Популяционная генетика инструмент. Популяционная генетика

ПОПУЛЯЦИОННАЯ ГЕНЕТИКА (позднелат. populatio, от лат. populus народ, население; генетика) - раздел генетики, посвященный изучению закономерностей изменчивости и наследственности на уровне популяции.

Как самостоятельный раздел П. г. сформировалась в начале 20 в. В 1903 г. Иогансен (W. L. Johannsen) опубликовал работу «О наследовании в популяциях и чистых линиях». В 1908 г. Харди (G. Н. Hardy) и Вейнберг (W. Weinberg) дали математическое обоснование соотношения аллелей в популяции (см. Популяция, генетика популяции). В 1926 г. С. С. Четвериков показал, что генотипическую эволюцию популяций определяют накопление мутаций (см. Мутация) и естественный отбор (см.), в 1929 г. им же были опубликованы результаты первого экспериментального исследования по генетике природных популяций. В 1931 - 1932 гг. Н. П. Дубининым, Д. Д. Ромашовым и Райтом (S. Wright) была сформулирована теория генетикоавтоматических процессов (теория дрейфа генов). Результатом всех этих исследований явилось установление четырех основных факторов, определяющих закономерности изменчивости и наследственности в популяциях: 1) мутации генов и хромосом (см. Мутация); 2) отбор, обеспечивающий дифференциальное воспроизведение особей внутри популяции; 3) дрейф генов, приводящий в условиях изоляции к изменениям концентрации аллелей (см. Изоляты); 4) миграции (смешение) популяций, ведущие к выравниванию концентрации аллелей (см. Изменчивость , Наследственность).

Особи, разделенные на популяции, сохраняют возможность скрещивания с другой особью данного вида, что обеспечивает его целостность. Сильное влияние на генетическую структуру популяции оказывают случайные отклонения в составе аллелей (см.), которые возникают в небольшой группе особей при заселении ими новых мест. Майер (Е. Mayer) назвал это явление «принципом основателей». Миграции особей из одной популяции в другую ведут к выравниванию генетических различий между популяциями, изоляция, наоборот, способствует их генетической дифференцировке. Распределение многих аллелей у человека обусловлено смешением популяций. Напр., в США обмен генами, который за последние два столетия происходил преимущественно от белых к неграм, привел к тому, что ко второй половине 20 в. негры имеют уже ок. 30% генов белого человека.

Открытие Н. П. Дубининым в 1931 -1934 гг. рецессивных летальных мутаций в популяциях дрозофилы положило начало учению о генетическом грузе популяций. Этот груз слагается из летальных, полулегальных и сублетальных изменений и может быть сегрегационным, т. е. проявляться «выщеплением» менее приспособленных гомозигот при наличии в популяции отбора в пользу гетерозигот, или может быть мутационным, т. е. проявляться в популяциях мутациями, снижающими приспособленность особей, носителей этих мутаций. Существует так наз. груз дрейфа - случайное увеличение концентраций аллелей в изолированной популяции. Частным результатом такого груза является повышение доли гомозиготных особей при инбридинге (см.) - так наз. инбредный груз или инбредная депрессия.

Объем генетического груза определяется разнообразием мутаций, имеющихся в популяции. Увеличение концентрации мутаций сдерживается отбором, поэтому каждая рецессивная мутация включена в генофонд популяции на низком уровне. Однако общее число рецессивных мутаций так велико, что каждый человек несет, напр., 3-4 летальных мутации.

Библиография: Дубинин Н. П. Эволюция популяций и радиация, М., 1966; Л евонтин Р. К. Генетические основы эволюции, пер. с англ., М., 1978; JI и Ч. Введение в популяционную генетику, пер. с англ., М., 1978, библиогр.; Меттлер Л. Ю. и Грегг Т. Г. Генетика популяций и эволюция, пер. с англ., М., 1972; P о к и ц к и й П. Ф. Введение в статистическую генетику, Минск, 1978; Четвериков С. С. О некоторых моментах эволюционного процесса с точки зрения современной генетики, в кн.: Классики сов. генетики, под ред. H. М. Жуковского, с. 133, Л., 1968; Шеппард Ф. М. Естественный отбор и наследственность, пер. с англ., М., 1970; Crow J. F. а. К i m u г а М. Ап introduction to population genetics theory, N. Y., 1970; Dobzhansky Th. Genetics of the evolutionary process, N. Y., 1970; Ford E. B. Ecological genetics, L., 1971.

Популяционная генетика

Популяционная генетика исследует закономерности распределения генов и генотипов в популяциях. Установление этих закономерностей имеет как научное, так и практическое значение в разных разделах биологии, таких как экология и экологическая генетика, биогеография, селекция и т.д. В медицинской практике также нередко появляется необходимость установить количественные соотношения людей с различными генотипами по какому-либо гену, включающему патологический аллель, или частоту встречаемости этого гена среди населения.

Популяции могут находиться в состоянии генетического равновесия или быть генетически неравновесными. В1908 г. Г. Харди и В.Вайнберг предложили формулу, отражающую распределение частот генотипов в популяциях со свободным скрещиванием, т.е. панмиктических. Если частота доминантного аллеля р , а рецессивного – q , причем
p + q = 1 , тогда р*р (AA ) + 2pq (Aa ) + q*q (aa ) = 0 , где р*р – частота доминантного гомозиготного генотипа, 2pq – частота гетерозигот, а q*q – частота рецессивных гомозигот.

В генетически равновесной популяции частоты генов и генотипов из поколения в поколение не изменяются. Этому, кроме панмиксии, т.е. отсутствия специального подбора пар по какимлибо отдельным признакам, способствуют:

Большая численность популяции;

Отсутствие оттока или притока в нее генов за счет миграции особей;

Отсутствие давления мутаций, изменяющих частоту какого-либо аллеля данного гена или приводящих к появлению новых аллелей;

Отсутствие естественного отбора, результатом которого может быть неравная жизнеспособность или неравная плодовитость особей с разными генотипами.

Действие любого из указанных факторов может быть причиной нарушения генетического равновесия в данной популяции, т.е. динамики ее генетической структуры или изменению ее во времени (из поколения в поколение) или в пространстве. Такая популяция может быть эволюционирующей.

Используя формулу Харди-Вайнберга можно производить ряд вычислений. Так, например, на основании известных частот фенотипов, генотипы которых известны, можно вычислить частоты аллелей соответствующих генов. Зная частоту доминантного или рецессивного гомозиготного генотипа в данной популяции, можно вычислить параметры генетической структуры этой популяции, а именно, частоты генов и генотипов. Кроме того, опираясь на формулу Харди-Вайнберга, можно установить, является ли данная популяция с определенным соотношением частот генотипов генетически равновесной. Таким образом, анализ популяций с позиций основных положений закона Харди-Вайнберга позволяет оценить состояние и направление изменчивости конкретной популяции.

Закон Харди-Вайнберга приложим и к генам, представленным множественными аллелями. Если ген известен в трех аллельных формах, частоты этих аллелей выражаются, соответственно, как p, q и r, а формула Харди-Вайнберга, отражающая соотношение частот генотипов, образуемых этими аллелями, приобретает вид:

p*p + q*q + r*r + 2pq + 2pr + 2qr = 1

1. В одной изолированной популяции человека насчитывается примерно 16% людей, имеющих резус-отрицательную кровь (рецессивный признак). Установите число гетерозиготных носителей гена резус-отрицательной крови.

2. Соответствует ли формуле Харди-Вайнберга следующее соотношение гомозигот и гетерозигот в популяции: 239 АА :79 Аа : 6 аа ?

3. Подагра встречается у 2% людей и обусловлена аутосомным доминантным геном. У женщин ген подагры не проявляется, у мужчин его пенетрантность равна 20% (В.П. Эфроимсон, 1968). Определите генетическую структуру популяции по анализируемому признаку, исходя из этих данных.

4. Частота генов групп крови по системе АВ0 среди европейского населения приведена ниже (Н.П.Бочков, 1979).

Население Частоты генов

Русские 0,249 0,189 0,562

Буряты 0,165 0,277 0,558

Англичане 0,251 0,050 0,699

Определите процентное соотношение людей с I, II, III и IY группами крови среди русских, бурятов и англичан.

Домашнее задание:

1. В одной из панмиктических популяций частота аллеля b равна 0,1, а в другой – 0,9. В какой популяции больше гетерозигот?

2. В популяциях Европы на 20000 человек встречается 1 альбинос. Определите генетическую структуру популяции.

3. Население острова произошло от нескольких человек из популяции, характеризующейся частотой встречаемости доминантного аллеля B (карие глаза), равной 0,2, и рецессивного аллеля b (голубые глаза), равной 0,8. Определите для данной островной популяции процент людей с карими и голубыми глазами в первой генерации. Изменится ли это соотношение особей по фенотипу и генофонд популяции после смен нескольких поколений при условии, что популяция носит панмиктический характер, и практически в ней не было мутаций по цвету глаз.

4. В США около 30% населения ощущают горький вкус фенилтиокарбамида (ФТК), 70% людей не различают его вкус. Способность ощущать вкус ФТК детерминируется рецессивным геном а . Определите частоту аллелей А и а и генотипов АА , Аа и аа в данной популяции.

5. В популяции встречается три генотипа по гену альбинизма – а в соотношении: 9/16 AA , 6/16 Aa и 1/16 аа . Находится ли данная популяция в состоянии генетического равновесия?

6. Врожденный вывих бедра наследуется доминантно, средняя пенетрантность составляет 25%. Заболевание встречается с частотой 6: 10000 (В.П. Эфроимсон, 1968). Определите число гомозиготных особей по рецессивному гену.

7. Найдите процент гетерозиготных особей в популяции:

8. См. задача 4 – буряты и англичане. Сравнить.

Для постановки опытов на лабораторных животных необходимо знать генотипы не только определённых особей, но и генетическую структуру всей линии и вида. С этой целью для обновления и развития биологической науки, её анализа, была создана особая область генетики – популяционной генетики или генетики популяций. Методы этой науки позволяют вскрыть закономерности, реализующие в совокупности особи, то есть в популяциях.

С генетической точки зрения популяцию рассматривают как совокупность особей одного вида, населяющих определённую территорию и неодинаковых по своим фенотипическим и генотипическим свойствам. Для анализа в качестве исходной структуры популяции и её изменений обычно рассматривают свободно скрещивающуюся, так называемую панмиктическую популяцию. Все входящие в неё особи могут спариваться друг с другом в любых сочетаниях, независимо от генетической структуры. Свободно скрещивающиеся популяции возможны только у видов, размножающихся половым путём. Исследования генетических процессов, протекающих в естественных условиях размножения животных, птиц, пресмыкающих, насекомых имеют большое значение для познания биологических особенностей, специфики различий и однородности по генотипу в различных средовых условиях.

В панмиктической популяции существует одинаковая вероятность сочетания любых представителей популяции друг с другом, а также равная вероятность дать потомство, однако при этом имеется в виду не чисто физическое спаривание любых самок с любыми самцами, а только принципиальная возможность его осуществления. Отсюда вытекает потребность в построении ещё одной модели, а именно: можно рассматривать всю совокупность половых клеток, образующиеся особями свободно скрещивающей популяции, как единое целое, как будто все они помещены в сосуд и перемешаны друг с другом. В данном случае соединение женских и мужских половых клеток происходит чисто случайно, и его результаты будут зависеть только от частоты (или измеряемой частотой вероятности) тех или других половых клеток. А также каждая половая клетка до оплодотворения содержит только один ген из пары или серии аллелей, то и совокупность генов находящихся в половых клетках всех особей популяции, как единый генофонд. Долю определённых генов одной и той же серии аллелей принято называть частотой генов.

В зависимости от частот отдельных генов встречающихся в популяции можно определить соотношение генотипов и фенотипов. Зная это соотношение можно определить частоты генов, как важнейшие параметры для характеристики популяции .

Для разбора метода определения частот генов можно привести конкретный пример. На опытной кроликоферме находилось 729 кроликов серой масти (АА), 111 чёрных, являющихся гетерозиготными (Аа) и 4 кролика белых (аа). Если по количеству образовавшихся половых клеток все категории особей не отличаются друг от друга, то, принимая для простого расчёта только две половых клетки, получим следующее количество генов А и а в общем генофонде кроликофермы.

Ген А (2А) (729 х 2) +111=1569 половых клеток.

Ген аа и аа 111+(4+2)=119 половых клеток.

ИТОГО: 1688 половых клеток.

Составляя соотношение: 1688 - 1,0

Cоотношение: 1688 - 1,0

Общая сумма генов: р(А)=0,93

В данном простом примере частоты генов вычислены на основе известной численности или долей, генотипически отличающихся друг от друга групп особей. Зная же частоты генов можно предсказать конкретные соотношения, которые будут получены в следующем поколении свободно скрещивающейся популяции. Лучше всего это сделать в общем виде для любых значений р и q в генофонде. Как самки, так и самцы будут образовывать гаметы двух типов А и а в соотношении р(А):q(а). Результаты соединения мужских и женских гамет могут быть показаны с помощью четырёхпольной таблицы 1.

Таблица 1 – Результаты соединения мужских и женских гамет

Мужские Женские

Гаметы и их частоты, ♀

Гаметы и их частоты ♂

В потомстве образовалось три генотипа в соотношении, выражаемом коэффициентом: Р², 2рq и q² (сумма верхних и нижних полей таблицы) или Р²АА+22рqАа+ q²аа.

Такое соотношение генотипов было названо формулой или законом Харди-Вайнберга, или законом стабилизирующего равновесия, так как оно выражает определённую закономерность, характеризующую популяцию при наличии в ней свободного скрещивания. Такая популяция находится в равновесии по соотношению генотипов, что подтверждается вышеприведенной формулой:

Р²АА+22рqАа+ q²аа =1.

Согласно данному закону Харди-Вайнберга, отсутствие факторов определяющих и изменяющих частоту генов, популяция при любом соотношении аллелей от поколения к поколению сохраняет эти частоты постоянными. Несмотря на некоторые ограничения, по формуле Харди-Вайнберга можно рассчитать структуру популяции и определить частоты гетерозигот, например, по летальным или сублетальным генам, зная частоты гомозигот по рецессивным признакам и частоты особей с доминантными признаками, проанализировать сдвиги в генных частотах по конкретным признакам в результате отбора, мутаций и других факторов.

Во всех популяциях лабораторных животных и в природе при свободном скрещивании происходит расщепление по заданному количеству генов, определяющих разнообразные морфологические и физиологические признаки. В ряде случаев сравнительно легко выделить и аллели отдельных генов, и тогда предстоит грандиозная картина генетической сложности популяции.

Так обстоит дело с анализом генетической структуры популяций у животных, но нам требуется знать факторы способные изменить эту структуру. Их много, но важнейшее место принадлежит отбору.

Под отбором в классическом смысле слова обычно понимают устранение определённой группы особей от размножения, т. е. образования следующего поколения. При отсутствии отбора каждая особь популяции имеет одинаковые шансы дать потомство. Они хоть и случайные, но характеризуются нормальной кривой распределения.

Если же группа особей устраняется от размножения, то на структуру будущего поколения окажет влияние только оставшаяся часть популяции, что неизбежно повлияет на частоту генов в следующем поколении. Однако К. Пирсон показал, что как только возникает состояние панмиксии (свободное скрещивание), соотношение генотипов возвращается к типу, которое соответствует формуле Харди-Вайнберга, но уже в другом их соотношении. Таким образом, при отсутствии браковки гетерозиготных носителей рецессивных аномалий частота появления аномальных животных в популяции остаётся неизменной.

Популяция является формой существования любого вида. Популяция - это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга . Этот закон полностью справедлив только для идеальных популяций, т.е. популяций, отвечающих следующим требованиям:

1) бесконечно большая численность;

2) внутри популяции осуществляется панмиксия (свободное скрещивание);

3) отсутствуют мутации по данному гену;

4) отсутствует приток и отток генов;

5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

    Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1 ,

где p – частота встречаемости доминантного аллеля (А ), q – частота встречаемости рецессивного аллеля (a ).

    Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p 2 + 2 pq + q 2 = 1

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель А встречается с частотой р , а рецессивный аллель а с частотой q . Тогда в этой же популяции женские и мужские гаметы будут нести аллель А с частотой р , а аллель а с частотой q . При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

p А

р 2 AA

q 2 aa

Запишем полученные генотипы в одну строку:

p 2 AA + 2 pqAa + q 2 aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколении будет:

0,8 А

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных генов в гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

    p + q + r = 1,

    p 2 + 2pq + 2pr + 2 qr + q 2 + r 2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие.

1. История понятия «популяция». Современное определение популяции. Генетическая структура популяции

2. Закон Харди–Вайнберга – основной закон популяционной генетики

3. Выполнение закона Харди–Вайнберга в природных популяциях. Практическое значение закона Харди–Вайнберга

4. Биологическое разнообразие. Генетический полиморфизм популяций как основа биологического разнообразия. Проблема сохранения биоразнообразия

1. История понятия «популяция». Современное определение популяции. Генетическая структура популяции

Термин «популяция» происходит от латинского populus – население. Долгое время (начиная с конца XVIII в.) популяцией называли (а часто называют и сейчас) любую группировку организмов, обитающих на определенной территории.

В 1903 г. датский генетик Вильгельм Людвиг Иогансен впервые употребил термин «популяция» для обозначения группы особей, неоднородной в генетическом отношении.

Иогансен впервые применил комплекс генетических и статистических методов для изучения структуры популяции самооплодотворяющихся (самоопыляющихся) организмов. Он избрал объектом исследования популяции самоопылителей, которые можно было легко разложить на группы потомков отдельных самоопыляющихся растений, т. е. произвести выделение чистых линий. Анализу была подвергнута масса (размеры) семян фасоли Phaseolus vulgaris. В настоящее время известно, что масса семян определяется полигенно и в сильной степени подвержена влиянию факторов внешней среды.

Иогансен провел взвешивание семян одного сорта фасоли и построил вариационный ряд по этому показателю. Масса варьировала в пределах от 150 до 750 мг. В дальнейшем семена массой 250…350 и 550…650 мг были высеяны отдельно. С каждого выросшего растения семена были вновь взвешены. Тяжелые (550…650 мг) и легкие (250…350 мг) семена, выбранные из сорта, представляющего популяцию, дали растения, семена которых отличались по массе: средняя масса семян растений, выросших из тяжелых семян, составила 518,7 мг, а из легких – 443,4 мг. Этим было показано, что сорт – популяция фасоли состоит из генетически различных растений, каждое из которых может стать родоначальником чистой линии. На протяжении 6…7 поколений Иогансен отбирал тяжелые и легкие семена с каждого растения в отдельности. Ни в одной линии не произошло сдвига массы семян. Изменчивость размеров семян внутри чистой линии была ненаследственной, модификационной.

Таким образом, В. Иогансен генетически неоднородные (гетерогенные) популяции противопоставлял однородным чистым линиям (или клонам), в которых невозможен отбор (нет выбора!).

Вскоре подобные исследования были выполнены и для перекрестно-оплодотворяющихся организмов (работы Д. Джонса и Е. Иста с табаком).

Английский математик Годфри Харди (1908) сформулировал понятия панмиксии (свободного скрещивания) и создал математическую модель для описания генетической структуры панмиктической популяции, т.е. популяции свободно скрещивающихся раздельнополых организмов. Немецкий врач-антропогенетик Вильгельм Вайнберг (в этом же 1908 г.) независимо от Харди создал сходную модель панмиктической популяции.

Учение о неоднородности популяций развил российский генетик Сергей Сергеевич Четвериков. Его работой «О некоторых аспектах эволюционного процесса с точки зрения современной генетики» (1926) было положено начало современной эволюционной и популяционной генетики. В 1928 г. Александр Сергеевич Серебровский создает учение о генофонде.

В течение 1920–1950-ых гг. в англоязычных странах формируется понятие идеальной популяции, и на основании этого понятия интенсивно развивается математическая генетика (Сьюелл Райт, Рональд Фишер, Джон Холдейн (J.B.S. Haldane, не путать с физиологом Холдейном) и др.).

В нашей стране, несмотря на господство лысенковщины, учение о популяциях развивалось в работах И.И. Шмальгаузена (популяция рассматривалась как элементарная единица эволюционного процесса), А.Н. Колмогорова (анализировались случайные процессы в популяциях) и других ученых. Однако в большинстве случаев популяция рассматривалась с экологической точки зрения (например, как форма существования вида; С.С. Шварц). Лишь в 1906–1970-гг., благодаря работам Н.В. Тимофеева-Ресовского и его сотрудников формируется синтетический подход к определению популяции как эколого-генетической системы.

Рассмотрим три основных подхода к определению понятия «популяция»: экологический, генетический и синтетический.

ЭКОЛОГИЧЕСКИЙ ПОДХОД

С точки зрения экологии, популяцией является совокупность особей одного вида в пределах одного биоценоза (фитоценоза), то есть целостная внутривидовая группировка, которой соответствует минимальная реализованная экологическая ниша. Такую группу особей иначе называют экологической, или локальной популяцией, а также (для растений) ценотической популяцией, или просто ценопопуляцией.

Для описания экологических ниш используют пространственные, временные и собственно экологические характеристики. Реализованную экологическую нишу можно представить как фактическую совокупность пространственно-временных и собственно экологических условий, в которых протекает существование и воспроизведение вида. Совокупность пространственно-временных и собственно экологических условий, необходимых для воспроизведения вида, иначе называется его регенерационной нишей. У растений именно специфические особенности регенерационных ниш определяют основные типы хорологической (пространственной) структуры популяций.

Таким образом, с точки зрения экологии, популяция представляет собой множество особей, объединенных в пространственно-временном и экологическом отношении.

Популяции – это надорганизменные биологические системы, которые обладают рядом свойств, которые не присущи отдельно взятой особи или просто группе особей. Различают статические характеристики популяции (численность, плотность, популяционный ареал) и динамические (рождаемость, смертность, относительный и абсолютный прирост численности).

Статика популяций

Численность. Численностью называют общее число особей в популяции. Существует нижний предел численности, ниже которого популяция не может существовать длительное время.

При этом нужно учитывать не всех особей, а только тех, которые принимают участие в размножении – это эффективная численность популяций. Например, если из 100 особей – 50 самцов и 50 самок, то Nэ. = 100. Если из 100 особей – 90 особей одного пола, а 10 другого, то Nэ. = 36. Если же из 100 особей на 99 особей одного пола приходится 1 особь другого пола, то Nэ. = 4. При наличии популяционных волн средняя численность популяции определяется как средняя гармоническая.

Обычно численность популяций измеряется сотнями и тысячами особей (такие популяции называют мезопопуляции). У крупных наземных млекопитающих численность популяций может снижаться до нескольких десятков особей (микропопуляции). У растений и беспозвоночных существуют также мегапопуляции, численность которых достигает миллионов особей. У человека минимальная численность популяций составляет около 100 особей.

Плотность. В большинстве случаев абсолютную численность популяции определить невозможно. Тогда используют производную характеристику – плотность популяции. Плотность определяется как среднее число особей на единицу площади или объема занимаемого популяцией пространства. В экологии плотность определяется также как масса (биомасса) членов популяции в единице площади или объема. Низкая плотность популяции уменьшает ее шансы на воспроизведение, но увеличивает шансы на выживание. Высокая плотность, наоборот, увеличивает шансы на воспроизведение, но уменьшает шансы на выживание. Следовательно, каждая конкретная популяция должна обладать некоторой оптимальной плотностью.

Популяционный ареал Плотность популяции тесно связана с ее пространственной структурой. В популяциях островного типа (с хорошо выраженной границей распространения) плотность распределения особей может быть равномерной. Однако в равнинных популяциях граница распространения всегда размыта. В идеальной популяции можно выделить ее ядро (территория с максимальной плотностью, например, круг), субпериферию (территорию с пониженной плотностью, например, кольцо) и периферию (территорию с низкой плотностью, не обеспечивающей воспроизведение популяции). В реальных популяциях существует множество типов пространственной структуры и, соответственно, типов распределения плотности. Обычно различают следующие типы популяционных ареалов: сплошные, разорванные, сетчатые, кольцевые, ленточные и комбинированные.

Динамика популяций

Рождаемость. Размножение приводит к появлению в популяции новых особей. Число новых особей, появляющихся в популяции за единицу времени, называется абсолютной рождаемостью. Понятие «новая особь» определяется достаточно произвольно и зависит от видовых особенностей, от целей и задач исследования и других факторов. Например, новой особью (или особью нулевого возраста) может считаться зигота, яйцо, личинка или особь, вышедшая из-под родительской опеки. Отношение числа новых особей к числу имевшихся особей называется относительной (удельной) рождаемостью. Относительная рождаемость может рассчитываться или на одну особь, или на 1000 особей. В ходе размножения численность популяции постоянно изменяется, поэтому вводится понятие мгновенной удельной рождаемости – то есть рождаемости в пересчете на одну особь за бесконечно малый промежуток времени. Этот промежуток зависит от видовых особенностей; для человека достаточно малым промежутком времени считается 1 год.

Существуют моноциклические (у растений монокарпические) виды, представители которых размножаются один раз в жизни, и полициклические (у растений поликарпические) виды, представители которых размножаются неоднократно.

У раздельнополых диплоидных организмов оценка рождаемости осложняется тем, что для воспроизведения одного потомка требуется пара родителей. В демографии часто учитываются только женские особи. Однако, с точки зрения генетики, самки и самцы в равной степени передают свои гены (аллели) в последующие поколения. Поэтому следует различать плодовитость самок и коэффициент воспроизведения в пересчете на одну особь, независимо от ее пола. Например, в популяции из 500 самцов и 500 самок за единицу времени появилось 1000 особей нулевого возраста. Удельная рождаемость составила одного новорожденного на одну особь, однако каждая самка оставила двух потомков, и каждый самец оставил двух потомков.

Численность популяции может увеличиваться не только за счет рождаемости, но и за счет иммиграции особей из других популяций. Существуют зависимые и полузависимые популяции, которые поддерживают и увеличивают свою численность именно за счет иммиграции.

Смертность. Смертность – это понятие, противоположное рождаемости. Различают абсолютную смертность (количество погибших особей за единицу времени) и относительную (удельную) смертность (количество погибших особей за единицу времени в расчете на одну особь или на 1000 особей).

Характер смертности описывается таблицами и кривыми выживаемости, которые показывают, какая часть новорожденных особей дожила до определенного возраста. Кривые выживаемости обычно строятся в системе координат: «возраст – логарифм числа выживших особей». В этом случае кривые могут быть выпуклыми, вогнутыми и комбинированными.

В связи с постоянной смертностью вводится понятие мгновенной удельной смертности, то есть отношению погибших особей к общему числу особей за бесконечно малый промежуток времени (аналогично мгновенной удельной рождаемости).

Численность популяции может уменьшаться не только за счет смертности, но и за счет эмиграции особей.

Относительный прирост численности. Первоначально при расчете прироста популяции учитывается мгновенная удельная рождаемость и мгновенная удельная смертность (относительные показатели). Тогда прирост популяции называется биотический потенциал, или мальтузианский параметр (r).

Для изолированной популяции

r = рождаемость – смертность

В открытой популяции

r = (рождаемость + иммиграция) – (смертность + эмиграция)

Прирост популяции может быть положительным, нулевым и отрицательным. Если r > 0, то популяция увеличивает свою численность, если r = 0, то популяция сохраняет стабильную численность, если r < 0, то численность популяции сокращается.

Абсолютный прирост численности. Если r величина постоянная (не зависит от численности популяции), то изменение абсолютной численности популяции в единицу времени (dN/dt) и абсолютная численность популяции в данный момент времени (Nt) описываются уравнениями экспоненциального роста.

Однако в реальных сообществах всегда существует ограниченность ресурсов. Емкость экологической ниши (К) – это максимально возможная численность популяции в данных условиях. В условиях экологического вакуума (то есть при неограниченности ресурсов среды и при отсутствии конкуренции) величина r остается максимально возможной и постоянной. Но при увеличении численности популяции эта величина снижается; в простейшем случае линейно уменьшается при увеличении численности популяции. В этом случае изменение абсолютной численности популяции описывается уравнением Ферхюльста–Пёрла. Графически эта закономерность отображается логистической (сигмовидной) кривой.

Однако в реальных популяциях зависимость r от N и К носит нелинейный характер (эффект группы). Кроме того, при изменении численности происходит изменение экологических характеристик популяции (например, происходит переход с основной пищи на второстепенную), и тогда величина К может измениться. Нужно учитывать также инерционность процессов размножения и гибели, то есть для изменения этих показателей требуется время. За это время может измениться характер действия экологических факторов (например, сезонные или многолетние изменения среды). В природных популяциях могут возникать колебательные процессы (популяционные волны) из-за наличия обратной отрицательной связи между r и N.

Уравнение Ферхюльста–Пёрла достаточно точно описывает динамику лишь простых популяций, например, искусственных популяций инфузорий и других мелких организмов с коротким временем генерации в лабораторных условиях. Однако это уравнение помогает выявить основные закономерности роста природных популяций и при введении поправочных коэффициентов достаточно точно прогнозировать их динамику.

Дополнительные факторы, определяющие динамику популяций. На динамику популяции влияют факторы, зависящие и независящие от плотности (численности) популяции. Например, действие климатических факторов в большинстве случаев (но не всегда!) не зависит от плотности популяции. Однако такие факторы как доступность ресурсов, межвидовые взаимоотношения, как правило, зависят от плотности.

Популяции видов, у которых рождаемость и смертность в значительной мере зависят от действия внешних факторов, подвержены быстрому изменению биотического потенциала и, соответственно, быстро изменяют свою численность, называются оппортунистическими. Амплитуда популяционных волн достигает 3-6 порядков (то есть за короткий период времени численность изменяется в тысячи и миллионы раз). Эти популяции редко достигают численности К и существуют за счет высокой плодовитости (высокое значение rmax). Такой способ сохранения популяций называется r–стратегия. r–Стратеги («шакалы») характеризуются высокой плодовитостью, низкой конкурентоспособностью, быстрым развитием и короткой продолжительностью жизни.

Популяции видов, у которых рождаемость и смертность в значительной мере зависят от их плотности (то есть от характеристики самой популяции), в меньшей степени зависят от действия внешних факторов. Эти популяции называются равновесными, или стационарными. Они поддерживают численность, близкую к величине К, поэтому способ сохранения таких популяций называется К–стратегия. К–Стратеги («львы») характеризуются низкой смертностью, высокой конкурентоспособностью, длительным развитием и длительной продолжительностью жизни.

ГЕНЕТИЧЕСКИЙ ПОДХОД

С точки зрения генетики, популяция – это генетическая система, обладающая исторически сложившейся генетической структурой. Основные положения популяционной генетики сложились на основании изучения природных и модельных популяций высших раздельнополых животных (моллюсков, насекомых, позвоночных), которые воспроизводят себя с помощью нормального полового размножения – амфимиксиса, или объединения женских и мужских гамет. В таких случаях группировка особей, способных скрещиваться между собой и производить полноценное (т.е. жизнеспособное и плодовитое) потомство, называется генетической, или менделевской популяцией. В свою очередь, потомки, достигшие половозрелости, также должны скрещиваться между собой и производить полноценное потомство, то есть популяция должна существовать длительное число поколений.

Таким образом, с точки зрения генетики, популяция представляет собой множество особей, объединенных достаточно высокой степенью родства.

В рамках генетического подхода выделяется представление об идеальной популяции.

Идеальная популяция – это абстрактное понятие, которое широко используется в моделировании микроэволюционных процессов. При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии – случайного свободного скрещивания, при котором вероятность встречи гамет не зависит ни от генотипа, ни от возраста скрещивающихся особей. Если исключить половой отбор, то к панмиктической популяции применима концепция гаметного резервуара, согласно которой в популяции в период размножения формируется гаметный резервуар (генный пул), включающий банк женских гамет и банк мужских гамет. Если члены популяции равноудалены друг от друга, то встреча гамет и формирование зигот происходят случайным образом. (Подробнее понятие идеальной популяции будет рассмотрено ниже.)

Реальные популяции в большей или меньшей степени отличаются от идеальной. Одним из наиболее существенных отличий является множество способов воспроизведения. По способу воспроизведения различают следующие типы популяций:

амфимиктические – основным способом размножения является нормальное половое воспроизведение;

амфимиктические панмиктические – при формировании брачных пар наблюдается панмиксия (свободное скрещивание);

амфимиктические инбредные – при формирование брачных пар наблюдается близкородственное скрещивание (инбридинг, инцухт, инцест); крайним случаем близкородственного скрещивания является самооплодотворение;

апомиктические – наблюдаются различные отклонения от нормального полового процесса, например, апомиксис, партеногенез, гиногенез, андрогенез; наблюдается у агамных (бесполых) форм;

клональные – при отсутствии полового процесса и размножении только вегетативным путем или с помощью спор бесполого размножения (например, конидий); частным случаем клонирования является полиэмбриония – развитие нескольких зародышей из одной зиготы:

комбинированные – например, клонально-амфимиктические при метагенезе у кишечнополостных (чередовании бесполого и полового размножения) и гетерогонии (чередовании партеногенетического и амфимиктического поколений у червей, некоторых членистоногих и низших хордовых).

Определения

Панмиксия (свободное скрещивание) означает, что на формирование брачных пар не влияет генотип или возраст особей, участвующих в размножении. Фактически это означает, что рассматриваемый признак не оказывает заметного влияния на формирование брачных пар.

Инбридинг – близкородственное скрещивание у животных; инцухт – близкородственное скрещивание у растений; инцест (кровосмешение) – близкородственное скрещивание у человека.

Апомиксис – это множество форм образования зародышей, при которых не происходит объединения двух клеток. Обычно этот термин используют по отношению к растениям. При апомиксисе новый организм может развиваться из неоплодотворенной яйцеклетки (см. партеногенез), а также из какой-либо другой специализированной клетки зародышевого мешка (например, из клеток–антипод или синергид), реже – непосредственно из клеток нуцеллуса или покровов семязачатка. Примеры растений–апомиктов: ястребинки, одуванчики, манжетки.

Партеногенез – это девиантная форма полового процесса, при которой новый организм развивается из неоплодотворенной яйцеклетки без участия мужских гамет. Различают нередуцированный партеногенез с развитием зародыша из диплоидной клетки и редуцированный партеногенез с развитием зародыша из гаплоидной яйцеклетки. Как правило, партеногенез чередуется с нормальным половым размножением (при цикломорфозе у коловраток, дафний, тлей).

Гиногенез – это девиантная форма полового процесса, при которой мужские гаметы служат для стимуляции развития нового организма из яйцеклетки, но оплодотворения не происходит, и мужское ядро (пронуклеус) погибает. В этом случае у дочернего организма сохраняются только материнские хромосомы. Гиногенез встречается у гибридов рыб, земноводных, а также в бессамцовых популяциях.

Андрогенез – это девиантная форма полового процесса, при которой происходит оплодотворение, но затем женское ядро (пронуклеус) погибает, а мужское ядро замещает его в качестве ядра зиготы. В этом случае у дочернего организма сохраняются только отцовские хромосомы. Андрогенез обычно наблюдается в лабораторных условиях.

Агамные формы – организмы, у которых отсутствует нормальный половой процесс.

Генетическая структура популяций

Каждая популяция обладает собственной генетической структурой. Генетическая структура популяций определяется исходным соотношением аллелей, естественным отбором и элементарными эволюционными факторами (мутационный процесс и давление мутаций, изоляция, популяционные волны, генетико-автоматические процессы, эффект основателя, миграции и др.). Для описания генетической структуры популяций используются понятия «аллелофонд» и «генофонд».

Аллелофонд. Аллелофонд популяции – это совокупность аллелей в популяции. Если рассматриваются два аллеля одного гена: А и а, то структура аллелофонда описывается уравнением: pA + qa = 1. В этом уравнении символом pA обозначается относительная частота аллеля А, символом qa – относительная частота аллеля а.

Популяции, в которых структура аллелофонда остается относительно постоянной в течение длительного времени, называются стационарными.

Если рассматриваются три аллеля одного гена: а1, а2, а3, то структура аллелофонда описывается уравнением: p а1 + q а2 + r а3 = 1. В этом уравнении символами p, q, r обозначаются соответствующие частоты аллелей.

Если рассматриваются несколько аллелей нескольких генов (a, b, c), то структура аллелофонда описывается системой уравнений:

p1 a1 + p2 a2 + p3 a3 + ... + pi ai = 1

q1 b1 + q2 b2 + q3 b3 + ... + qi bi = 1

r1 c1 + r2 c2 + r3 c3 + ... + ri ci = 1

В этих уравнениях символами pi, qi, ri обозначены относительные частоты аллелей разных генов. Однако в простейших случаях рассматриваются только моногенные диаллельные системы, например: А–а. В популяции с общей численностью особей Nобщ и известной численностью особей с генотипами АА, Аа, аа относительные частоты аллелей рассчитываются по формулам:

p (A) = (2 Í N (AA) + N (Aa))/ 2 Í N общ.

q (a) = (2 Í N (aa) + N (Aa))/ 2 Í N общ.

или q (a) = 1 – р (А)

Генофонд. Термин генофонд употребляется в разных значениях. Основоположник учения о генофонде и геногеографии Александр Сергеевич Серебровский называл генофондом «совокупность всех генов данного вида..., чтобы подчеркнуть мысль о том, что в лице генофонда мы имеем такие же национальные богатства, как и в лице наших запасов угля, скрытых в наших недрах» (1928). Однако это выражение в настоящее время используется для определения генетического потенциала, а генофондом называют совокупность всех генотипов в популяции.

При изучении природных популяций часто приходится сталкиваться с полным доминированием: фенотипы гомозигот АА и гетерозигот Аа неразличимы. Кроме того, в природе широко распространено полигенное определение признаков, причем типы взаимодействия неаллельных генов (комплементарность, эпистаз, полимерия) не всегда известны. Поэтому на практике часто изучают не генофонд, а фенофонд популяций, то есть соотношение фенотипов. В настоящее время развивается раздел генетики популяций, который называется фенетика популяций.

СИНТЕТИЧЕСКИЙ ПОДХОД

Популяция как эколого-генетическое единство

Наиболее полным и всеобъемлющим определением популяции является следующее:

Популяция – минимальная самовоспроизводящаяся группировка особей одного вида, более или менее изолированная от других подобных группировок, населяющая определенный ареал в течение длительного ряда поколений, образующая собственную генетическую систему и формирующая собственную экологическую нишу.

К этому определению обычно добавляют ряд уточнений:

Популяция есть форма существования вида. Популяция есть элементарная единица эволюции. Популяция есть единица биомониторинга. Популяция есть единица управления, то есть единица эксплуатации, охраны и подавления.

В некоторых случаях удобно использовать понятие «формы популяционного ранга». Формой популяционного ранга (ФПР), или группой популяционного ранга (ГПР) называют группу особей, несколько меньшую или несколько большую, чем собственно популяция. К ФПР (ГПР), меньшим, чем «настоящие» популяции, относятся внутрипопуляционные и внепопуляционные группировки особей одного вида, которые хотя бы частично способны к самовоспроизведению. В то же время, эти группировки недостаточно изолированы от других подобных группировок, не образуют устойчивые генетические системы и не формируют собственные экологические ниши. К ФПР, большим, чем «настоящие» популяции, относят популяционные системы, состоящие из нескольких популяций, связанных между собой в пространственно-генетическом и/или историческом (микроэволюционном) отношении.

Для обозначения внутрипопуляционных группировок используют различные термины: панмиктические единицы, соседства, демы и другие. Отдельно выделяют псевдопопуляции – внутривидовые группировки, неустойчивые во времени и, как правило, не оставляющие после себя потомства. Группировки популяционного ранга, внутрипопуляционные группировки и псевдопопуляции могут быть частью истинных популяций, или на их основе формируются в дальнейшем истинные популяции. Примеры таких группировок: поле пшеницы, березовая роща, колония грызунов, муравейник, население административного района (например, вороны Брянской области).