ ყოველთვის შეგიძლიათ გაიგოთ, რომელი მათგანია პირველი, რომელია მეორე და ასე შემდეგ, ანუ შეგვიძლია მათი დათვლა. ეს არის რიცხვების მიმდევრობის მაგალითი.

რიცხვითი თანმიმდევრობაარის რიცხვების ნაკრები, რომელთაგან თითოეულს შეიძლება მიენიჭოს უნიკალური ნომერი.

სხვა სიტყვებით რომ ვთქვათ, თითოეული რიცხვი შეიძლება ასოცირებული იყოს გარკვეულ ნატურალურ რიცხვთან და მხოლოდ ერთთან. და ჩვენ არ მივანიჭებთ ამ ნომერს ამ ნაკრებიდან არცერთ სხვა ნომერს.

რიცხვის მქონე რიცხვს მიმდევრობის მე-მე წევრი ეწოდება.

ჩვენ ჩვეულებრივ მთელ მიმდევრობას ვუწოდებთ ზოგიერთ ასოს (მაგალითად,) და ამ მიმდევრობის თითოეულ წევრს - იგივე ასო, ამ წევრის რიცხვის ტოლი ინდექსით: .

ძალიან მოსახერხებელია, თუ მიმდევრობის მე-მე წევრი შეიძლება მიცემული იყოს რაიმე ფორმულით. მაგალითად, ფორმულა

ადგენს თანმიმდევრობას:

და ფორმულა არის შემდეგი თანმიმდევრობა:

მაგალითად, არითმეტიკული პროგრესია არის თანმიმდევრობა (პირველი წევრი აქ ტოლია და განსხვავება). ან (, განსხვავება).

n-ე ტერმინის ფორმულა

ჩვენ განმეორებით ფორმულას ვუწოდებთ ისეთ ფორმულას, რომელშიც, რათა გაირკვეს ტერმინი, თქვენ უნდა იცოდეთ წინა ან რამდენიმე წინა:

ასეთი ფორმულის გამოყენებით, მაგალითად, პროგრესიის მეათე წევრის საპოვნელად, უნდა გამოვთვალოთ წინა ცხრა. მაგალითად, მოდით. შემდეგ:

აბა, ახლა გასაგებია, რა ფორმულაა?

თითოეულ სტრიქონში ვამატებთ, ვამრავლებთ რაღაც რიცხვზე. Რისთვის? ძალიან მარტივია: ეს არის ამჟამინდელი წევრის რიცხვი მინუს:

ახლა ბევრად უფრო კომფორტულია, არა? ჩვენ ვამოწმებთ:

თავად გადაწყვიტე:

არითმეტიკული პროგრესიის დროს იპოვეთ n-ე წევრის ფორმულა და იპოვეთ მეასე წევრი.

გადაწყვეტილება:

პირველი ვადა თანაბარია. და რა განსხვავებაა? და აი რა:

(მას ხომ განსხვავება ჰქვია, რადგან უდრის პროგრესიის თანმიმდევრული წევრების სხვაობას).

ასე რომ, ფორმულა არის:

მაშინ მეასე წევრია:

რა არის ყველა ნატურალური რიცხვის ჯამი დან?

ლეგენდის თანახმად, დიდმა მათემატიკოსმა კარლ გაუსმა, როგორც 9 წლის ბიჭი, რამდენიმე წუთში გამოთვალა ეს თანხა. მან შეამჩნია, რომ პირველი და ბოლო რიცხვის ჯამი ტოლია, მეორე და წინა უკანასკნელის ჯამი იგივეა, ბოლოდან მესამე და მე-3-ის ჯამი იგივეა და ა.შ. რამდენი ასეთი წყვილია? მართალია, ყველა რიცხვის ზუსტად ნახევარი, ანუ. Ისე,

ნებისმიერი არითმეტიკული პროგრესიის პირველი წევრთა ჯამის ზოგადი ფორმულა იქნება:

მაგალითი:
იპოვეთ ყველა ორნიშნა ჯერადი ჯამი.

გადაწყვეტილება:

პირველი ასეთი რიცხვია. ყოველი შემდეგი მიიღება წინა რიცხვის მიმატებით. ამრიგად, ჩვენთვის საინტერესო რიცხვები ქმნიან არითმეტიკულ პროგრესიას პირველი წევრით და სხვაობით.

ამ პროგრესირების ტერმინის ფორმულა არის:

რამდენი წევრია პროგრესიაში, თუ ისინი ყველა ორნიშნა უნდა იყოს?

ძალიან ადვილია:.

პროგრესირების ბოლო ვადა თანაბარი იქნება. შემდეგ ჯამი:

პასუხი:.

ახლა თავად გადაწყვიტე:

  1. ყოველდღე სპორტსმენი დარბის 1 მეტრით მეტს, ვიდრე წინა დღეს. რამდენ კილომეტრს გაივლის ის კვირებში, თუ პირველ დღეს კმ მ გაირბინა?
  2. ველოსიპედისტი ყოველდღიურად უფრო მეტ მილს ატარებს, ვიდრე წინა. პირველ დღეს მან გაიარა კმ. რამდენი დღე უნდა იაროს კილომეტრის დასაფარად? რამდენ კილომეტრს გაივლის ის მოგზაურობის ბოლო დღეს?
  3. მაღაზიაში მაცივრის ფასი ყოველწლიურად ამდენივე მცირდება. დაადგინეთ, რამდენად იკლებს მაცივრის ფასი ყოველწლიურად, თუ გასაყიდად რუბლებში იყო გამოტანილი, ექვსი წლის შემდეგ ის გაიყიდა რუბლებში.

პასუხები:

  1. აქ ყველაზე მნიშვნელოვანი არის არითმეტიკული პროგრესიის ამოცნობა და მისი პარამეტრების დადგენა. ამ შემთხვევაში, (კვირები = დღეები). თქვენ უნდა განსაზღვროთ ამ პროგრესიის პირველი პუნქტების ჯამი:
    .
    პასუხი:
  2. აქ მოცემულია:, აუცილებელია იპოვოთ.
    ცხადია, თქვენ უნდა გამოიყენოთ იგივე ჯამის ფორმულა, როგორც წინა პრობლემაში:
    .
    შეცვალეთ მნიშვნელობები:

    ფესვი აშკარად არ ჯდება, ამიტომ პასუხი.
    გამოვთვალოთ ბოლო დღის მანძილზე გავლილი მანძილი --ე წევრის ფორმულით:
    (კმ).
    პასუხი:

  3. მოცემული: . Პოვნა: .
    ეს არ არის ადვილი:
    (რუბში).
    პასუხი:

არითმეტიკული პროგრესია. მოკლედ მთავარის შესახებ

ეს არის რიცხვითი თანმიმდევრობა, რომელშიც სხვაობა მიმდებარე რიცხვებს შორის იგივე და ტოლია.

არითმეტიკული პროგრესია იზრდება () და მცირდება ().

Მაგალითად:

არითმეტიკული პროგრესიის n-ე წევრის პოვნის ფორმულა

იწერება ფორმულის სახით, სადაც არის რიცხვების რაოდენობა პროგრესიაში.

არითმეტიკული პროგრესიის წევრების თვისება

ეს აადვილებს პროგრესიის წევრის პოვნას, თუ ცნობილია მისი მეზობელი წევრები - სად არის რიცხვების რაოდენობა პროგრესიაში.

არითმეტიკული პროგრესიის წევრთა ჯამი

ჯამის პოვნის ორი გზა არსებობს:

სად არის მნიშვნელობების რაოდენობა.

სად არის მნიშვნელობების რაოდენობა.

ხო, თემა დასრულდა. თუ ამ სტრიქონებს კითხულობ, მაშინ ძალიან მაგარი ხარ.

იმიტომ რომ ადამიანების მხოლოდ 5%-ს შეუძლია რაღაცის დაუფლება დამოუკიდებლად. და თუ ბოლომდე წაიკითხე, მაშინ 5%-ში ხარ!

ახლა ყველაზე მთავარი.

თქვენ გაარკვიეთ თეორია ამ თემაზე. და, ვიმეორებ, ეს ... უბრალოდ სუპერა! თქვენ უკვე უკეთესი ხართ, ვიდრე თქვენი თანატოლების უმრავლესობა.

პრობლემა ის არის, რომ ეს შეიძლება არ იყოს საკმარისი ...

Რისთვის?

გამოცდის წარმატებით ჩაბარებისთვის, ბიუჯეტში ინსტიტუტში ჩასაბარებლად და, რაც მთავარია, უვადოდ.

არაფერში არ დაგარწმუნებთ, მხოლოდ ერთს გეტყვით...

ადამიანები, რომლებმაც მიიღეს კარგი განათლება, ბევრად მეტს გამოიმუშავებენ, ვიდრე მათ, ვინც არ მიუღია. ეს არის სტატისტიკა.

მაგრამ ეს არ არის მთავარი.

მთავარია, რომ ისინი უფრო ბედნიერები არიან (არის ასეთი კვლევები). ალბათ იმიტომ, რომ ბევრად მეტი შესაძლებლობა იხსნება მათ წინაშე და ცხოვრება უფრო ნათელი ხდება? არ ვიცი...

მაგრამ შენ თვითონ იფიქრე...

რა არის საჭირო იმისთვის, რომ გამოცდაზე სხვებზე უკეთესი იყო და საბოლოოდ ... ბედნიერი?

შეავსეთ ხელი, გადაჭრით პრობლემებს ამ თემაზე.

გამოცდაზე თეორიას არ მოგთხოვენ.

დაგჭირდებათ დროულად მოაგვარეთ პრობლემები.

და, თუ თქვენ არ მოაგვარეთ ისინი (ბევრი!), აუცილებლად დაუშვებთ სადღაც სულელურ შეცდომას ან უბრალოდ დროულად არ დაუშვებთ.

ეს სპორტშია - თქვენ უნდა გაიმეოროთ ბევრჯერ, რომ აუცილებლად გაიმარჯვოთ.

იპოვეთ კოლექცია სადაც გინდათ აუცილებლად გადაწყვეტილებებით, დეტალური ანალიზითდა გადაწყვიტე, გადაწყვიტე, გადაწყვიტე!

თქვენ შეგიძლიათ გამოიყენოთ ჩვენი ამოცანები (აუცილებელი არ არის) და ჩვენ აუცილებლად გირჩევთ მათ.

იმისათვის, რომ ხელი მოკიდოთ ჩვენს ამოცანებს, თქვენ უნდა დაეხმაროთ YouClever სახელმძღვანელოს სიცოცხლის გახანგრძლივებას, რომელსაც ამჟამად კითხულობთ.

Როგორ? არის ორი ვარიანტი:

  1. განბლოკეთ წვდომა ამ სტატიაში ყველა ფარულ ამოცანაზე - 299 რუბლი.
  2. განბლოკეთ წვდომა ყველა ფარულ დავალებაზე სახელმძღვანელოს 99-ვე სტატიაში - 999 რუბლი.

დიახ, ჩვენ გვაქვს 99 ასეთი სტატია სახელმძღვანელოში და წვდომა ყველა დავალებაზე და მათში ყველა ფარულ ტექსტზე შეიძლება დაუყოვნებლივ გაიხსნას.

მეორე შემთხვევაში ჩვენ მოგცემთსიმულატორი "6000 დავალება გადაწყვეტილებებითა და პასუხებით, თითოეული თემისთვის, ყველა დონის სირთულისთვის." ეს ნამდვილად საკმარისია, რომ ხელი შეგიშალოთ რაიმე თემაზე პრობლემების გადაჭრაზე.

სინამდვილეში, ეს ბევრად მეტია, ვიდრე უბრალოდ სიმულატორი - მთელი სასწავლო პროგრამა. საჭიროების შემთხვევაში, თქვენ ასევე შეგიძლიათ გამოიყენოთ იგი უფასოდ.

ყველა ტექსტსა და პროგრამაზე წვდომა უზრუნველყოფილია საიტის მთელი სიცოცხლის მანძილზე.

Საბოლოოდ...

თუ არ მოგწონთ ჩვენი ამოცანები, იპოვეთ სხვები. უბრალოდ არ გაჩერდე თეორიით.

"გასაგებია" და "მე ვიცი როგორ გადაჭრა" სრულიად განსხვავებული უნარებია. ორივე გჭირდება.

იპოვე პრობლემები და მოაგვარე!


დიახ, დიახ: არითმეტიკული პროგრესია თქვენთვის სათამაშო არ არის :)

კარგი, მეგობრებო, თუ თქვენ კითხულობთ ამ ტექსტს, მაშინ შიდა ქუდის მტკიცებულება მეუბნება, რომ თქვენ ჯერ კიდევ არ იცით რა არის არითმეტიკული პროგრესია, მაგრამ ნამდვილად (არა, ასე: SOOOOO!) გსურთ იცოდეთ. ამიტომ, მე არ დაგტანჯავთ ხანგრძლივი შესავლებით და მაშინვე საქმეს გადავალ.

დასაწყისისთვის, რამდენიმე მაგალითი. განვიხილოთ რიცხვების რამდენიმე ნაკრები:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

რა საერთო აქვს ყველა ამ კომპლექტს? ერთი შეხედვით არაფერი. მაგრამ რეალურად არის რაღაც. კერძოდ: ყოველი შემდეგი ელემენტი წინადან ერთი და იგივე რაოდენობით განსხვავდება.

თავად განსაჯეთ. პირველი ნაკრები არის მხოლოდ თანმიმდევრული რიცხვები, თითოეული წინაზე მეტი. მეორე შემთხვევაში, სხვაობა მეზობელ რიცხვებს შორის უკვე უდრის ხუთს, მაგრამ ეს სხვაობა მაინც მუდმივია. მესამე შემთხვევაში ზოგადად ფესვებია. თუმცა, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, ხოლო $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, ე.ი. ამ შემთხვევაში ყოველი შემდეგი ელემენტი უბრალოდ იზრდება $\sqrt(2)$-ით (და არ შეგეშინდეთ, რომ ეს რიცხვი ირაციონალურია).

ასე რომ: ყველა ასეთ მიმდევრობას უბრალოდ არითმეტიკული პროგრესია ეწოდება. მოდით მივცეთ მკაცრი განმარტება:

განმარტება. რიცხვების თანმიმდევრობას, რომლებშიც ყოველი შემდეგი განსხვავდება წინადან ზუსტად იმავე რაოდენობით, არითმეტიკული პროგრესია ეწოდება. იმ რაოდენობას, რომლითაც რიცხვები განსხვავდება, ეწოდება პროგრესირების განსხვავება და ყველაზე ხშირად აღინიშნება ასო $d$-ით.

აღნიშვნა: $\left(((a)_(n)) \right)$ არის თავად პროგრესია, $d$ არის მისი განსხვავება.

და მხოლოდ რამდენიმე მნიშვნელოვანი შენიშვნა. პირველ რიგში, მხოლოდ პროგრესირება განიხილება მოწესრიგებულირიცხვების თანმიმდევრობა: ნებადართულია მათი წაკითხვა მკაცრად იმ თანმიმდევრობით, რომლითაც ისინი იწერება - და სხვა არაფერი. თქვენ არ შეგიძლიათ ნომრების გადაწყობა ან გაცვლა.

მეორეც, თანმიმდევრობა თავისთავად შეიძლება იყოს სასრული ან უსასრულო. მაგალითად, სიმრავლე (1; 2; 3) აშკარად სასრულ არითმეტიკული პროგრესიაა. მაგრამ თუ დაწერთ რაღაცას (1; 2; 3; 4; ...) - ეს უკვე უსასრულო პროგრესიაა. ელიფსისი ოთხის შემდეგ, თითქოსდა, მიანიშნებს, რომ საკმაოდ ბევრი რიცხვი უფრო შორს მიდის. უსაზღვროდ ბევრი, მაგალითად. :)

ასევე მინდა აღვნიშნო, რომ პროგრესი იზრდება და კლებულობს. ჩვენ უკვე ვნახეთ მზარდი - იგივე ნაკრები (1; 2; 3; 4; ...). აქ მოცემულია პროგრესირების შემცირების მაგალითები:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

კარგი, კარგი: ბოლო მაგალითი შეიძლება ზედმეტად რთული ჩანდეს. მაგრამ დანარჩენი, ვფიქრობ, გესმით. ამიტომ, ჩვენ შემოგთავაზებთ ახალ განმარტებებს:

განმარტება. არითმეტიკული პროგრესია ეწოდება:

  1. იზრდება, თუ ყოველი შემდეგი ელემენტი მეტია წინაზე;
  2. მცირდება, თუ პირიქით, ყოველი მომდევნო ელემენტი წინაზე ნაკლებია.

გარდა ამისა, არსებობს ეგრეთ წოდებული "სტაციონარული" მიმდევრობები - ისინი შედგება ერთი და იგივე განმეორებადი რიცხვისგან. მაგალითად, (3; 3; 3; ...).

რჩება მხოლოდ ერთი კითხვა: როგორ განვასხვავოთ მზარდი პროგრესი კლებისგან? საბედნიეროდ, აქ ყველაფერი დამოკიდებულია მხოლოდ $d$ რიცხვის ნიშანზე, ე.ი. პროგრესირების განსხვავებები:

  1. თუ $d \gt 0$, მაშინ პროგრესი იზრდება;
  2. თუ $d \lt 0$, მაშინ პროგრესი აშკარად მცირდება;
  3. და ბოლოს, არის შემთხვევა $d=0$ - ამ შემთხვევაში მთელი პროგრესია მცირდება იდენტური რიცხვების სტაციონარული მიმდევრობით: (1; 1; 1; 1; ...) და ა.შ.

შევეცადოთ გამოვთვალოთ სხვაობა $d$ ზემოთ სამი კლებადი პროგრესიისთვის. ამისათვის საკმარისია აიღოთ ნებისმიერი ორი მომიჯნავე ელემენტი (მაგალითად, პირველი და მეორე) და გამოვაკლოთ რიცხვს მარჯვნივ, რიცხვს მარცხნივ. ეს ასე გამოიყურება:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

როგორც ხედავთ, სამივე შემთხვევაში განსხვავება მართლაც უარყოფითი აღმოჩნდა. ახლა კი, როცა მეტ-ნაკლებად გავარკვიეთ განმარტებები, დროა გავიგოთ, როგორ არის აღწერილი პროგრესიები და რა თვისებები აქვთ მათ.

პროგრესიისა და განმეორებითი ფორმულის წევრები

ვინაიდან ჩვენი თანმიმდევრობის ელემენტების შეცვლა შეუძლებელია, მათი დანომრვა შესაძლებელია:

\[\left(((a)_(n)) \მარჯვნივ)=\მარცხნივ\(((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \მარჯვნივ\)\]

ამ ნაკრების ცალკეულ ელემენტებს პროგრესიის წევრებს უწოდებენ. ისინი ამ გზით მითითებულია რიცხვის დახმარებით: პირველი წევრი, მეორე წევრი და ა.შ.

გარდა ამისა, როგორც უკვე ვიცით, პროგრესიის მეზობელი წევრები დაკავშირებულია ფორმულით:

\[((a)_(n))-((a)_(n-1))=d\მარჯვენა ისარი ((a)_(n))=((a)_(n-1))+d \]

მოკლედ, პროგრესიის $n$th ტერმინის საპოვნელად, თქვენ უნდა იცოდეთ $n-1$th წევრი და სხვაობა $d$. ასეთ ფორმულას ეწოდება განმეორებადი, რადგან მისი დახმარებით შეგიძლიათ იპოვოთ ნებისმიერი რიცხვი, მხოლოდ წინას (და სინამდვილეში, ყველა წინას) ცოდნა. ეს ძალიან მოუხერხებელია, ამიტომ არსებობს უფრო რთული ფორმულა, რომელიც ამცირებს ნებისმიერ გამოთვლას პირველ ტერმინამდე და განსხვავებას:

\[((a)_(n))=((a)_(1))+\მარცხნივ(n-1 \მარჯვნივ)d\]

თქვენ ალბათ ადრე შეგხვედრიათ ეს ფორმულა. მათ მოსწონთ მისი მიცემა ყველა სახის საცნობარო წიგნში და რეებნიკებში. და მათემატიკის ნებისმიერ გონივრული სახელმძღვანელოში ის ერთ-ერთი პირველია.

თუმცა, გირჩევთ, ცოტა ივარჯიშოთ.

დავალება ნომერი 1. ჩაწერეთ არითმეტიკული პროგრესიის პირველი სამი წევრი $\left(((a)_(n)) \right)$ თუ $((a)_(1))=8,d=-5$.

გადაწყვეტილება. ასე რომ, ჩვენ ვიცით პირველი წევრი $((a)_(1))=8$ და პროგრესიის სხვაობა $d=-5$. მოდით გამოვიყენოთ მოცემული ფორმულა და ჩავანაცვლოთ $n=1$, $n=2$ და $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \მარჯვნივ)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \მარჯვნივ)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\მარცხნივ(2-1 \მარჯვნივ)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\მარცხნივ(3-1 \მარჯვნივ)d=((a)_(1))+2d=8-10= -2. \\ \ბოლო (გასწორება)\]

პასუხი: (8; 3; -2)

Სულ ეს არის! გაითვალისწინეთ, რომ ჩვენი პროგრესი მცირდება.

რა თქმა უნდა, $n=1$-ის ჩანაცვლება არ შეიძლებოდა - ჩვენ უკვე ვიცით პირველი ტერმინი. თუმცა, ერთეულის ჩანაცვლებით, ჩვენ დავრწმუნდით, რომ პირველი ტერმინისთვისაც კი ჩვენი ფორმულა მუშაობს. სხვა შემთხვევებში ყველაფერი ბანალურ არითმეტიკამდე მიდიოდა.

დავალება ნომერი 2. ჩაწერეთ არითმეტიკული პროგრესიის პირველი სამი წევრი, თუ მისი მეშვიდე წევრია −40 და მეჩვიდმეტე წევრი არის −50.

გადაწყვეტილება. ჩვენ ვწერთ პრობლემის მდგომარეობას ჩვეულებრივი პირობებით:

\[((a)_(7))=-40;\ quad ((a)_(17))=-50.\]

\[\მარცხნივ\( \დაწყება(გასწორება) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=(a) _(1))+16d \\ \ბოლო (გასწორება) \მარჯვნივ.\]

\[\მარცხნივ\( \დაწყება(გასწორება) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \ბოლო (გასწორება) \მარჯვნივ.\]

სისტემის ნიშანი იმიტომ დავდე, რომ ეს მოთხოვნები ერთდროულად უნდა დაკმაყოფილდეს. ახლა კი აღვნიშნავთ, რომ თუ პირველ განტოლებას გამოვაკლებთ მეორე განტოლებას (ჩვენ გვაქვს ამის უფლება, რადგან გვაქვს სისტემა), მივიღებთ ამას:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \მარჯვნივ); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \ბოლო (გასწორება)\]

სწორედ ასე, ჩვენ აღმოვაჩინეთ პროგრესის განსხვავება! რჩება აღმოჩენილი რიცხვის ჩანაცვლება სისტემის რომელიმე განტოლებაში. მაგალითად, პირველში:

\[\ დასაწყისი(მატრიცა) ((a)_(1))+6d=-40;\quad d=-1 \\ \ქვემოთ \\ ((a)_(1))-6=-40; \\ ((ა)_(1))=-40+6=-34. \\ \დასრულება (მატრიცა)\]

ახლა, პირველი ტერმინისა და განსხვავების ცოდნით, რჩება მეორე და მესამე ტერმინების პოვნა:

\[\ დასაწყისი(გასწორება) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \ბოლო (გასწორება)\]

მზადაა! პრობლემა მოგვარებულია.

პასუხი: (-34; -35; -36)

ყურადღება მიაქციეთ პროგრესიის კურიოზულ თვისებას, რომელიც აღმოვაჩინეთ: თუ ავიღებთ $n$th და $m$th ტერმინებს და გამოვაკლებთ მათ ერთმანეთს, მაშინ მივიღებთ პროგრესიის სხვაობას გამრავლებული $n-m$ რიცხვზე:

\[((a)_(n))-((a)_(m))=d\cdot \მარცხნივ(n-m \მარჯვნივ)\]

მარტივი, მაგრამ ძალიან სასარგებლო თვისება, რომელიც აუცილებლად უნდა იცოდეთ - მისი დახმარებით შეგიძლიათ მნიშვნელოვნად დააჩქაროთ პროგრესირების მრავალი პრობლემის გადაჭრა. აი ამის ნათელი მაგალითი:

დავალება ნომერი 3. არითმეტიკული პროგრესიის მეხუთე წევრია 8,4, ხოლო მისი მეათე წევრი არის 14,4. იპოვეთ ამ პროგრესიის მეთხუთმეტე წევრი.

გადაწყვეტილება. ვინაიდან $((a)_(5))=8.4$, $((a)_(10))=14.4$ და ჩვენ უნდა ვიპოვოთ $((a)_(15))$, აღვნიშნავთ შემდეგს:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5დ. \\ \ბოლო (გასწორება)\]

მაგრამ პირობით $((a)_(10))-((a)_(5))=14.4-8.4=6$, ანუ $5d=6$, საიდანაც გვაქვს:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \ბოლო (გასწორება)\]

პასუხი: 20.4

Სულ ეს არის! ჩვენ არ დაგვჭირდა განტოლებათა სისტემის შედგენა და პირველი წევრისა და სხვაობის გამოთვლა - ყველაფერი რამდენიმე სტრიქონში გადაწყდა.

ახლა განვიხილოთ სხვა ტიპის პრობლემა - პროგრესის უარყოფითი და პოზიტიური წევრების ძიება. საიდუმლო არ არის, რომ თუ პროგრესი იზრდება, ხოლო მისი პირველი ტერმინი უარყოფითია, ადრე თუ გვიან მასში დადებითი ტერმინები გამოჩნდება. და პირიქით: კლებადი პროგრესირების პირობები ადრე თუ გვიან გახდება უარყოფითი.

ამავდროულად, ყოველთვის არ არის შესაძლებელი ამ მომენტის პოვნა "შუბლზე", ელემენტების თანმიმდევრულად დახარისხება. ხშირად, პრობლემები ისეა შექმნილი, რომ ფორმულების ცოდნის გარეშე, გამოთვლებს რამდენიმე ფურცელი დასჭირდება - უბრალოდ ვიძინებდით, სანამ პასუხს არ ვიპოვით. ამიტომ ვეცდებით ამ პრობლემების უფრო სწრაფად გადაჭრას.

დავალება ნომერი 4. რამდენი უარყოფითი წევრია არითმეტიკული პროგრესიაში -38,5; -35,8; …?

გადაწყვეტილება. ასე რომ, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, საიდანაც დაუყოვნებლივ ვპოულობთ განსხვავებას:

გაითვალისწინეთ, რომ განსხვავება დადებითია, ამიტომ პროგრესი იზრდება. პირველი წევრი უარყოფითია, ასე რომ, რაღაც მომენტში ჩვენ წავაწყდებით დადებით რიცხვებს. ერთადერთი საკითხია, როდის მოხდება ეს.

შევეცადოთ გავარკვიოთ: რამდენ ხანს (ე.ი. რომელ ბუნებრივ რიცხვამდე $n$) არის დაცული ტერმინების ნეგატიურობა:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\მარცხნივ(n-1 \მარჯვნივ)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \მარჯვნივ. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\rightarrow ((n)_(\max ))=15. \\ \ბოლო (გასწორება)\]

ბოლო სტრიქონი დაზუსტებას საჭიროებს. ასე რომ, ჩვენ ვიცით, რომ $n \lt 15\frac(7)(27)$. მეორე მხრივ, რიცხვის მხოლოდ მთელი მნიშვნელობები მოგვწონს (უფრო მეტიც: $n\in \mathbb(N)$), ამიტომ ყველაზე დიდი დასაშვები რიცხვი არის ზუსტად $n=15$ და არავითარ შემთხვევაში 16.

დავალება ნომერი 5. არითმეტიკული პროგრესიით $(()_(5))=-150,(()_(6))=-147$. იპოვეთ ამ პროგრესიის პირველი დადებითი წევრის რიცხვი.

ეს იქნება ზუსტად იგივე პრობლემა, როგორც წინა, მაგრამ ჩვენ არ ვიცით $((a)_(1))$. მაგრამ მეზობელი ტერმინები ცნობილია: $((a)_(5))$ და $((a)_(6))$, ასე რომ, ჩვენ შეგვიძლია მარტივად ვიპოვოთ პროგრესიის განსხვავება:

გარდა ამისა, შევეცადოთ გამოვხატოთ მეხუთე ტერმინი პირველის და სხვაობის თვალსაზრისით სტანდარტული ფორმულის გამოყენებით:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \ბოლო (გასწორება)\]

ახლა ჩვენ გავაგრძელებთ წინა პრობლემის ანალოგიით. ჩვენ გავარკვიეთ, რომელ მომენტში გამოჩნდება ჩვენი მიმდევრობის დადებითი რიცხვები:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \მარჯვნივ)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \ბოლო (გასწორება)\]

ამ უტოლობის მინიმალური მთელი რიცხვი არის რიცხვი 56.

გთხოვთ გაითვალისწინოთ, რომ ბოლო ამოცანაში ყველაფერი დაყვანილ იქნა მკაცრ უთანასწორობამდე, ამიტომ ვარიანტი $n=55$ არ გამოგვდის.

ახლა, როდესაც ვისწავლეთ მარტივი პრობლემების გადაჭრა, მოდით გადავიდეთ უფრო რთულზე. მაგრამ ჯერ გავიგოთ არითმეტიკული პროგრესიების კიდევ ერთი ძალიან სასარგებლო თვისება, რომელიც დაგვიზოგავს უამრავ დროს და არათანაბარ უჯრედებს მომავალში. :)

საშუალო არითმეტიკული და ტოლი შეწევა

განვიხილოთ მზარდი არითმეტიკული პროგრესიის რამდენიმე თანმიმდევრული წევრი $\left(((a)_(n)) \right)$. შევეცადოთ აღვნიშნოთ ისინი რიცხვით ხაზზე:

არითმეტიკული პროგრესიის წევრები რიცხვთა წრფეზე

მე კონკრეტულად აღვნიშნე თვითნებური წევრები $((a)_(n-3)),...,((a)_(n+3))$, და არა $((a)_(1)) , \ ((ა)_(2)),\ ((ა)_(3))$ და ა.შ. რადგან წესი, რომელსაც ახლა გეტყვით, ნებისმიერ „სეგმენტზე“ ერთნაირად მუშაობს.

და წესი ძალიან მარტივია. გავიხსენოთ რეკურსიული ფორმულა და ჩავწეროთ ყველა მონიშნული წევრისთვის:

\[\ დასაწყისი(გასწორება) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \ბოლო (გასწორება)\]

თუმცა, ეს თანასწორობები შეიძლება სხვაგვარად გადაიწეროს:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \ბოლო (გასწორება)\]

აბა, მერე რა? მაგრამ ის ფაქტი, რომ ტერმინები $((a)_(n-1))$ და $((a)_(n+1))$ $((a)_(n)) $-დან ერთსა და იმავე მანძილზე მდებარეობს. . და ეს მანძილი $d$-ის ტოლია. იგივე შეიძლება ითქვას ტერმინებზე $((a)_(n-2))$ და $((a)_(n+2))$ - ისინი ასევე ამოღებულია $((a)_(n)-დან. )$ იგივე მანძილით უდრის $2d$-ს. შეგიძლიათ გააგრძელოთ განუსაზღვრელი ვადით, მაგრამ სურათი კარგად ასახავს მნიშვნელობას


პროგრესიის წევრები ცრუობენ ცენტრიდან იმავე მანძილზე

რას ნიშნავს ეს ჩვენთვის? ეს ნიშნავს, რომ თქვენ შეგიძლიათ იპოვოთ $((a)_(n))$, თუ ცნობილია მეზობელი ნომრები:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

ჩვენ გამოვიტანეთ შესანიშნავი განცხადება: არითმეტიკული პროგრესიის თითოეული წევრი უდრის მეზობელი წევრების საშუალო არითმეტიკულს! უფრო მეტიც, ჩვენ შეგვიძლია გადავუხვიოთ $((a)_(n))$-დან მარცხნივ და მარჯვნივ არა ერთი ნაბიჯით, არამედ $k$ ნაბიჯებით - და მაინც ფორმულა სწორი იქნება:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

იმათ. ჩვენ მარტივად შეგვიძლია ვიპოვოთ $((a)_(150))$ თუ ვიცით $((a)_(100))$ და $((a)_(200))$, რადგან $((a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. ერთი შეხედვით შეიძლება მოგვეჩვენოს, რომ ეს ფაქტი არაფერს არ გვაძლევს სასარგებლო. თუმცა, პრაქტიკაში, არითმეტიკული საშუალო გამოსაყენებლად სპეციალურად „გამახვილებულია“ მრავალი დავალება. Შეხედე:

დავალება ნომერი 6. იპოვეთ $x$-ის ყველა მნიშვნელობები ისე, რომ რიცხვები $-6((x)^(2))$, $x+1$ და $14+4((x)^(2))$ იყოს თანმიმდევრული წევრები არითმეტიკული პროგრესია (მითითებული თანმიმდევრობით).

გადაწყვეტილება. ვინაიდან ეს რიცხვები პროგრესიის წევრები არიან, მათთვის საშუალო არითმეტიკული პირობა დაკმაყოფილებულია: ცენტრალური ელემენტი $x+1$ შეიძლება გამოისახოს მეზობელი ელემენტების მიხედვით:

\[\begin(გასწორება) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \ბოლო (გასწორება)\]

შედეგი არის კლასიკური კვადრატული განტოლება. მისი ფესვები: $x=2$ და $x=-3$ არის პასუხები.

პასუხი: -3; 2.

დავალება ნომერი 7. იპოვეთ $$-ის მნიშვნელობები ისე, რომ რიცხვებმა $-1;4-3;(()^(2))+1$ შექმნან არითმეტიკული პროგრესია (ამ თანმიმდევრობით).

გადაწყვეტილება. კვლავ გამოვხატავთ შუა ტერმინს მეზობელი ტერმინების საშუალო არითმეტიკული თვალსაზრისით:

\[\begin(გასწორება) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \მარცხნივ| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \ბოლო (გასწორება)\]

კიდევ ერთი კვადრატული განტოლება. და ისევ ორი ​​ფესვი: $x=6$ და $x=1$.

პასუხი: 1; 6.

თუ პრობლემის გადაჭრის პროცესში მიიღებთ რამდენიმე ბრუტალურ რიცხვს, ან ბოლომდე დარწმუნებული არ ხართ ნაპოვნი პასუხების სისწორეში, მაშინ არსებობს შესანიშნავი ხრიკი, რომელიც საშუალებას გაძლევთ შეამოწმოთ: სწორად გადავჭრით პრობლემა?

ვთქვათ, მე-6 ამოცანაში მივიღეთ პასუხები -3 და 2. როგორ შევამოწმოთ, რომ ეს პასუხები სწორია? მოდით შევაერთოთ ისინი თავდაპირველ მდგომარეობაში და ვნახოთ რა მოხდება. შეგახსენებთ, რომ გვაქვს სამი რიცხვი ($-6(()^(2))$, $+1$ და $14+4(()^(2))$), რომლებიც არითმეტიკულ პროგრესიას უნდა ქმნიდნენ. ჩანაცვლება $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \ბოლო (გასწორება)\]

მივიღეთ ნომრები -54; −2; 50, რომელიც განსხვავდება 52-ით, უდავოდ არის არითმეტიკული პროგრესია. იგივე ხდება $x=2$-ზე:

\[\ დასაწყისი(გასწორება) & x=2\მარჯვენა ისარი \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \ბოლო (გასწორება)\]

ისევ პროგრესია, მაგრამ 27-ის სხვაობით. ამგვარად, პრობლემა სწორად მოგვარებულია. მსურველებს შეუძლიათ დამოუკიდებლად შეამოწმონ მეორე დავალება, მაგრამ მე მაშინვე ვიტყვი: იქაც ყველაფერი სწორია.

ზოგადად, ბოლო პრობლემების გადაჭრისას, ჩვენ წავაწყდით კიდევ ერთ საინტერესო ფაქტს, რომელიც ასევე უნდა გვახსოვდეს:

თუ სამი რიცხვი ისეთია, რომ მეორე არის პირველი და ბოლო საშუალო, მაშინ ეს რიცხვები ქმნიან არითმეტიკულ პროგრესიას.

მომავალში, ამ განცხადების გაგება საშუალებას მოგვცემს ფაქტიურად „ავაშენოთ“ საჭირო პროგრესი პრობლემის მდგომარეობიდან გამომდინარე. მაგრამ სანამ ასეთ „მშენებლობას“ მივაქცევთ, ყურადღება უნდა მივაქციოთ კიდევ ერთ ფაქტს, რომელიც პირდაპირ გამომდინარეობს უკვე განხილულიდან.

ელემენტების დაჯგუფება და ჯამი

დავუბრუნდეთ ისევ რიცხვთა ხაზს. ჩვენ აღვნიშნავთ პროგრესის რამდენიმე წევრს, რომელთა შორის, შესაძლოა. ღირს ბევრი სხვა წევრი:

რიცხვთა ხაზზე მონიშნულია 6 ელემენტი

შევეცადოთ გამოვხატოთ "მარცხენა კუდი" $((a)_(n))$-ით და $d$-ით, ხოლო "მარჯვენა კუდი" $((a)_(k))$-ით და $-ით. d$. ძალიან მარტივია:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((ა)_(კ-1))=((ა)_(კ))-დ; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \ბოლო (გასწორება)\]

ახლა გაითვალისწინეთ, რომ შემდეგი ჯამები ტოლია:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((ა)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= ს. \ბოლო (გასწორება)\]

მარტივად რომ ვთქვათ, თუ საწყისად განვიხილავთ პროგრესიის ორ ელემენტს, რომლებიც საერთო ჯამში $S$-ის რაღაც რიცხვის ტოლია და შემდეგ ამ ელემენტებიდან დავიწყებთ ნაბიჯს საპირისპირო მიმართულებით (ერთმანეთისკენ ან პირიქით გადასაადგილებლად), მაშინ ტოლი იქნება ელემენტების ჯამებიც, რომლებსაც წავაწყდებით$S$. ეს შეიძლება იყოს საუკეთესოდ წარმოდგენილი გრაფიკულად:


იგივე აბზაცები იძლევა თანაბარ ჯამებს

ამ ფაქტის გაგება საშუალებას მოგვცემს გადავჭრათ ფუნდამენტურად უფრო მაღალი დონის სირთულის პრობლემები, ვიდრე ზემოთ განვიხილეთ. მაგალითად, ესენი:

დავალება ნომერი 8. დაადგინეთ არითმეტიკული პროგრესიის სხვაობა, რომელშიც პირველი წევრი არის 66, ხოლო მეორე და მეთორმეტე წევრის ნამრავლი არის უმცირესი.

გადაწყვეტილება. მოდით დავწეროთ ყველაფერი, რაც ვიცით:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\წთ. \ბოლო (გასწორება)\]

ასე რომ, ჩვენ არ ვიცით $d$ პროგრესიის განსხვავება. სინამდვილეში, მთელი გამოსავალი აგებული იქნება სხვაობის გარშემო, რადგან პროდუქტი $((a)_(2))\cdot ((a)_(12))$ შეიძლება გადაიწეროს შემდეგნაირად:

\[\ დასაწყისი(გასწორება) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\მარცხნივ(66+d \მარჯვნივ)\cdot \left(66+11d \მარჯვნივ)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \მარჯვნივ). \ბოლო (გასწორება)\]

ავზში მყოფთათვის: მე ავიღე საერთო ფაქტორი 11 მეორე ფრჩხილიდან. ამრიგად, სასურველი პროდუქტი არის კვადრატული ფუნქცია $d$ ცვლადის მიმართ. ამიტომ, განიხილეთ ფუნქცია $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - მისი გრაფიკი იქნება პარაბოლა ტოტებით ზემოთ, რადგან თუ ფრჩხილებს გავხსნით, მივიღებთ:

\[\ დასაწყისი (გასწორება) & f\ მარცხნივ(d \მარჯვნივ)=11\მარცხნივ(((დ)^(2))+66d+6d+66\cdot 6 \მარჯვნივ)= \\ & =11(( დ)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end (გასწორება)\]

როგორც ხედავთ, ყველაზე მაღალი წევრის კოეფიციენტი არის 11 - ეს არის დადებითი რიცხვი, ასე რომ, ჩვენ ნამდვილად გვაქვს საქმე პარაბოლასთან ტოტებით ზემოთ:


კვადრატული ფუნქციის გრაფიკი - პარაბოლა

გთხოვთ გაითვალისწინოთ: ეს პარაბოლა იღებს თავის მინიმალურ მნიშვნელობას თავის წვეროზე $((d)_(0))$ აბსცისით. რა თქმა უნდა, ჩვენ შეგვიძლია გამოვთვალოთ ეს აბსციზა სტანდარტული სქემის მიხედვით (არსებობს ფორმულა $((d)_(0))=(-b)/(2a)\;$), მაგრამ ბევრად უფრო გონივრული იქნება გაითვალისწინეთ, რომ სასურველი წვერო დევს პარაბოლას ღერძის სიმეტრიაზე, ამიტომ წერტილი $((d)_(0))$ თანაბარი მანძილითაა დაშორებული $f\left(d \right)=0$ განტოლების ფესვებისგან:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((დ)_(1))=-66;\ოთხი ((დ)_(2))=-6. \\ \ბოლო (გასწორება)\]

ამიტომაც არ ვჩქარობდი ფრჩხილების გახსნას: თავდაპირველი სახით ფესვების პოვნა ძალიან, ძალიან ადვილი იყო. მაშასადამე, აბსციზა უდრის −66 და −6 რიცხვების საშუალო არითმეტიკულს:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

რა გვაძლევს აღმოჩენილ რიცხვს? მასთან ერთად, საჭირო პროდუქტი იღებს უმცირეს მნიშვნელობას (სხვათა შორის, ჩვენ არ გამოვთვალეთ $((y)_(\min ))$ - ეს ჩვენგან არ არის საჭირო). ამავდროულად, ეს რიცხვი არის საწყისი პროგრესიის სხვაობა, ე.ი. ვიპოვეთ პასუხი. :)

პასუხი: -36

დავალება ნომერი 9. ჩასვით სამი რიცხვი $-\frac(1)(2)$ და $-\frac(1)(6)$ რიცხვებს შორის ისე, რომ მოცემულ რიცხვებთან ერთად შექმნან არითმეტიკული პროგრესია.

გადაწყვეტილება. სინამდვილეში, ჩვენ უნდა შევქმნათ ხუთი რიცხვის მიმდევრობა, პირველი და ბოლო რიცხვი უკვე ცნობილია. გამოტოვებული რიცხვების აღნიშვნა $x$, $y$ და $z$ ცვლადებით:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \მარჯვნივ\ )\]

გაითვალისწინეთ, რომ რიცხვი $y$ არის ჩვენი მიმდევრობის „შუა“ - ის თანაბარი მანძილით არის დაშორებული $x$ და $z$ რიცხვებისგან და $-\frac(1)(2)$ და $-\frac რიცხვებისგან. (1)(6)$. და თუ ამ მომენტში ჩვენ ვერ მივიღებთ $y$ რიცხვებიდან $x$ და $z$, მაშინ სიტუაცია განსხვავებულია პროგრესიის ბოლოებში. გახსოვდეთ საშუალო არითმეტიკული:

ახლა, ვიცით $y$, ჩვენ ვიპოვით დარჩენილ ნომრებს. გაითვალისწინეთ, რომ $x$ დევს $-\frac(1)(2)$-სა და $y=-\frac(1)(3)$-ს შორის. Ისე

ანალოგიურად კამათით, ჩვენ ვპოულობთ დარჩენილ რიცხვს:

მზადაა! სამივე ნომერი ვიპოვეთ. ჩავწეროთ ისინი პასუხში იმ თანმიმდევრობით, რომლითაც ისინი უნდა იყოს ჩასმული თავდაპირველ რიცხვებს შორის.

პასუხი: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

დავალება ნომერი 10. 2 და 42 რიცხვებს შორის ჩასვით რამდენიმე რიცხვი, რომლებიც მოცემულ რიცხვებთან ერთად ქმნიან არითმეტიკულ პროგრესიას, თუ ცნობილია, რომ ჩასმული რიცხვების პირველი, მეორე და ბოლო ჯამი არის 56.

გადაწყვეტილება. კიდევ უფრო რთული ამოცანა, რომელიც, თუმცა, წყდება ისევე, როგორც წინა - საშუალო არითმეტიკული გზით. პრობლემა ის არის, რომ ზუსტად არ ვიცით რამდენი რიცხვის ჩასმა. მაშასადამე, განსაზღვრულობისთვის, ჩვენ ვვარაუდობთ, რომ ჩასმის შემდეგ იქნება ზუსტად $n$ რიცხვები და მათგან პირველი არის 2, ხოლო ბოლო არის 42. ამ შემთხვევაში, სასურველი არითმეტიკული პროგრესია შეიძლება წარმოდგენილი იყოს როგორც:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( ა)_(n-1));42 \მარჯვნივ\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

თუმცა გაითვალისწინეთ, რომ რიცხვები $((a)_(2))$ და $((a)_(n-1))$ მიიღება კიდეებზე მდგომი რიცხვებიდან 2 და 42 ერთი ნაბიჯით ერთმანეთისკენ. , ე.ი. მიმდევრობის ცენტრამდე. და ეს იმას ნიშნავს

\[((a)_(2))+((a)_(n-1))=2+42=44\]

მაგრამ შემდეგ ზემოაღნიშნული გამოთქმა შეიძლება გადაიწეროს ასე:

\[\ დასაწყისი(გასწორება) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \მარჯვნივ)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \ბოლო (გასწორება)\]

თუ ვიცით $((a)_(3))$ და $((a)_(1))$, ჩვენ მარტივად შეგვიძლია ვიპოვოთ პროგრესირების განსხვავება:

\[\ დასაწყისი(გასწორება) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\მარცხნივ(3-1 \მარჯვნივ)\cdot d=2d; \\ & 2d=10\მარჯვენა ისარი d=5. \\ \ბოლო (გასწორება)\]

რჩება მხოლოდ დარჩენილი წევრების პოვნა:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \ბოლო (გასწორება)\]

ამრიგად, უკვე მე-9 საფეხურზე მივალთ მიმდევრობის მარცხენა ბოლოში - რიცხვი 42. ჯამში მხოლოდ 7 რიცხვის ჩასმა იყო საჭირო: 7; 12; 17; 22; 27; 32; 37.

პასუხი: 7; 12; 17; 22; 27; 32; 37

ტექსტური ამოცანები პროგრესიით

დასასრულს, მსურს განვიხილო რამდენიმე შედარებით მარტივი პრობლემა. ისე, როგორც მარტივი: სტუდენტების უმრავლესობისთვის, რომლებიც მათემატიკას სწავლობენ სკოლაში და არ წაკითხული აქვთ ზემოთ დაწერილი, ეს ამოცანები შეიძლება ჟესტივით ჩანდეს. მიუხედავად ამისა, სწორედ ასეთი ამოცანები გვხვდება OGE-ში და მათემატიკაში USE-ში, ამიტომ გირჩევთ გაეცნოთ მათ.

დავალება ნომერი 11. გუნდმა იანვარში დაამზადა 62 ნაწილი, ხოლო ყოველ მომდევნო თვეში 14-ით მეტი ნაწილი გამოუშვა, ვიდრე წინა. რამდენი ნაწილი გამოუშვა ბრიგადამ ნოემბერში?

გადაწყვეტილება. ცხადია, თვეების მიხედვით დახატული ნაწილების რაოდენობა მზარდი არითმეტიკული პროგრესია იქნება. და:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\მარცხნივ(n-1 \მარჯვნივ)\cdot 14. \\ \end (გასწორება)\]

ნოემბერი არის წლის მე-11 თვე, ამიტომ უნდა ვიპოვოთ $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

შესაბამისად, ნოემბერში 202 ნაწილის დამზადება მოხდება.

დავალება ნომერი 12. იანვარში წიგნების აკინძვის სახელოსნომ 216 წიგნი შეკრა და ყოველთვიურად წინა თვესთან შედარებით 4 წიგნით მეტი აკრა. რამდენი წიგნი შეიკრა სახელოსნომ დეკემბერში?

გადაწყვეტილება. Ერთი და იგივე:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\მარცხნივ(n-1 \მარჯვნივ)\cdot 4. \\ \end (გასწორება)$

დეკემბერი არის წლის ბოლო, მე-12 თვე, ამიტომ ჩვენ ვეძებთ $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

ეს არის პასუხი - დეკემბერში 260 წიგნი იკვრება.

აბა, თუ აქამდე წაიკითხეთ, მეჩქარება მოგილოცოთ: თქვენ წარმატებით დაასრულეთ არითმეტიკული პროგრესიების "ახალგაზრდა მებრძოლების კურსი". ჩვენ შეგვიძლია უსაფრთხოდ გადავიდეთ შემდეგ გაკვეთილზე, სადაც შევისწავლით პროგრესირების ჯამის ფორმულას, ასევე მისგან მნიშვნელოვან და ძალიან სასარგებლო შედეგებს.


მაგალითად, თანმიმდევრობა \(2\); \(5\); \(რვა\); \(თერთმეტი\); \(14\)… არის არითმეტიკული პროგრესია, რადგან ყოველი შემდეგი ელემენტი განსხვავდება წინადან სამით (შეიძლება მიიღოთ წინადან სამის მიმატებით):

ამ პროგრესიაში სხვაობა \(d\) დადებითია (ტოლია \(3\)) და ამიტომ ყოველი შემდეგი წევრი წინაზე მეტია. ასეთ პროგრესებს ე.წ იზრდება.

თუმცა, \(d\) ასევე შეიძლება იყოს უარყოფითი რიცხვი. მაგალითად, არითმეტიკული პროგრესიაში \(16\); \(ათი\); \(4\); \(-2\); \(-8\)… პროგრესიის სხვაობა \(d\) უდრის მინუს ექვსი.

და ამ შემთხვევაში, ყოველი შემდეგი ელემენტი წინაზე ნაკლები იქნება. ამ პროგრესირებას ე.წ მცირდება.

არითმეტიკული პროგრესიის აღნიშვნა

პროგრესირება აღინიშნება პატარა ლათინური ასოებით.

რიცხვებს, რომლებიც ქმნიან პროგრესიას, მას უწოდებენ წევრები(ან ელემენტები).

ისინი აღინიშნება იგივე ასოებით, როგორც არითმეტიკული პროგრესია, მაგრამ რიცხვითი ინდექსით, რომელიც ტოლია ელემენტის რიცხვის თანმიმდევრობით.

მაგალითად, არითმეტიკული პროგრესია \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) შედგება ელემენტებისაგან \(a_1=2\); \(a_2=5\); \(a_3=8\) და ასე შემდეგ.

სხვა სიტყვებით რომ ვთქვათ, პროგრესიისთვის \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

ამოცანების ამოხსნა არითმეტიკული პროგრესიით

პრინციპში, ზემოაღნიშნული ინფორმაცია უკვე საკმარისია არითმეტიკული პროგრესიის თითქმის ნებისმიერი პრობლემის გადასაჭრელად (მათ შორის OGE-ში შემოთავაზებული).

მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია პირობებით \(b_1=7; d=4\). იპოვეთ \(b_5\).
გადაწყვეტილება:

პასუხი: \(b_5=23\)

მაგალითი (OGE). არითმეტიკული პროგრესიის პირველი სამი წევრი მოცემულია: \(62; 49; 36…\) იპოვეთ ამ პროგრესიის პირველი უარყოფითი წევრის მნიშვნელობა..
გადაწყვეტილება:

ჩვენ მოცემულია მიმდევრობის პირველი ელემენტები და ვიცით, რომ ეს არის არითმეტიკული პროგრესია. ანუ, თითოეული ელემენტი განსხვავდება მეზობელისაგან ერთი და იგივე რაოდენობით. გაარკვიეთ რომელი გამოკლებით წინა ელემენტს: \(d=49-62=-13\).

ახლა ჩვენ შეგვიძლია აღვადგინოთ ჩვენი პროგრესი სასურველ (პირველ უარყოფით) ელემენტამდე.

მზადაა. შეგიძლიათ დაწეროთ პასუხი.

პასუხი: \(-3\)

მაგალითი (OGE). მოცემულია არითმეტიკული პროგრესიის რამდენიმე თანმიმდევრული ელემენტი: \(...5; x; 10; 12.5...\) იპოვეთ ელემენტის მნიშვნელობა, რომელიც აღინიშნება ასო \(x\).
გადაწყვეტილება:


\(x\) საპოვნელად უნდა ვიცოდეთ, რამდენად განსხვავდება შემდეგი ელემენტი წინა ელემენტისგან, სხვა სიტყვებით რომ ვთქვათ, პროგრესირების განსხვავება. ვიპოვოთ ის ორი ცნობილი მეზობელი ელემენტიდან: \(d=12.5-10=2.5\).

ახლა კი უპრობლემოდ ვპოულობთ იმას, რასაც ვეძებთ: \(x=5+2.5=7.5\).


მზადაა. შეგიძლიათ დაწეროთ პასუხი.

პასუხი: \(7,5\).

მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია შემდეგი პირობებით: \(a_1=-11\); \(a_(n+1)=a_n+5\) იპოვეთ ამ პროგრესიის პირველი ექვსი წევრის ჯამი.
გადაწყვეტილება:

ჩვენ უნდა ვიპოვოთ პროგრესიის პირველი ექვსი წევრის ჯამი. მაგრამ ჩვენ არ ვიცით მათი მნიშვნელობები, ჩვენ მხოლოდ პირველი ელემენტია მოცემული. ამიტომ, ჩვენ ჯერ რიგრიგობით ვიანგარიშებთ მნიშვნელობებს ჩვენთვის მოცემულის გამოყენებით:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
და ჩვენ გვჭირდება ექვსი ელემენტის გამოთვლის შემდეგ, ვპოულობთ მათ ჯამს.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

მოთხოვნილი თანხა ნაპოვნია.

პასუხი: \(S_6=9\).

მაგალითი (OGE). არითმეტიკული პროგრესიით \(a_(12)=23\); \(a_(16)=51\). იპოვნეთ ამ პროგრესის განსხვავება.
გადაწყვეტილება:

პასუხი: \(d=7\).

მნიშვნელოვანი არითმეტიკული პროგრესის ფორმულები

როგორც ხედავთ, ბევრი არითმეტიკული პროგრესიის ამოცანის ამოხსნა შეიძლება უბრალოდ მთავარის გაგებით - რომ არითმეტიკული პროგრესია არის რიცხვების ჯაჭვი და ამ ჯაჭვის ყოველი შემდეგი ელემენტი მიიღება იმავე რიცხვის წინას მიმატებით (განსხვავება პროგრესირება).

თუმცა, ზოგჯერ არის სიტუაციები, როდესაც ძალიან მოუხერხებელია გადაჭრა "შუბლზე". მაგალითად, წარმოიდგინეთ, რომ პირველ მაგალითში უნდა ვიპოვოთ არა მეხუთე ელემენტი \(b_5\), არამედ სამას ოთხმოცდამეექვსე \(b_(386)\). რა არის, ჩვენ \ (385 \) ჯერ დავამატოთ ოთხი? ან წარმოიდგინეთ, რომ ბოლო მაგალითში თქვენ უნდა იპოვოთ პირველი სამოცდასამი ელემენტის ჯამი. დათვლა დამაბნეველია...

ამიტომ, ასეთ შემთხვევებში, ისინი არ ხსნიან "შუბლზე", არამედ იყენებენ სპეციალურ ფორმულებს, რომლებიც მიღებულია არითმეტიკული პროგრესიისთვის. და მთავარია პროგრესიის n-ე წევრის ფორმულა და პირველი წევრის \(n\) ჯამის ფორმულა.

\(n\)-ე წევრის ფორმულა: \(a_n=a_1+(n-1)d\), სადაც \(a_1\) არის პროგრესიის პირველი წევრი;
\(n\) – საჭირო ელემენტის ნომერი;
\(a_n\) არის პროგრესიის წევრი ნომრით \(n\).


ეს ფორმულა საშუალებას გვაძლევს სწრაფად ვიპოვოთ მინიმუმ სამასი, თუნდაც მემილიონე ელემენტი, მხოლოდ პირველი და პროგრესირების განსხვავების ცოდნით.

მაგალითი. არითმეტიკული პროგრესია მოცემულია პირობებით: \(b_1=-159\); \(d=8,2\). იპოვეთ \(b_(246)\).
გადაწყვეტილება:

პასუხი: \(b_(246)=1850\).

პირველი n წევრის ჯამის ფორმულა არის: \(S_n=\frac(a_1+a_n)(2) \cdot n\), სადაც



\(a_n\) არის ბოლო შეჯამებული ტერმინი;


მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია პირობებით \(a_n=3.4n-0.6\). იპოვეთ ამ პროგრესიის პირველი \(25\) წევრთა ჯამი.
გადაწყვეტილება:

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\)

პირველი ოცდახუთი ელემენტის ჯამის გამოსათვლელად, უნდა ვიცოდეთ პირველი და ოცდამეხუთე წევრის მნიშვნელობა.
ჩვენი პროგრესირება მოცემულია n-ე წევრის ფორმულით მისი რიცხვიდან გამომდინარე (იხილეთ დეტალები). მოდით გამოვთვალოთ პირველი ელემენტი \(n\) ერთით ჩანაცვლებით.

\(n=1;\) \(a_1=3.4 1-0.6=2.8\)

ახლა ვიპოვოთ ოცდამეხუთე წევრი \(n\)-ის ნაცვლად ოცდახუთის ჩანაცვლებით.

\(n=25;\) \(a_(25)=3.4 25-0.6=84.4\)

აბა, ახლა უპრობლემოდ ვიანგარიშებთ საჭირო თანხას.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

პასუხი მზადაა.

პასუხი: \(S_(25)=1090\).

პირველი ტერმინების ჯამისთვის \(n\) შეგიძლიათ მიიღოთ სხვა ფორმულა: თქვენ უბრალოდ გჭირდებათ \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) ნაცვლად \(a_n\) შეცვალეთ მისი ფორმულა \(a_n=a_1+(n-1)d\). ჩვენ ვიღებთ:

პირველი n წევრის ჯამის ფორმულა არის: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), სადაც

\(S_n\) – პირველი ელემენტების საჭირო ჯამი \(n\);
\(a_1\) არის პირველი წევრი, რომელიც შეჯამდება;
\(d\) – პროგრესირების განსხვავება;
\(n\) - ელემენტების რაოდენობა ჯამში.

მაგალითი. იპოვეთ არითმეტიკული პროგრესიის პირველი \(33\)-ექს წევრთა ჯამი: \(17\); \(15,5\); \(თოთხმეტი\)…
გადაწყვეტილება:

პასუხი: \(S_(33)=-231\).

უფრო რთული არითმეტიკული პროგრესირების პრობლემები

ახლა თქვენ გაქვთ ყველა ინფორმაცია, რომელიც გჭირდებათ თითქმის ნებისმიერი არითმეტიკული პროგრესიის პრობლემის გადასაჭრელად. მოდით დავასრულოთ თემა იმ პრობლემების გათვალისწინებით, რომლებშიც საჭიროა არა მხოლოდ ფორმულების გამოყენება, არამედ ცოტათი ფიქრიც (მათემატიკაში ეს შეიძლება იყოს სასარგებლო ☺)

მაგალითი (OGE). იპოვეთ პროგრესიის ყველა უარყოფითი წევრის ჯამი: \(-19.3\); \(-ცხრამეტი\); \(-18.7\)…
გადაწყვეტილება:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

დავალება ძალიან ჰგავს წინას. ჩვენ ვიწყებთ ამოხსნას იგივე გზით: ჯერ ვპოულობთ \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

ახლა ჩვენ შევცვლით \(d\) ჯამის ფორმულაში ... და აქ ჩნდება პატარა ნიუანსი - ჩვენ არ ვიცით \(n\). სხვა სიტყვებით რომ ვთქვათ, ჩვენ არ ვიცით რამდენი ტერმინის დამატება იქნება საჭირო. როგორ გავარკვიოთ? მოდი ვიფიქროთ. ჩვენ შევწყვეტთ ელემენტების დამატებას, როდესაც მივიღებთ პირველ დადებით ელემენტს. ანუ, თქვენ უნდა გაარკვიოთ ამ ელემენტის რაოდენობა. Როგორ? მოდით ჩამოვწეროთ არითმეტიკული პროგრესიის ნებისმიერი ელემენტის გამოთვლის ფორმულა: \(a_n=a_1+(n-1)d\) ჩვენი შემთხვევისთვის.

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

ჩვენ გვჭირდება \(a_n\) იყოს ნულზე მეტი. მოდით გავარკვიოთ რისთვის \(n\) მოხდება ეს.

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|: 0.3\)

უტოლობის ორივე მხარეს ვყოფთ \(0,3\)-ზე.

\(n-1>\)\(\frac(19,3)(0,3)\)

ჩვენ გადავცემთ მინუს ერთს, არ გვავიწყდება ნიშნების შეცვლა

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

გამოთვლა...

\(n>65,333…\)

...და გამოდის, რომ პირველ დადებით ელემენტს ექნება რიცხვი \(66\). შესაბამისად, ბოლო უარყოფითს აქვს \(n=65\). ყოველი შემთხვევისთვის, მოდით შევამოწმოთ.

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

ამრიგად, ჩვენ უნდა დავამატოთ პირველი \(65\) ელემენტები.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

პასუხი მზადაა.

პასუხი: \(S_(65)=-630.5\).

მაგალითი (OGE). არითმეტიკული პროგრესია მოცემულია პირობებით: \(a_1=-33\); \(a_(n+1)=a_n+4\). იპოვეთ ჯამი \(26\)-დან \(42\) ელემენტის ჩათვლით.
გადაწყვეტილება:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

ამ პრობლემაში თქვენ ასევე უნდა იპოვოთ ელემენტების ჯამი, მაგრამ დაწყებული არა პირველიდან, არამედ \(26\)-დან. ჩვენ არ გვაქვს ამის ფორმულა. როგორ გადავწყვიტოთ?
მარტივი - რომ მიიღოთ ჯამი \(26\)-დან \(42\)-მდე, ჯერ უნდა იპოვოთ ჯამი \(1\)-დან \(42\)-მდე და შემდეგ გამოაკლოთ ჯამი. პირველი \ (25 \)-მდე (იხ. სურათი).


ჩვენი პროგრესიისთვის \(a_1=-33\) და სხვაობისთვის \(d=4\) (ბოლოს და ბოლოს, წინა ელემენტს ვამატებთ ოთხს, რომ ვიპოვოთ შემდეგი). ამის ცოდნა ჩვენ ვპოულობთ პირველი \(42\)-uh ელემენტების ჯამს.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

ახლა პირველი \(25\)-ე ელემენტების ჯამი.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

და ბოლოს, ჩვენ ვიანგარიშებთ პასუხს.

\(S=S_(42)-S_(25)=2058-375=1683\)

პასუხი: \(S=1683\).

არითმეტიკული პროგრესიისთვის, არის კიდევ რამდენიმე ფორმულა, რომლებიც ჩვენ არ განვიხილეთ ამ სტატიაში მათი დაბალი პრაქტიკული სარგებლობის გამო. თუმცა, თქვენ შეგიძლიათ მარტივად იპოვოთ ისინი.