តើលោការីតត្រូវបានគណនាដោយរបៀបណា? លោការីត

លោការីតនៃចំនួនមួយ។ ដោយហេតុផល ត្រូវបានគេហៅថានិទស្សន្ត X ដែលអ្នកចាំបាច់ត្រូវលើក ដើម្បីទទួលបានលេខ

បានផ្តល់ថា
,
,

វាធ្វើតាមនិយមន័យនៃលោការីតនោះ។
, i.e.
- សមភាពនេះគឺជាអត្តសញ្ញាណលោការីតមូលដ្ឋាន។

លោការីតដល់គោល ១០ ត្រូវបានគេហៅថាលោការីតទសភាគ។ ជំនួស​អោយ
សរសេរ
.

លោការីតគោល អ៊ី ត្រូវបានគេហៅថាធម្មជាតិនិងតំណាង
.

លក្ខណៈសម្បត្តិជាមូលដ្ឋាននៃលោការីត។

    លោការីតនៃការរួបរួមសម្រាប់មូលដ្ឋានណាមួយគឺសូន្យ

    លោការីតនៃផលិតផលគឺស្មើនឹងផលបូកនៃលោការីតនៃកត្តា។

3) លោការីតនៃកូតាគឺស្មើនឹងភាពខុសគ្នានៃលោការីត


កត្តា
ត្រូវបានគេហៅថាម៉ូឌុលនៃការផ្លាស់ប្តូរពីលោការីតនៅមូលដ្ឋាន ទៅលោការីតនៅមូលដ្ឋាន .

ដោយប្រើលក្ខណសម្បត្តិ 2-5 ជាញឹកញាប់អាចកាត់បន្ថយលោការីតនៃកន្សោមស្មុគស្មាញទៅនឹងលទ្ធផលនៃប្រតិបត្តិការនព្វន្ធសាមញ្ញលើលោការីត។

ឧទាហរណ៍,

ការបំប្លែងលោការីតបែបនេះត្រូវបានគេហៅថាលោការីត។ ការបំប្លែងទៅវិញទៅមកនៃលោការីតត្រូវបានគេហៅថាសក្តានុពល។

ជំពូកទី 2. ធាតុនៃគណិតវិទ្យាខ្ពស់ជាង។

1. ដែនកំណត់

ដែនកំណត់មុខងារ
គឺជាចំនួនកំណត់ A ប្រសិនបើនៅពេលព្យាយាម xx 0 សម្រាប់នីមួយៗដែលបានកំណត់ទុកជាមុន
, មានលេខ
នោះភ្លាមៗ
, នោះ។
.

អនុគមន៍​ដែល​មាន​កម្រិត​ខុស​ពី​វា​ដោយ​ចំនួន​មិន​កំណត់៖
, ដែល - b.m.w. , i.e.
.

ឧទាហរណ៍។ ពិចារណាមុខងារ
.

ពេលខំប្រឹង
, មុខងារ y ទៅសូន្យ៖

១.១. ទ្រឹស្តីបទមូលដ្ឋានអំពីដែនកំណត់។

    ដែនកំណត់នៃតម្លៃថេរគឺស្មើនឹងតម្លៃថេរនេះ។

.

    ដែនកំណត់នៃផលបូក (ភាពខុសគ្នា) នៃចំនួនកំណត់នៃអនុគមន៍គឺស្មើនឹងផលបូក (ភាពខុសគ្នា) នៃដែនកំណត់នៃអនុគមន៍ទាំងនេះ។

    ដែនកំណត់នៃផលិតផលនៃចំនួនកំណត់នៃអនុគមន៍គឺស្មើនឹងផលិតផលនៃដែនកំណត់នៃអនុគមន៍ទាំងនេះ។

    ដែនកំណត់នៃ quotient នៃអនុគមន៍ពីរគឺស្មើនឹង quotient នៃដែនកំណត់នៃអនុគមន៍ទាំងនេះ ប្រសិនបើដែនកំណត់នៃភាគបែងមិនស្មើនឹងសូន្យ។

ដែនកំណត់គួរឱ្យកត់សម្គាល់

,
, កន្លែងណា

១.២. កំណត់ឧទាហរណ៍នៃការគណនា

ទោះយ៉ាងណាក៏ដោយ មិនមែនដែនកំណត់ទាំងអស់ត្រូវបានគណនាយ៉ាងងាយស្រួលនោះទេ។ ជាញឹកញាប់ ការគណនាដែនកំណត់ត្រូវបានកាត់បន្ថយទៅជាការបង្ហាញនៃភាពមិនច្បាស់លាស់នៃប្រភេទ៖ ឬ។

.

2. ដេរីវេនៃមុខងារមួយ។

សូមឱ្យយើងមានមុខងារ
បន្តនៅលើផ្នែក
.

អាគុយម៉ង់ ទទួលបានការជំរុញខ្លះ
. បន្ទាប់មកមុខងារនឹងត្រូវបានបង្កើន
.

តម្លៃអាគុយម៉ង់ ត្រូវនឹងតម្លៃនៃមុខងារ
.

តម្លៃអាគុយម៉ង់
ត្រូវគ្នាទៅនឹងតម្លៃនៃមុខងារ។

ដូច្នេះ, ។

អនុញ្ញាតឱ្យយើងរកឃើញដែនកំណត់នៃទំនាក់ទំនងនេះនៅ
. ប្រសិនបើដែនកំណត់នេះមាន នោះវាត្រូវបានគេហៅថាដេរីវេនៃអនុគមន៍ដែលបានផ្តល់ឱ្យ។

និយមន័យនៃដេរីវេទី 3 នៃអនុគមន៍ដែលបានផ្តល់ឱ្យ
ដោយអាគុយម៉ង់ ហៅថាដែនកំណត់នៃសមាមាត្រនៃការកើនឡើងនៃអនុគមន៍ទៅនឹងការកើនឡើងនៃអាគុយម៉ង់ នៅពេលដែលការកើនឡើងនៃអាគុយម៉ង់មាននិន្នាការទៅសូន្យ។

ដេរីវេនៃមុខងារ
អាចត្រូវបានសម្គាល់ដូចខាងក្រោម:

; ; ; .

និយមន័យ 4 ប្រតិបត្តិការនៃការស្វែងរកដេរីវេនៃអនុគមន៍មួយត្រូវបានគេហៅថា ភាពខុសគ្នា។

២.១. អត្ថន័យមេកានិចនៃដេរីវេ។

ពិចារណាចលនា rectilinear នៃរាងកាយរឹងមួយចំនួនឬចំណុចសម្ភារៈ។

អនុញ្ញាតឱ្យនៅចំណុចណាមួយនៅក្នុងពេលវេលា ចំណុចផ្លាស់ទី
គឺនៅចម្ងាយ ពីទីតាំងចាប់ផ្តើម
.

បន្ទាប់ពីមួយរយៈ
នាងបានផ្លាស់ប្តូរចម្ងាយ
. អាកប្បកិរិយា =- ល្បឿនមធ្យមនៃចំណុចសម្ភារៈ
. អនុញ្ញាតឱ្យយើងរកឃើញដែនកំណត់នៃសមាមាត្រនេះដោយគិតគូរពីនោះ។
.

ដូច្នេះ ការ​កំណត់​ល្បឿន​ភ្លាមៗ​នៃ​ចំណុច​សម្ភារៈ​ត្រូវ​បាន​កាត់​បន្ថយ​ទៅ​ជា​ការ​ស្វែង​រក​ប្រភព​នៃ​ផ្លូវ​ដែល​ទាក់ទង​នឹង​ពេល​វេលា។

២.២. តម្លៃធរណីមាត្រនៃដេរីវេ

ឧបមាថាយើងមានមុខងារមួយចំនួនដែលបានកំណត់ជាក្រាហ្វិក
.

អង្ករ។ 1. អត្ថន័យធរណីមាត្រនៃដេរីវេ

ប្រសិនបើ
បន្ទាប់មកចំណុច
នឹងផ្លាស់ទីតាមខ្សែកោង ខិតជិតចំណុច
.

ដូច្នេះ
, i.e. តម្លៃនៃដេរីវេដែលផ្តល់តម្លៃនៃអាគុយម៉ង់ ជាលេខស្មើនឹងតង់សង់នៃមុំដែលបង្កើតឡើងដោយតង់សង់នៅចំណុចដែលបានផ្តល់ឱ្យជាមួយនឹងទិសដៅវិជ្ជមាននៃអ័ក្ស
.

២.៣. តារាងនៃរូបមន្តនៃភាពខុសគ្នាជាមូលដ្ឋាន។

មុខងារថាមពល

អនុគមន៍អិចស្ប៉ូណង់ស្យែល

មុខងារលោការីត

មុខងារត្រីកោណមាត្រ

អនុគមន៍ត្រីកោណមាត្របញ្ច្រាស

២.៤. ច្បាប់នៃការបែងចែក។

ដេរីវេនៃ

ដេរីវេនៃផលបូក (ភាពខុសគ្នា) នៃអនុគមន៍


ដេរីវេនៃផលិតផលនៃមុខងារពីរ


ដេរីវេនៃកូតានៃអនុគមន៍ពីរ


២.៥. ដេរីវេនៃមុខងារស្មុគស្មាញ។

អនុញ្ញាតឱ្យមុខងារ
ដែលវាអាចត្រូវបានតំណាងថាជា

និង
ដែលជាកន្លែងដែលអថេរ នោះគឺជាអាគុយម៉ង់កម្រិតមធ្យម

ដេរីវេនៃអនុគមន៍ស្មុគ្រស្មាញគឺស្មើនឹងផលិតផលនៃដេរីវេនៃអនុគមន៍ដែលបានផ្តល់ឱ្យដោយគោរពទៅនឹងអាគុយម៉ង់កម្រិតមធ្យមដោយដេរីវេនៃអាគុយម៉ង់កម្រិតមធ្យមទាក់ទងនឹង x ។

ឧទាហរណ៍ ១.

ឧទាហរណ៍ ២.

3. ឌីផេរ៉ង់ស្យែលមុខងារ។

សូមឱ្យមាន
, អាចខុសគ្នានៅលើចន្លោះពេលមួយចំនួន
តោះ​ទៅ នៅ មុខងារនេះមានដេរីវេ

,

បន្ទាប់មកអ្នកអាចសរសេរបាន។

(1),

កន្លែងណា - បរិមាណមិនកំណត់,

ដោយសារតែនៅ

គុណគ្រប់លក្ខខណ្ឌនៃសមភាព (១) ដោយ
យើង​មាន:

កន្លែងណា
- b.m.v. លំដាប់ខ្ពស់ជាង។

តម្លៃ
ត្រូវបានគេហៅថាឌីផេរ៉ង់ស្យែលនៃមុខងារ
និងតំណាង

.

៣.១. តម្លៃធរណីមាត្រនៃឌីផេរ៉ង់ស្យែល។

អនុញ្ញាតឱ្យមុខងារ
.

រូប ២. អត្ថន័យធរណីមាត្រនៃឌីផេរ៉ង់ស្យែល។

.

ជាក់ស្តែងឌីផេរ៉ង់ស្យែលនៃមុខងារ
គឺស្មើនឹងការបង្កើនចំនួនតង់សង់នៅចំណុចដែលបានផ្តល់ឱ្យ។

៣.២. ដេរីវេ និងឌីផេរ៉ង់ស្យែលនៃការបញ្ជាទិញផ្សេងៗ។

ប្រសិនបើមាន
, បន្ទាប់មក
ត្រូវបានគេហៅថាដេរីវេទី 1 ។

ដេរីវេនៃដេរីវេទី 1 ត្រូវបានគេហៅថាដេរីវេទី 2 ហើយត្រូវបានសរសេរ
.

ដេរីវេនៃលំដាប់ទី n នៃអនុគមន៍
ត្រូវបានគេហៅថាដេរីវេនៃលំដាប់ (n-1) ហើយត្រូវបានសរសេរ៖

.

ឌីផេរ៉ង់ស្យែលឌីផេរ៉ង់ស្យែលនៃអនុគមន៍ត្រូវបានគេហៅថាឌីផេរ៉ង់ស្យែលទីពីរឬឌីផេរ៉ង់ស្យែលលំដាប់ទីពីរ។

.

.

3.3 ការដោះស្រាយបញ្ហាជីវសាស្រ្តដោយប្រើភាពខុសគ្នា។

កិច្ចការ១. ការសិក្សាបានបង្ហាញថាការរីកលូតលាស់នៃអាណានិគមនៃ microorganisms គោរពច្បាប់
, កន្លែងណា - ចំនួនអតិសុខុមប្រាណ (គិតជាពាន់), t - ពេលវេលា (ថ្ងៃ) ។

ខ) តើចំនួនប្រជាជននៃអាណានិគមនឹងកើនឡើង ឬថយចុះក្នុងអំឡុងពេលនេះ?

ចម្លើយ។ អាណានិគមនឹងធំឡើង។

កិច្ចការទី 2. ទឹកនៅក្នុងបឹងត្រូវបានធ្វើតេស្តជាទៀងទាត់ ដើម្បីគ្រប់គ្រងមាតិកានៃបាក់តេរីបង្កជំងឺ។ តាមរយៈ t ប៉ុន្មានថ្ងៃបន្ទាប់ពីការធ្វើតេស្ត ការប្រមូលផ្តុំបាក់តេរីត្រូវបានកំណត់ដោយសមាមាត្រ

.

តើនៅពេលណាដែលកំហាប់តិចបំផុតនៃបាក់តេរីចូលមកក្នុងបឹង ហើយវានឹងអាចហែលនៅក្នុងវាបាន?

ដំណោះស្រាយ អនុគមន៍ A ឈានដល់អតិបរមា ឬអប្បបរមា នៅពេលដែលដេរីវេរបស់វាគឺសូន្យ។

,

ចូរកំណត់ថាអតិបរមា ឬអប្បបរមានឹងមានរយៈពេល 6 ថ្ងៃ។ ដើម្បីធ្វើដូចនេះយើងយកដេរីវេទីពីរ។


ចម្លើយ៖ បន្ទាប់ពី 6 ថ្ងៃវានឹងមានកំហាប់បាក់តេរីអប្បបរមា។


ការផ្តោតអារម្មណ៍នៃអត្ថបទនេះគឺ លោការីត. នៅទីនេះយើងនឹងផ្តល់និយមន័យនៃលោការីត បង្ហាញសញ្ញាណដែលទទួលយក ផ្តល់ឧទាហរណ៍នៃលោការីត និងនិយាយអំពីលោការីតធម្មជាតិ និងគោលដប់។ បន្ទាប់ពីនោះ សូមពិចារណាអំពីអត្តសញ្ញាណលោការីតជាមូលដ្ឋាន។

ការរុករកទំព័រ។

និយមន័យលោការីត

គោលគំនិតនៃលោការីតកើតឡើងនៅពេលដោះស្រាយបញ្ហាក្នុងន័យជាក់លាក់មួយបញ្ច្រាស នៅពេលដែលអ្នកត្រូវការស្វែងរកនិទស្សន្តពីតម្លៃដែលគេស្គាល់នៃដឺក្រេ និងមូលដ្ឋានដែលគេស្គាល់។

ប៉ុន្តែ​បុព្វកថា​គ្រប់គ្រាន់ វា​ដល់​ពេល​ត្រូវ​ឆ្លើយ​សំណួរ​ថា «​តើ​លោការីត​ជាអ្វី​? ចូរយើងផ្តល់និយមន័យសមស្របមួយ។

និយមន័យ។

លោការីតនៃ b ទៅមូលដ្ឋាន aដែល a>0, a≠1 និង b>0 គឺជានិទស្សន្តដែលអ្នកត្រូវបង្កើនចំនួន a ដើម្បីទទួលបាន b ជាលទ្ធផល។

នៅដំណាក់កាលនេះយើងកត់សម្គាល់ថាពាក្យ "លោការីត" ដែលនិយាយភ្លាមៗគួរតែលើកឡើងនូវសំណួរបន្ទាប់ពីរគឺ "លេខអ្វី" និង "នៅលើមូលដ្ឋានអ្វី" ។ ម្យ៉ាង​វិញ​ទៀត វា​មិន​មាន​លោការីត​ទេ ប៉ុន្តែ​មាន​តែ​លោការីត​នៃ​ចំនួន​ក្នុង​គោល​ខ្លះ​ប៉ុណ្ណោះ។

យើងនឹងណែនាំភ្លាមៗ សញ្ញាណលោការីត៖ លោការីតនៃលេខ b ទៅមូលដ្ឋាន a ជាធម្មតាត្រូវបានសម្គាល់ថាជា កំណត់ហេតុ a b ។ លោការីតនៃលេខ b ដល់គោល e និងលោការីតដល់គោល 10 មានការរចនាពិសេសរៀងៗខ្លួន lnb និង lgb រៀងៗខ្លួន ពោលគឺពួកគេសរសេរមិនមែនជាកំណត់ហេតុ e b ប៉ុន្តែ lnb និងមិនមែន log 10 b ប៉ុន្តែ lgb ។

ឥឡូវនេះអ្នកអាចនាំយក: .
និងកំណត់ត្រា មិនសមហេតុផលទេព្រោះដំបូងមានលេខអវិជ្ជមាននៅក្រោមសញ្ញាលោការីតហើយទីពីរ - លេខអវិជ្ជមាននៅក្នុងមូលដ្ឋាននិងទីបី - ទាំងលេខអវិជ្ជមាននៅក្រោមសញ្ញាលោការីតនិង ឯកតានៅក្នុងមូលដ្ឋាន។

ឥឡូវនេះសូមនិយាយអំពី ច្បាប់សម្រាប់អានលោការីត. កំណត់ហេតុធាតុ a b ត្រូវបានអានជា "លោការីតនៃ b ទៅមូលដ្ឋាន a" ។ ឧទាហរណ៍ log 2 3 គឺជាលោការីតពីបីទៅគោល 2 ហើយជាលោការីតនៃចំនួនគត់ពីរគោលពីរភាគបីនៃឫសការ៉េនៃប្រាំ។ លោការីតទៅមូលដ្ឋានអ៊ីត្រូវបានគេហៅថា លោការីតធម្មជាតិហើយសញ្ញាណ lnb ត្រូវបានអានជា "លោការីតធម្មជាតិនៃ ខ" ។ ឧទាហរណ៍ ln7 គឺជាលោការីតធម្មជាតិនៃប្រាំពីរ ហើយយើងនឹងអានវាជាលោការីតធម្មជាតិនៃ pi ។ លោការីតដល់គោល ១០ ក៏មានឈ្មោះពិសេសផងដែរ - លោការីតទសភាគហើយសញ្ញាណ lgb ត្រូវបានអានជា "លោការីតទសភាគ ខ"។ ឧទាហរណ៍ lg1 គឺជាលោការីតទសភាគនៃមួយ ហើយ lg2.75 គឺជាលោការីតទសភាគនៃពីរចំនុចចិតសិបប្រាំរយ។

វាមានតម្លៃស្នាក់នៅដាច់ដោយឡែកពីគ្នាលើលក្ខខណ្ឌ a>0, a≠1 និង b>0 ដែលនិយមន័យនៃលោការីតត្រូវបានផ្តល់ឱ្យ។ អនុញ្ញាតឱ្យយើងពន្យល់ពីកន្លែងដែលការរឹតបន្តឹងទាំងនេះមកពី។ ដើម្បី​ធ្វើ​ដូច្នេះ យើង​នឹង​ត្រូវ​បាន​ជួយ​ដោយ​សមភាព​នៃ​ទម្រង់​ដែល​គេ​ហៅ​ថា ដែល​តាម​ពី​ក្រោយ​ដោយ​ផ្ទាល់​ពី​និយមន័យ​លោការីត​ដែល​បាន​ផ្តល់​ឱ្យ​ខាង​លើ។

ចូរចាប់ផ្តើមជាមួយ a≠1 ។ ដោយសារមួយស្មើនឹងមួយទៅថាមពលណាមួយ នោះសមភាពអាចជាការពិតសម្រាប់ b=1 ប៉ុន្តែកំណត់ហេតុ 1 1 អាចជាចំនួនពិតណាមួយ។ ដើម្បីជៀសវាងភាពមិនច្បាស់លាស់នេះ a≠1 ត្រូវបានទទួលយក។

អនុញ្ញាតឱ្យយើងបញ្ជាក់ពីភាពយឺតយ៉ាវនៃលក្ខខណ្ឌ a> 0 ។ ជាមួយនឹង a=0 តាមនិយមន័យលោការីត យើងនឹងមានភាពស្មើគ្នា ដែលអាចធ្វើទៅបានតែជាមួយ b=0 ប៉ុណ្ណោះ។ ប៉ុន្តែបន្ទាប់មក log 0 0 អាចជាចំនួនពិតដែលមិនមែនជាសូន្យ ព្រោះថាសូន្យទៅថាមពលដែលមិនមែនជាសូន្យគឺសូន្យ។ ភាពមិនច្បាស់លាស់នេះអាចត្រូវបានជៀសវាងដោយលក្ខខណ្ឌ a≠0 ។ ហើយសម្រាប់ ក<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

ជាចុងក្រោយ លក្ខខណ្ឌ b>0 ធ្វើតាមវិសមភាព a>0 ចាប់តាំងពី ហើយតម្លៃនៃដឺក្រេដែលមានមូលដ្ឋានវិជ្ជមាន a គឺតែងតែវិជ្ជមាន។

នៅក្នុងការសន្និដ្ឋាននៃកថាខណ្ឌនេះ យើងនិយាយថា និយមន័យនៃលោការីតដែលបញ្ចេញសំឡេងអនុញ្ញាតឱ្យអ្នកចង្អុលបង្ហាញភ្លាមៗនូវតម្លៃរបស់លោការីត នៅពេលដែលលេខក្រោមសញ្ញាលោការីតគឺជាកម្រិតមូលដ្ឋានជាក់លាក់។ ជាការពិត និយមន័យលោការីតអនុញ្ញាតឱ្យយើងអះអាងថា ប្រសិនបើ b=a p នោះលោការីតនៃលេខ b ទៅគោល a គឺស្មើនឹង p ។ នោះគឺជាកំណត់ហេតុសមភាព a p = p គឺពិត។ ឧទាហរណ៍ យើងដឹងថា 2 3 = 8 បន្ទាប់មក កំណត់ 2 8 = 3 ។ យើងនឹងនិយាយបន្ថែមទៀតអំពីរឿងនេះនៅក្នុងអត្ថបទ។


យើងបន្តសិក្សាលោការីត។ នៅក្នុងអត្ថបទនេះយើងនឹងនិយាយអំពី ការគណនាលោការីតដំណើរការនេះត្រូវបានគេហៅថា លោការីត. ដំបូងយើងនឹងដោះស្រាយជាមួយនឹងការគណនាលោការីតតាមនិយមន័យ។ បន្ទាប់មក សូមពិចារណាអំពីរបៀបដែលតម្លៃនៃលោការីតត្រូវបានរកឃើញដោយប្រើលក្ខណៈសម្បត្តិរបស់វា។ បន្ទាប់ពីនោះ យើងនឹងរស់នៅលើការគណនាលោការីត តាមរយៈតម្លៃដែលបានផ្តល់ដំបូង នៃលោការីតផ្សេងទៀត។ ជាចុងក្រោយ ចូរយើងរៀនពីរបៀបប្រើតារាងលោការីត។ ទ្រឹស្តីទាំងមូលត្រូវបានផ្តល់ជាឧទាហរណ៍ជាមួយនឹងដំណោះស្រាយលម្អិត។

ការរុករកទំព័រ។

ការគណនាលោការីតតាមនិយមន័យ

ក្នុងករណីសាមញ្ញបំផុតវាអាចធ្វើទៅបានដើម្បីអនុវត្តយ៉ាងឆាប់រហ័សនិងងាយស្រួល ការស្វែងរកលោការីតតាមនិយមន័យ. ចូរយើងពិនិត្យមើលឱ្យកាន់តែច្បាស់អំពីរបៀបដែលដំណើរការនេះកើតឡើង។

ខ្លឹមសាររបស់វាគឺតំណាងឱ្យលេខ b ក្នុងទម្រង់ a c ដោយនិយមន័យលោការីត លេខ c គឺជាតម្លៃនៃលោការីត។ នោះគឺតាមនិយមន័យ ការស្វែងរកលោការីតត្រូវគ្នាទៅនឹងខ្សែសង្វាក់នៃសមភាពដូចខាងក្រោម៖ log a b=log a a c = c ។

ដូច្នេះ ការគណនាលោការីត តាមនិយមន័យ មករកលេខ C ដែល a c \u003d b ហើយលេខ c ខ្លួនវាគឺជាតម្លៃដែលចង់បានរបស់លោការីត។

ដោយទទួលបានព័ត៌មាននៃកថាខណ្ឌមុន នៅពេលដែលលេខក្រោមសញ្ញាលោការីតត្រូវបានផ្តល់ដោយកម្រិតខ្លះនៃមូលដ្ឋានលោការីត នោះអ្នកអាចចង្អុលបង្ហាញភ្លាមៗនូវអ្វីដែលលោការីតស្មើនឹង - វាស្មើនឹងនិទស្សន្ត។ សូមបង្ហាញឧទាហរណ៍។

ឧទាហរណ៍។

ស្វែងរក log 2 2 −3 ហើយគណនាលោការីតធម្មជាតិនៃ e 5.3 ផងដែរ។

ដំណោះស្រាយ។

និយមន័យនៃលោការីតអនុញ្ញាតឱ្យយើងនិយាយភ្លាមៗថា កំណត់ហេតុ 2 2 −3 = −3 ។ ពិតប្រាកដណាស់ លេខនៅក្រោមសញ្ញាលោការីតគឺស្មើនឹងមូលដ្ឋាន 2 ទៅអំណាច −3 ។

ស្រដៀងគ្នានេះដែរ យើងរកឃើញលោការីតទីពីរ៖ lne 5.3 = 5.3 ។

ចម្លើយ៖

កំណត់ហេតុ 2 2 −3 = −3 និង lne 5.3 = 5.3 ។

ប្រសិនបើលេខ b នៅក្រោមសញ្ញានៃលោការីតមិនត្រូវបានផ្តល់ឱ្យជាថាមពលនៃមូលដ្ឋាននៃលោការីតនោះ អ្នកត្រូវពិចារណាឱ្យបានហ្មត់ចត់ថាតើវាអាចទៅរួចក្នុងការតំណាងឱ្យលេខ b ក្នុងទម្រង់ a c ដែរឬទេ។ ជារឿយៗការតំណាងនេះគឺជាក់ស្តែង ជាពិសេសនៅពេលដែលលេខក្រោមសញ្ញាលោការីតគឺស្មើនឹងមូលដ្ឋានទៅថាមពលនៃ 1, ឬ 2, ឬ 3, ...

ឧទាហរណ៍។

គណនាលោការីត កំណត់ហេតុ 5 25 និង .

ដំណោះស្រាយ។

វាងាយស្រួលមើលថា 25=5 2 នេះអនុញ្ញាតឱ្យអ្នកគណនាលោការីតទីមួយ៖ log 5 25=log 5 5 2 =2 ។

យើងបន្តទៅការគណនាលោការីតទីពីរ។ លេខអាចត្រូវបានតំណាងជាអំណាចនៃ 7: (សូមមើលប្រសិនបើចាំបាច់) ។ អាស្រ័យហេតុនេះ .

ចូរយើងសរសេរលោការីតទីបីឡើងវិញក្នុងទម្រង់ខាងក្រោម។ ឥឡូវនេះអ្នកអាចមើលឃើញថា យើងសន្និដ្ឋានថាមកពីណា . ដូច្នេះតាមនិយមន័យលោការីត .

ដោយសង្ខេប ដំណោះស្រាយអាចសរសេរដូចខាងក្រោម៖

ចម្លើយ៖

កំណត់ហេតុ 5 25=2 , និង .

នៅពេលដែលចំនួនធម្មជាតិធំគ្រប់គ្រាន់ស្ថិតនៅក្រោមសញ្ញាលោការីត នោះវាមិនឈឺចាប់ក្នុងការបំបែកវាទៅជាកត្តាសំខាន់នោះទេ។ វាជារឿយៗជួយតំណាងឱ្យចំនួនដូចជាអំណាចមួយចំនួននៃមូលដ្ឋាននៃលោការីត ហើយដូច្នេះដើម្បីគណនាលោការីតនេះតាមនិយមន័យ។

ឧទាហរណ៍។

ស្វែងរកតម្លៃលោការីត។

ដំណោះស្រាយ។

លក្ខណៈសម្បត្តិមួយចំនួននៃលោការីតអនុញ្ញាតឱ្យអ្នកបញ្ជាក់ភ្លាមៗនូវតម្លៃនៃលោការីត។ លក្ខណសម្បត្តិទាំងនេះរួមមានលក្ខណសម្បត្តិនៃលោការីតរបស់មួយ និងទ្រព្យសម្បត្តិនៃលោការីតនៃចំនួនដែលស្មើនឹងគោល៖ log 1 1=log a 0 =0 និង log a=log a 1=1 ។ នោះគឺនៅពេលដែលលេខ 1 ឬលេខ a ស្ថិតនៅក្រោមសញ្ញាលោការីត ស្មើនឹងមូលដ្ឋានលោការីត បន្ទាប់មកក្នុងករណីទាំងនេះលោការីតគឺ 0 និង 1 រៀងគ្នា។

ឧទាហរណ៍។

តើលោការីត និង lg10 ជាអ្វី?

ដំណោះស្រាយ។

ចាប់តាំងពី វាធ្វើតាមនិយមន័យនៃលោការីត .

ក្នុងឧទាហរណ៍ទីពីរ លេខ 10 នៅក្រោមសញ្ញាលោការីតស្របគ្នានឹងមូលដ្ឋានរបស់វា ដូច្នេះលោការីតទសភាគដប់គឺស្មើនឹងមួយ នោះគឺ lg10=lg10 1 =1 ។

ចម្លើយ៖

និង lg10=1 ។

ចំណាំថាការគណនាលោការីតតាមនិយមន័យ (ដែលយើងបានពិភាក្សាក្នុងកថាខណ្ឌមុន) បង្កប់ន័យការប្រើប្រាស់កំណត់ហេតុសមភាព a p = p ដែលជាលក្ខណៈសម្បត្តិមួយរបស់លោការីត។

នៅក្នុងការអនុវត្ត នៅពេលដែលលេខនៅក្រោមសញ្ញាលោការីត និងមូលដ្ឋាននៃលោការីតត្រូវបានតំណាងយ៉ាងងាយស្រួលថាជាអំណាចនៃលេខមួយចំនួន វាងាយស្រួលប្រើរូបមន្ត ដែលត្រូវគ្នានឹងលក្ខណៈសម្បត្តិមួយនៃលោការីត។ ពិចារណាឧទាហរណ៍នៃការស្វែងរកលោការីត បង្ហាញពីការប្រើប្រាស់រូបមន្តនេះ។

ឧទាហរណ៍។

គណនាលោការីតនៃ .

ដំណោះស្រាយ។

ចម្លើយ៖

.

លក្ខណៈសម្បត្តិនៃលោការីតដែលមិនបានរៀបរាប់ខាងលើក៏ត្រូវបានគេប្រើក្នុងការគណនាដែរ ប៉ុន្តែយើងនឹងនិយាយអំពីរឿងនេះក្នុងកថាខណ្ឌខាងក្រោម។

ការស្វែងរកលោការីតនៅក្នុងលក្ខខណ្ឌនៃលោការីតដែលគេស្គាល់ផ្សេងទៀត។

ព័ត៌មាននៅក្នុងកថាខណ្ឌនេះបន្តប្រធានបទនៃការប្រើប្រាស់លក្ខណៈសម្បត្តិនៃលោការីតក្នុងការគណនារបស់ពួកគេ។ ប៉ុន្តែនៅទីនេះ ភាពខុសគ្នាចំបងគឺថា លក្ខណៈសម្បត្តិនៃលោការីតត្រូវបានប្រើដើម្បីបង្ហាញលោការីតដើមនៅក្នុងលក្ខខណ្ឌនៃលោការីតមួយផ្សេងទៀត តម្លៃដែលត្រូវបានគេស្គាល់។ ចូរយើងយកឧទាហរណ៍មួយសម្រាប់ការបំភ្លឺ។ ចូរនិយាយថាយើងដឹងថា log 2 3≈1.584963 បន្ទាប់មកយើងអាចរកឃើញឧទាហរណ៍ log 2 6 ដោយធ្វើការបំប្លែងបន្តិចបន្តួចដោយប្រើលក្ខណៈសម្បត្តិនៃលោការីត៖ log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

ក្នុងឧទាហរណ៍ខាងលើ វាគឺគ្រប់គ្រាន់សម្រាប់យើងក្នុងការប្រើទ្រព្យសម្បត្តិនៃលោការីតនៃផលិតផល។ ទោះយ៉ាងណាក៏ដោយ ជាញឹកញាប់ជាងនេះទៅទៀត អ្នកត្រូវប្រើឃ្លាំងអាវុធកាន់តែទូលំទូលាយនៃលក្ខណៈសម្បត្តិរបស់លោការីត ដើម្បីគណនាលោការីតដើមនៅក្នុងលក្ខខណ្ឌដែលបានផ្តល់ឱ្យ។

ឧទាហរណ៍។

គណនាលោការីតពី 27 ទៅគោល 60 ប្រសិនបើគេដឹងថា log 60 2=a និង log 60 5=b ។

ដំណោះស្រាយ។

ដូច្នេះយើងត្រូវស្វែងរកកំណត់ហេតុ ៦០ ២៧ ។ វាងាយមើលឃើញថា 27=3 3 និងលោការីតដើម ដោយសារលក្ខណៈសម្បត្តិនៃលោការីតដឺក្រេ អាចសរសេរឡើងវិញជា 3·log 60 3។

ឥឡូវនេះសូមមើលពីរបៀបដែល log 60 3 អាចត្រូវបានបង្ហាញនៅក្នុងលក្ខខណ្ឌនៃលោការីតដែលគេស្គាល់។ លក្ខណៈ​នៃ​លោការីត​នៃ​ចំនួន​ដែល​ស្មើ​នឹង​គោល​អនុញ្ញាត​ឱ្យ​អ្នក​សរសេរ​កំណត់​ហេតុ​សមភាព 60 60=1 ។ ម៉្យាងទៀត log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2 log 60 2+log 60 3+log 60 5 . ដូច្នេះ 2 log 60 2+log 60 3+log 60 5=1. អាស្រ័យហេតុនេះ log 60 3=1−2 កំណត់ហេតុ 60 2−log 60 5=1−2 a−b.

ជាចុងក្រោយ យើងគណនាលោការីតដើម៖ log 60 27=3 log 60 3= 3 (1−2 a−b)=3−6 a−3 ខ.

ចម្លើយ៖

កំណត់ហេតុ 60 27=3 (1−2 a−b)=3−6 a−3 ខ.

ដោយឡែកវាមានតម្លៃនិយាយអំពីអត្ថន័យនៃរូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីនៃលោការីតនៃទម្រង់ . វាអនុញ្ញាតឱ្យអ្នកផ្លាស់ទីពីលោការីតជាមួយនឹងមូលដ្ឋានណាមួយទៅលោការីតជាមួយនឹងមូលដ្ឋានជាក់លាក់តម្លៃដែលត្រូវបានគេស្គាល់ឬវាអាចធ្វើទៅបានដើម្បីស្វែងរកពួកគេ។ ជាធម្មតា ពីលោការីតដើម យោងតាមរូបមន្តផ្លាស់ប្តូរ ពួកវាប្តូរទៅលោការីតក្នុងគោល 2, អ៊ី ឬ 10 ចាប់តាំងពីសម្រាប់មូលដ្ឋានទាំងនេះមានតារាងលោការីតដែលអនុញ្ញាតឱ្យគេគណនាជាមួយនឹងកម្រិតជាក់លាក់នៃភាពត្រឹមត្រូវ។ នៅផ្នែកបន្ទាប់យើងនឹងបង្ហាញពីរបៀបដែលវាត្រូវបានធ្វើ។

តារាងលោការីត ការប្រើប្រាស់របស់ពួកគេ។

សម្រាប់ការគណនាប្រហាក់ប្រហែលនៃតម្លៃនៃលោការីត គេអាចប្រើ តារាងលោការីត. ប្រើជាទូទៅបំផុតគឺតារាងលោការីតគោល 2 តារាងលោការីតធម្មជាតិ និងតារាងលោការីតទសភាគ។ នៅពេលធ្វើការនៅក្នុងប្រព័ន្ធលេខទសភាគ វាងាយស្រួលប្រើតារាងលោការីតដល់គោលដប់។ ដោយមានជំនួយរបស់វា យើងនឹងរៀនស្វែងរកតម្លៃនៃលោការីត។










តារាងដែលបានបង្ហាញអនុញ្ញាតឱ្យជាមួយនឹងភាពត្រឹមត្រូវនៃមួយដប់ពាន់ដើម្បីស្វែងរកតម្លៃនៃលោការីតទសភាគនៃលេខពី 1.000 ដល់ 9.999 (មានខ្ទង់ទសភាគបី)។ យើងនឹងវិភាគគោលការណ៍នៃការស្វែងរកតម្លៃលោការីតដោយប្រើតារាងលោការីតទសភាគដោយប្រើឧទាហរណ៍ជាក់លាក់ - វាច្បាស់ជាង។ ចូរយើងស្វែងរក lg1,256 ។

នៅក្នុងជួរឈរខាងឆ្វេងនៃតារាងលោការីតទសភាគ យើងរកឃើញពីរខ្ទង់ដំបូងនៃលេខ 1.256 នោះគឺយើងរកឃើញ 1.2 (លេខនេះត្រូវបានគូសរង្វង់ពណ៌ខៀវសម្រាប់ភាពច្បាស់លាស់)។ ខ្ទង់ទីបីនៃលេខ 1.256 (លេខ 5) ត្រូវបានរកឃើញនៅក្នុងបន្ទាត់ទីមួយ ឬចុងក្រោយនៅខាងឆ្វេងនៃបន្ទាត់ទ្វេ (លេខនេះត្រូវបានគូសរង្វង់ពណ៌ក្រហម)។ ខ្ទង់ទីបួននៃលេខដើម 1.256 (លេខ 6) ត្រូវបានរកឃើញនៅក្នុងបន្ទាត់ទីមួយ ឬចុងក្រោយនៅខាងស្តាំនៃបន្ទាត់ទ្វេ (លេខនេះត្រូវបានគូសរង្វង់ពណ៌បៃតង)។ ឥឡូវនេះយើងរកឃើញលេខនៅក្នុងក្រឡានៃតារាងលោការីតនៅចំនុចប្រសព្វនៃជួរដេកដែលបានសម្គាល់ និងជួរឈរដែលបានសម្គាល់ (លេខទាំងនេះត្រូវបានបន្លិចជាពណ៌ទឹកក្រូច)។ ផលបូកនៃលេខដែលបានសម្គាល់ផ្តល់តម្លៃដែលចង់បាននៃលោការីតទសភាគរហូតដល់ខ្ទង់ទសភាគទីបួន ពោលគឺ log1.236≈0.0969+0.0021=0.0990.

តើវាអាចទៅរួចទេ ដោយប្រើតារាងខាងលើ ដើម្បីស្វែងរកតម្លៃនៃលោការីតទសភាគនៃលេខដែលមានច្រើនជាងបីខ្ទង់បន្ទាប់ពីខ្ទង់ទសភាគ ហើយក៏ហួសពីដែនកំណត់ពី 1 ដល់ 9.999 ដែរ? បាទ​អ្នក​អាច​ធ្វើ​បាន។ សូមបង្ហាញពីរបៀបដែលវាត្រូវបានធ្វើជាមួយនឹងឧទាហរណ៍មួយ។

តោះគណនា lg102.76332 ។ ដំបូងអ្នកត្រូវសរសេរ លេខក្នុងទម្រង់ស្តង់ដារ: 102.76332=1.0276332 10 2 . បន្ទាប់ពីនោះ mantissa គួរតែត្រូវបានបង្គត់រហូតដល់ខ្ទង់ទសភាគទីបីយើងមាន 1.0276332 10 2 ≈1.028 10 2ខណៈពេលដែលលោការីតទសភាគដើមគឺប្រហែលស្មើនឹងលោការីតនៃចំនួនលទ្ធផល នោះគឺយើងយក lg102.76332≈lg1.028·10 2 ។ ឥឡូវអនុវត្តលក្ខណៈសម្បត្តិលោការីត៖ lg1.028 10 2 =lg1.028+lg10 2 =lg1.028+2. ជាចុងក្រោយ យើងរកឃើញតម្លៃនៃលោការីត lg1.028 យោងតាមតារាងលោការីតទសភាគ lg1.028≈0.0086+0.0034=0.012។ ជាលទ្ធផល ដំណើរការទាំងមូលនៃការគណនាលោការីតមើលទៅដូចនេះ៖ lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1.028+lg10 2 =lg1.028+2≈0.012+2=2.012.

សរុបសេចក្តីមក វាគឺមានតំលៃកត់សម្គាល់ថាដោយប្រើតារាងនៃលោការីតទសភាគ អ្នកអាចគណនាតម្លៃប្រហាក់ប្រហែលនៃលោការីតណាមួយ។ ដើម្បីធ្វើដូចនេះវាគ្រប់គ្រាន់ហើយក្នុងការប្រើរូបមន្តផ្លាស់ប្តូរដើម្បីទៅកាន់លោការីតទសភាគ ស្វែងរកតម្លៃរបស់ពួកគេក្នុងតារាង និងអនុវត្តការគណនាដែលនៅសល់។

ឧទាហរណ៍ ចូរយើងគណនាកំណត់ហេតុ 2 3 ។ យោងតាមរូបមន្តសម្រាប់ការផ្លាស់ប្តូរទៅមូលដ្ឋានថ្មីនៃលោការីត យើងមាន . ពីតារាងលោការីតទសភាគ យើងរកឃើញ lg3≈0.4771 និង lg2≈0.3010។ ដូច្នេះ .

គន្ថនិទ្ទេស។

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. និងផ្សេងៗទៀត។ពិជគណិត និងការចាប់ផ្តើមនៃការវិភាគ៖ សៀវភៅសិក្សាសម្រាប់ថ្នាក់ទី 10-11 នៃគ្រឹះស្ថានអប់រំទូទៅ។
  • Gusev V.A., Mordkovich A.G. គណិតវិទ្យា (សៀវភៅណែនាំសម្រាប់អ្នកដាក់ពាក្យចូលសាលាបច្ចេកទេស)។

ឯកជនភាពរបស់អ្នកគឺសំខាន់សម្រាប់ពួកយើង។ សម្រាប់ហេតុផលនេះ យើងបានបង្កើតគោលការណ៍ឯកជនភាពដែលពិពណ៌នាអំពីរបៀបដែលយើងប្រើប្រាស់ និងរក្សាទុកព័ត៌មានរបស់អ្នក។ សូមអានគោលការណ៍ឯកជនភាពរបស់យើង ហើយប្រាប់យើងឱ្យដឹង ប្រសិនបើអ្នកមានសំណួរណាមួយ។

ការប្រមូល និងប្រើប្រាស់ព័ត៌មានផ្ទាល់ខ្លួន

ព័ត៌មានផ្ទាល់ខ្លួនសំដៅលើទិន្នន័យដែលអាចត្រូវបានប្រើដើម្បីកំណត់អត្តសញ្ញាណ ឬទាក់ទងបុគ្គលជាក់លាក់។

អ្នកអាចនឹងត្រូវបានស្នើសុំឱ្យផ្តល់ព័ត៌មានផ្ទាល់ខ្លួនរបស់អ្នកគ្រប់ពេលនៅពេលអ្នកទាក់ទងមកយើង។

ខាងក្រោមនេះគឺជាឧទាហរណ៍មួយចំនួននៃប្រភេទព័ត៌មានផ្ទាល់ខ្លួនដែលយើងអាចប្រមូលបាន និងរបៀបដែលយើងអាចប្រើប្រាស់ព័ត៌មានទាំងនោះ។

តើព័ត៌មានផ្ទាល់ខ្លួនអ្វីខ្លះដែលយើងប្រមូលបាន៖

  • នៅពេលអ្នកដាក់ពាក្យសុំនៅលើគេហទំព័រ យើងអាចប្រមូលព័ត៌មានផ្សេងៗ រួមទាំងឈ្មោះ លេខទូរស័ព្ទ អាស័យដ្ឋានរបស់អ្នក។ អ៊ីមែលល។

របៀបដែលយើងប្រើព័ត៌មានផ្ទាល់ខ្លួនរបស់អ្នក៖

  • ព័ត៌មានផ្ទាល់ខ្លួនដែលយើងប្រមូលបានអនុញ្ញាតឱ្យយើងទាក់ទងអ្នក និងជូនដំណឹងដល់អ្នកអំពីការផ្តល់ជូនពិសេស ការផ្សព្វផ្សាយ និងព្រឹត្តិការណ៍ផ្សេងទៀត និងព្រឹត្តិការណ៍នាពេលខាងមុខ។
  • ពីពេលមួយទៅពេលមួយ យើងអាចប្រើព័ត៌មានផ្ទាល់ខ្លួនរបស់អ្នក ដើម្បីផ្ញើការជូនដំណឹង និងទំនាក់ទំនងសំខាន់ៗដល់អ្នក។
  • យើងក៏អាចប្រើព័ត៌មានផ្ទាល់ខ្លួនសម្រាប់គោលបំណងផ្ទៃក្នុង ដូចជាការធ្វើសវនកម្ម ការវិភាគទិន្នន័យ និងការស្រាវជ្រាវផ្សេងៗ ដើម្បីកែលម្អសេវាកម្មដែលយើងផ្តល់ និងផ្តល់ឱ្យអ្នកនូវការណែនាំទាក់ទងនឹងសេវាកម្មរបស់យើង។
  • ប្រសិនបើអ្នកបញ្ចូលការចាប់រង្វាន់ ការប្រកួត ឬការលើកទឹកចិត្តស្រដៀងគ្នា យើងអាចប្រើព័ត៌មានដែលអ្នកផ្តល់ដើម្បីគ្រប់គ្រងកម្មវិធីបែបនេះ។

ការបង្ហាញដល់ភាគីទីបី

យើងមិនបង្ហាញព័ត៌មានដែលទទួលបានពីអ្នកទៅភាគីទីបីទេ។

ករណីលើកលែង៖

  • ក្នុងករណីដែលវាចាំបាច់ - ស្របតាមច្បាប់ សណ្តាប់ធ្នាប់តុលាការ ក្នុងដំណើរការផ្លូវច្បាប់ និង / ឬផ្អែកលើសំណើសាធារណៈ ឬសំណើពីស្ថាប័នរដ្ឋនៅលើទឹកដីនៃសហព័ន្ធរុស្ស៊ី - បង្ហាញព័ត៌មានផ្ទាល់ខ្លួនរបស់អ្នក។ យើងក៏អាចបង្ហាញព័ត៌មានអំពីអ្នកផងដែរ ប្រសិនបើយើងកំណត់ថាការបង្ហាញបែបនេះគឺចាំបាច់ ឬសមរម្យសម្រាប់សន្តិសុខ ការអនុវត្តច្បាប់ ឬគោលបំណងផលប្រយោជន៍សាធារណៈផ្សេងទៀត។
  • នៅក្នុងព្រឹត្តិការណ៍នៃការរៀបចំឡើងវិញ ការរួមបញ្ចូលគ្នា ឬការលក់ យើងអាចផ្ទេរព័ត៌មានផ្ទាល់ខ្លួនដែលយើងប្រមូលទៅកាន់អ្នកស្នងតំណែងភាគីទីបីដែលពាក់ព័ន្ធ។

ការការពារព័ត៌មានផ្ទាល់ខ្លួន

យើងមានការប្រុងប្រយ័ត្ន - រួមទាំងរដ្ឋបាល បច្ចេកទេស និងរូបវន្ត - ដើម្បីការពារព័ត៌មានផ្ទាល់ខ្លួនរបស់អ្នកពីការបាត់បង់ ការលួច និងការប្រើប្រាស់ខុស ក៏ដូចជាពីការចូលប្រើប្រាស់ ការលាតត្រដាង ការផ្លាស់ប្តូរ និងការបំផ្លិចបំផ្លាញដោយគ្មានការអនុញ្ញាត។

រក្សាភាពឯកជនរបស់អ្នកនៅកម្រិតក្រុមហ៊ុន

ដើម្បីធានាថាព័ត៌មានផ្ទាល់ខ្លួនរបស់អ្នកមានសុវត្ថិភាព យើងទាក់ទងការអនុវត្តឯកជនភាព និងសុវត្ថិភាពដល់បុគ្គលិករបស់យើង និងអនុវត្តការអនុវត្តឯកជនភាពយ៉ាងតឹងរ៉ឹង។

\(a^(b)=c\) \(\leftrightarrow\) \(\log_(a)(c)=b\)

ចូរពន្យល់វាឱ្យកាន់តែងាយស្រួល។ ឧទាហរណ៍ \(\log_(2)(8)\) គឺស្មើនឹងថាមពល \(2\) ត្រូវតែលើកឡើងដើម្បីទទួលបាន \(8\)។ ពីនេះវាច្បាស់ថា \(\log_(2)(8)=3\) ។

ឧទាហរណ៍:

\\(\log_(5)(25)=2\)

ដោយសារតែ \\(5^(2)=25\)

\\(\log_(3)(81)=4\)

ដោយសារតែ \\(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

ដោយសារតែ \(2^(-5)=\)\(\frac(1)(32)\)

អាគុយម៉ង់ និងមូលដ្ឋាននៃលោការីត

លោការីតណាមួយមាន "កាយវិភាគសាស្ត្រ" ដូចខាងក្រោមៈ

អាគុយម៉ង់នៃលោការីតជាធម្មតាត្រូវបានសរសេរនៅកម្រិតរបស់វា ហើយមូលដ្ឋានត្រូវបានសរសេរជា subscript ខិតទៅជិតសញ្ញានៃលោការីត។ ហើយធាតុនេះត្រូវបានអានដូចនេះ: "លោការីតនៃម្ភៃប្រាំទៅមូលដ្ឋាននៃប្រាំ" ។

តើធ្វើដូចម្តេចដើម្បីគណនាលោការីត?

ដើម្បីគណនាលោការីត អ្នកត្រូវឆ្លើយសំណួរ៖ តើមូលដ្ឋានគួរលើកឡើងដល់កម្រិតណា ដើម្បីទទួលបានអាគុយម៉ង់?

ឧទាហរណ៍គណនាលោការីត៖ a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

ក) តើអំណាចអ្វីត្រូវលើក \(4\) ដើម្បីទទួលបាន \(16\)? ជាក់ស្តែងទីពីរ។ នោះ​ហើយ​ជា​មូល​ហេតុ​ដែល:

\\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

គ) តើថាមពលណាដែលត្រូវលើក \(\sqrt(5)\) ដើម្បីទទួលបាន \(1\)? ហើយ​កម្រិត​ណា​ដែល​ធ្វើ​ឲ្យ​លេខ​មួយ​ជា​ឯកតា? សូន្យ ពិតណាស់!

\(\log_(\sqrt(5))(1)=0\)

ឃ) តើអំណាចមួយណាដែលត្រូវលើក \(\sqrt(7)\) ដើម្បីទទួលបាន \(\sqrt(7)\)? នៅក្នុងទីមួយ - លេខណាមួយនៅក្នុងដឺក្រេទីមួយគឺស្មើនឹងខ្លួនវាផ្ទាល់។

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) តើអំណាចមួយណាត្រូវលើក \(3\) ដើម្បីទទួលបាន \(\ sqrt(3)\)? ពី​យើង​ដឹង​ថា​នោះ​ជា​អំណាច​ប្រភាគ ហើយ​ហេតុ​ដូច្នេះ​ហើយ​ឫស​ការ៉េ​គឺ​ជា​អំណាច​នៃ \(\frac(1)(2)\) ។

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

ឧទាហរណ៍ ៖ គណនាលោការីត \(\log_(4\sqrt(2))(8)\)

ដំណោះស្រាយ :

\(\log_(4\sqrt(2))(8)=x\)

យើង​ត្រូវ​ស្វែង​រក​តម្លៃ​នៃ​លោការីត ចូរ​សម្គាល់​វា​ជា x ។ ឥឡូវនេះ ចូរយើងប្រើនិយមន័យនៃលោការីត៖
\(\log_(a)(c)=b\) \(\leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

តើតំណភ្ជាប់អ្វី \(4\sqrt(2)\) និង \(8\)? ពីរ ពីព្រោះលេខទាំងពីរអាចត្រូវបានតំណាងដោយពីរ៖
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

នៅខាងឆ្វេង យើងប្រើលក្ខណៈសម្បត្តិដឺក្រេ៖ \(a^(m)\cdot a^(n)=a^(m+n)\) និង \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

មូលដ្ឋានគឺស្មើគ្នា យើងបន្តទៅសមភាពនៃសូចនាករ

\\(\frac(5x)(2)\) \(=3\)


គុណផ្នែកទាំងពីរនៃសមីការដោយ \(\frac(2)(5)\)


ឫសលទ្ធផលគឺជាតម្លៃនៃលោការីត

ចម្លើយ ៖ \(\log_(4\sqrt(2))(8)=1,2\)

ហេតុអ្វីបានជាលោការីតត្រូវបានបង្កើត?

ដើម្បីយល់ពីនេះ ចូរយើងដោះស្រាយសមីការ៖ \(3^(x)=9\)។ គ្រាន់តែផ្គូផ្គង \(x\) ដើម្បីធ្វើឱ្យសមភាពដំណើរការ។ ជាការពិតណាស់ \(x=2\) ។

ឥឡូវដោះស្រាយសមីការ៖ \(3^(x)=8\) តើ x ស្មើនឹងអ្វី? ចំនុច​ហ្នឹង​ហើយ។

ភាពវៃឆ្លាតបំផុតនឹងនិយាយថា "X គឺតិចជាងពីរបន្តិច" ។ តើលេខនេះត្រូវសរសេរយ៉ាងដូចម្តេច? ដើម្បី​ឆ្លើយ​សំណួរ​នេះ ពួកគេ​បាន​បង្កើត​លោការីត។ សូមអរគុណដល់គាត់ ចម្លើយនៅទីនេះអាចសរសេរជា \(x=\log_(3)(8)\)។

ខ្ញុំចង់សង្កត់ធ្ងន់ថា \(\log_(3)(8)\) ក៏ដូចជា លោការីតណាមួយគ្រាន់តែជាលេខប៉ុណ្ណោះ។. បាទ វាមើលទៅមិនធម្មតា ប៉ុន្តែវាខ្លី។ ព្រោះ​បើ​យើង​ចង់​សរសេរ​វា​ជា​ទសភាគ វា​នឹង​មើល​ទៅ​ដូច​នេះ៖ \(1.892789260714.....\)

ឧទាហរណ៍ ៖ ដោះស្រាយសមីការ \(4^(5x-4)=10\)

ដំណោះស្រាយ :

\\(4^(5x-4)=10\)

\(4^(5x-4)\) និង \(10\) មិនអាចកាត់បន្ថយទៅមូលដ្ឋានតែមួយបានទេ។ ដូច្នេះនៅទីនេះអ្នកមិនអាចធ្វើបានដោយគ្មានលោការីតទេ។

ចូរយើងប្រើនិយមន័យនៃលោការីត៖
\(a^(b)=c\) \(\leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

ត្រឡប់សមីការដូច្នេះ x នៅខាងឆ្វេង

\(5x-4=\log_(4)(10)\)

មុនយើង។ ផ្លាស់ទី \(4\) ទៅខាងស្តាំ។

ហើយកុំខ្លាចលោការីត ចាត់ទុកវាដូចជាលេខធម្មតា។

\(5x=\log_(4)(10)+4\)

ចែកសមីការដោយ 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


នេះគឺជាឫសរបស់យើង។ បាទ វាមើលទៅមិនធម្មតា ប៉ុន្តែចម្លើយមិនត្រូវបានជ្រើសរើសទេ។

ចម្លើយ ៖ \(\frac(\log_(4)(10)+4)(5)\)

លោការីតទសភាគ និងធម្មជាតិ

ដូចដែលបានបញ្ជាក់នៅក្នុងនិយមន័យនៃលោការីត មូលដ្ឋានរបស់វាអាចជាលេខវិជ្ជមានណាមួយ លើកលែងតែមួយ \((a>0, a\neq1)\)។ ហើយក្នុងចំណោមមូលដ្ឋានដែលអាចធ្វើបានទាំងអស់ មានពីរដែលកើតឡើងជាញឹកញាប់ ដែលសញ្ញាណខ្លីពិសេសមួយត្រូវបានបង្កើតឡើងសម្រាប់លោការីតជាមួយពួកគេ៖

លោការីតធម្មជាតិ៖ ជាលោការីតដែលមានមូលដ្ឋានជាលេខអយល័រ \(e\) (ស្មើនឹងប្រមាណ \(2.7182818...\)) ហើយលោការីតត្រូវបានសរសេរជា \(\ln(a)\) ។

នោះគឺ \(\ln(a)\) គឺដូចគ្នានឹង \(\log_(e)(a)\)

លោការីតទសភាគ៖ លោការីតដែលមូលដ្ឋានគឺ 10 ត្រូវបានសរសេរ \(\lg(a)\) ។

នោះគឺ \(\lg(a)\) គឺដូចគ្នានឹង \(\log_(10)(a)\)ដែលជាកន្លែងដែល \(a\) គឺជាលេខមួយចំនួន។

អត្តសញ្ញាណលោការីតមូលដ្ឋាន

លោការីតមានលក្ខណៈសម្បត្តិជាច្រើន។ មួយក្នុងចំណោមពួកគេត្រូវបានគេហៅថា "អត្តសញ្ញាណលោការីតមូលដ្ឋាន" ហើយមើលទៅដូចនេះ:

\(a^(\log_(a)(c))=c\)

ទ្រព្យសម្បត្តិនេះធ្វើតាមដោយផ្ទាល់ពីនិយមន័យ។ តោះមើលពីរបៀបដែលរូបមន្តនេះកើតឡើង។

រំលឹកនិយមន័យខ្លីនៃលោការីត៖

ប្រសិនបើ \(a^(b)=c\), បន្ទាប់មក \(\log_(a)(c)=b\)

នោះគឺ \(b\) គឺដូចគ្នានឹង \(\log_(a)(c)\)។ បន្ទាប់មកយើងអាចសរសេរ \(\log_(a)(c)\) ជំនួសឱ្យ \(b\) ក្នុងរូបមន្ត \(a^(b)=c\) ។ វាបានប្រែក្លាយ \(a^(\log_(a)(c))=c\) - អត្តសញ្ញាណលោការីតមេ។

អ្នកអាចរកឃើញលក្ខណៈសម្បត្តិដែលនៅសល់របស់លោការីត។ ដោយមានជំនួយរបស់ពួកគេ អ្នកអាចធ្វើឱ្យសាមញ្ញ និងគណនាតម្លៃនៃកន្សោមជាមួយនឹងលោការីត ដែលពិបាកក្នុងការគណនាដោយផ្ទាល់។

ឧទាហរណ៍ ៖ ស្វែងរកតម្លៃនៃកន្សោម \(36^(\log_(6)(5))\)

ដំណោះស្រាយ :

ចម្លើយ : \(25\)

តើធ្វើដូចម្តេចដើម្បីសរសេរលេខជាលោការីត?

ដូចដែលបានរៀបរាប់ខាងលើ លោការីតណាមួយគ្រាន់តែជាលេខប៉ុណ្ណោះ។ ការសន្ទនាក៏ពិតដែរ៖ លេខណាមួយអាចត្រូវបានសរសេរជាលោការីត។ ឧទាហរណ៍ យើងដឹងថា \(\log_(2)(4)\) ស្មើនឹងពីរ។ បន្ទាប់មក អ្នកអាចសរសេរ \(\log_(2)(4)\) ជំនួសឱ្យពីរ។

ប៉ុន្តែ \(\log_(3)(9)\) ក៏ស្មើនឹង \(2\) ដូច្នេះអ្នកក៏អាចសរសេរ \(2=\log_(3)(9)\) ផងដែរ។ ស្រដៀងគ្នាជាមួយ \(\log_(5)(25)\) និងជាមួយ \(\log_(9)(81)\) ។ល។ នោះគឺវាប្រែចេញ

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

ដូច្នេះប្រសិនបើយើងត្រូវការ យើងអាចសរសេរទាំងពីរជាលោការីតជាមួយនឹងមូលដ្ឋានណាមួយក៏បាន (សូម្បីតែនៅក្នុងសមីការ សូម្បីតែនៅក្នុងកន្សោម សូម្បីតែនៅក្នុងវិសមភាពក៏ដោយ) យើងគ្រាន់តែសរសេរមូលដ្ឋានការ៉េជាអាគុយម៉ង់។

វាដូចគ្នាជាមួយនឹងបីដង - វាអាចត្រូវបានសរសេរជា \(\log_(2)(8)\) ឬជា \(\log_(3)(27)\) ឬជា \(\log_(4)( 64) \) ... នៅទីនេះយើងសរសេរមូលដ្ឋាននៅក្នុងគូបជាអាគុយម៉ង់មួយ:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

ហើយជាមួយបួន:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

ហើយជាមួយដកមួយ៖

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( ៣)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\)\(...\)

ហើយមួយភាគបី៖

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

លេខណាមួយ \(a\) អាចត្រូវបានតំណាងជាលោការីតជាមួយគោល \(b\): \(a=\log_(b)(b^(a))\)

ឧទាហរណ៍ ៖ ស្វែងរកតម្លៃនៃកន្សោមមួយ។ \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

ដំណោះស្រាយ :

ចម្លើយ : \(1\)