Reguli de diferențiere pentru derivatele funcțiilor elementare. Reguli de diferențiere

Primul nivel

Derivată de funcție. Ghid cuprinzător (2019)

Imaginează-ți un drum drept care trece printr-o zonă deluroasă. Adică merge în sus și în jos, dar nu se întoarce la dreapta sau la stânga. Dacă axa este îndreptată orizontal de-a lungul drumului și vertical, atunci linia drumului va fi foarte similară cu graficul unei funcții continue:

Axa este un anumit nivel de înălțime zero, în viață folosim nivelul mării.

Înaintând pe un astfel de drum, ne mișcăm și în sus sau în jos. Mai putem spune: atunci când argumentul se schimbă (deplasarea de-a lungul axei absciselor), valoarea funcției se modifică (deplasarea de-a lungul axei ordonatelor). Acum să ne gândim cum să determinăm „abruptul” drumului nostru? Care ar putea fi această valoare? Foarte simplu: cât de mult se va schimba înălțimea la deplasarea înainte pe o anumită distanță. Într-adevăr, pe diferite tronsoane de drum, înaintând (de-a lungul abscisei) cu un kilometru, vom urca sau coborî un număr diferit de metri față de nivelul mării (de-a lungul ordonatei).

Indică progresul înainte (a se citi „delta x”).

Litera greacă (delta) este folosită în mod obișnuit în matematică ca prefix care înseamnă „schimbare”. Adică - aceasta este o schimbare de amploare, - o schimbare; atunci ce este? Așa e, o schimbare de dimensiune.

Important: expresia este o singură entitate, o variabilă. Nu ar trebui să rupeți niciodată „delta” din „x” sau din orice altă literă! Adică, de exemplu, .

Deci, am mers înainte, pe orizontală, mai departe. Dacă comparăm linia drumului cu graficul unei funcții, atunci cum notăm creșterea? Cu siguranță, . Adică, atunci când mergem înainte, ne ridicăm mai sus.

Este ușor de calculat valoarea: dacă la început eram la înălțime, iar după mișcare eram la înălțime, atunci. Dacă punctul final s-a dovedit a fi mai mic decât punctul de început, va fi negativ - asta înseamnă că nu urcăm, ci coborăm.

Înapoi la „abrupte”: aceasta este o valoare care indică cât de mult (abrupt) crește înălțimea atunci când se avansează pe unitate de distanță:

Să presupunem că pe o anumită porțiune de potecă, la înaintarea cu km, drumul urcă cu km. Atunci abruptul în acest loc este egal. Și dacă drumul, la înaintarea cu m, s-a scufundat cu km? Atunci panta este egală.

Acum luați în considerare vârful unui deal. Dacă luați începutul secțiunii la jumătate de kilometru până în vârf, iar sfârșitul - o jumătate de kilometru după ea, puteți vedea că înălțimea este aproape aceeași.

Adică, conform logicii noastre, se dovedește că panta aici este aproape egală cu zero, ceea ce în mod clar nu este adevărat. Multe se pot schimba la doar câteva mile distanță. Zonele mai mici trebuie luate în considerare pentru o estimare mai adecvată și mai precisă a abruptului. De exemplu, dacă măsurați modificarea înălțimii când vă deplasați cu un metru, rezultatul va fi mult mai precis. Dar chiar și această precizie poate să nu fie suficientă pentru noi - la urma urmei, dacă există un stâlp în mijlocul drumului, ne putem strecura pur și simplu prin el. Ce distanță ar trebui să alegem atunci? Centimetru? Milimetru? Mai puțin este mai bine!

În viața reală, măsurarea distanței la cel mai apropiat milimetru este mai mult decât suficientă. Dar matematicienii luptă întotdeauna spre perfecțiune. Prin urmare, conceptul a fost infinitezimal, adică valoarea modulo este mai mică decât orice număr pe care îl putem numi. De exemplu, spui: o trilionime! Cu cât mai puțin? Și împărțiți acest număr la - și va fi și mai puțin. etc. Dacă vrem să scriem că valoarea este infinit de mică, scriem astfel: (citim „x tinde spre zero”). Este foarte important de înțeles că acest număr nu este egal cu zero! Dar foarte aproape de ea. Aceasta înseamnă că poate fi împărțit în.

Conceptul opus infinitului mic este infinit de mare (). Probabil l-ați întâlnit deja când lucrați la inegalități: acest număr este mai mare ca modul decât orice număr la care vă puteți gândi. Dacă găsiți cel mai mare număr posibil, înmulțiți-l cu doi și obțineți și mai mult. Iar infinitul este chiar mai mult decât ceea ce se întâmplă. De fapt, infinit de mare și infinit de mici sunt inverse unul față de celălalt, adică la și invers: la.

Acum înapoi la drumul nostru. Panta calculată în mod ideal este panta calculată pentru un segment infinit de mic al traseului, adică:

Observ că, cu o deplasare infinit de mică, modificarea înălțimii va fi, de asemenea, infinit de mică. Dar permiteți-mi să vă reamintesc că infinit mic nu înseamnă egal cu zero. Dacă împărțiți numere infinitezimale între ele, puteți obține un număr complet obișnuit, de exemplu. Adică, o valoare mică poate fi exact de două ori mai mare decât alta.

De ce toate astea? Drumul, abruptul... Nu mergem într-un miting, dar învățăm matematică. Și în matematică totul este exact la fel, doar numit diferit.

Conceptul de derivat

Derivata unei funcții este raportul dintre incrementul funcției și incrementul argumentului la o creștere infinitezimală a argumentului.

Creştereîn matematică se numește schimbare. Cât de mult s-a schimbat argumentul () la deplasarea de-a lungul axei se numește increment de argumentși notat cu Cât de mult s-a schimbat funcția (înălțimea) la deplasarea înainte de-a lungul axei cu o distanță se numește creșterea funcției si este marcat.

Deci, derivata unei funcții este relația cu când. Derivata o notăm cu aceeași literă ca și funcția, doar cu o contur din dreapta sus: sau pur și simplu. Deci, să scriem formula derivată folosind aceste notații:

Ca și în analogia cu drumul, aici, când funcția crește, derivata este pozitivă, iar când scade, este negativă.

Dar derivata este egală cu zero? Cu siguranță. De exemplu, dacă conducem pe un drum orizontal plat, abruptul este zero. Într-adevăr, înălțimea nu se schimbă deloc. Deci, cu derivata: derivata unei funcții constante (constante) este egală cu zero:

deoarece incrementul unei astfel de funcții este zero pentru oricare.

Să luăm exemplul din vârful dealului. S-a dovedit că este posibil să se aranjeze capetele segmentului pe laturile opuse ale vârfului astfel încât înălțimea la capete să fie aceeași, adică segmentul este paralel cu axa:

Dar segmentele mari sunt un semn de măsurare inexactă. Ne vom ridica segmentul paralel cu el însuși, apoi lungimea acestuia va scădea.

În final, când suntem infinit aproape de vârf, lungimea segmentului va deveni infinit de mică. Dar, în același timp, a rămas paralel cu axa, adică diferența de înălțime la capete este egală cu zero (nu tinde, dar este egală cu). Deci derivata

Acest lucru poate fi înțeles după cum urmează: când stăm în vârf, o mică deplasare la stânga sau la dreapta ne schimbă neglijabil înălțimea.

Există și o explicație pur algebrică: în stânga vârfului, funcția crește, iar în dreapta, scade. După cum am aflat deja mai devreme, atunci când funcția crește, derivata este pozitivă, iar când scade, este negativă. Dar se schimbă lin, fără sărituri (pentru că drumul nu își schimbă brusc panta nicăieri). Prin urmare, trebuie să existe între valori negative și pozitive. Va fi acolo unde funcția nici nu crește, nici nu scade - în punctul de vârf.

Același lucru este valabil și pentru vale (zona în care funcția scade în stânga și crește în dreapta):

Mai multe despre creșteri.

Deci schimbăm argumentul într-o valoare. Ne schimbăm de la ce valoare? Ce a devenit el (argumentul) acum? Putem alege orice punct, iar acum vom dansa din el.

Luați în considerare un punct cu o coordonată. Valoarea funcției din ea este egală. Apoi facem aceeași creștere: creștem coordonatele cu. Care este argumentul acum? Foarte usor: . Care este valoarea funcției acum? Unde merge argumentul, funcția merge acolo: . Cum rămâne cu creșterea funcției? Nimic nou: aceasta este încă suma cu care s-a schimbat funcția:

Exersați găsirea incrementelor:

  1. Găsiți incrementul funcției într-un punct cu un increment al argumentului egal cu.
  2. Același lucru pentru o funcție într-un punct.

Solutii:

În puncte diferite, cu același increment al argumentului, incrementul funcției va fi diferit. Aceasta înseamnă că derivata din fiecare punct are propria lui (am discutat despre acest lucru chiar de la început - abruptul drumului în diferite puncte este diferit). Prin urmare, atunci când scriem o derivată, trebuie să indicăm în ce moment:

Funcția de putere.

O funcție de putere se numește o funcție în care argumentul este într-o oarecare măsură (logic, nu?).

Și - în orice măsură: .

Cel mai simplu caz este când exponentul este:

Să-i găsim derivata la un punct. Amintiți-vă definiția unei derivate:

Deci argumentul se schimbă de la la. Care este incrementul funcției?

Creșterea este. Dar funcția în orice punct este egală cu argumentul său. Asa de:

Derivata este:

Derivata lui este:

b) Acum considerăm funcția pătratică (): .

Acum să ne amintim asta. Aceasta înseamnă că valoarea incrementului poate fi neglijată, deoarece este infinit de mică și, prin urmare, nesemnificativă pe fundalul unui alt termen:

Deci, avem o altă regulă:

c) Continuăm seria logică: .

Această expresie poate fi simplificată în diferite moduri: deschideți prima paranteză folosind formula pentru înmulțirea prescurtată a cubului sumei sau descompuneți întreaga expresie în factori folosind formula pentru diferența de cuburi. Încercați să o faceți singur în oricare dintre modurile sugerate.

Deci, am primit următoarele:

Și din nou, amintiți-vă asta. Aceasta înseamnă că putem neglija toți termenii care conțin:

Primim: .

d) Reguli similare pot fi obținute pentru puteri mari:

e) Rezultă că această regulă poate fi generalizată pentru o funcție de putere cu un exponent arbitrar, nici măcar un număr întreg:

(2)

Puteți formula regula cu cuvintele: „gradul este prezentat ca coeficient, apoi scade cu”.

Vom demonstra această regulă mai târziu (aproape la sfârșit). Acum să ne uităm la câteva exemple. Aflați derivata funcțiilor:

  1. (în două moduri: prin formula și folosind definiția derivatei - prin numărarea incrementului funcției);
  1. . Credeți sau nu, aceasta este o funcție de putere. Dacă aveți întrebări precum „Cum este? Și unde este gradul? ”, Ține minte subiectul“ ”!
    Da, da, rădăcina este și ea un grad, doar unul fracționar:.
    Deci rădăcina noastră pătrată este doar o putere cu un exponent:
    .
    Căutăm derivata folosind formula recent învățată:

    Dacă în acest moment a devenit din nou neclar, repetați subiectul „” !!! (aproximativ un grad cu un indicator negativ)

  2. . Acum exponentul:

    Și acum prin definiție (ai uitat încă?):
    ;
    .
    Acum, ca de obicei, neglijăm termenul care conține:
    .

  3. . Combinație de cazuri anterioare: .

funcții trigonometrice.

Aici vom folosi un fapt din matematica superioară:

Când expresia.

Dovada o vei invata in primul an de institut (si pentru a ajunge acolo trebuie sa treci bine examenul). Acum o voi arăta doar grafic:

Vedem că atunci când funcția nu există - punctul de pe grafic este perforat. Dar cu cât este mai aproape de valoare, cu atât funcția este mai aproape de aceasta.

În plus, puteți verifica această regulă cu un calculator. Da, da, nu te sfii, ia un calculator, încă nu suntem la examen.

Deci să încercăm: ;

Nu uitați să comutați calculatorul în modul Radians!

etc. Vedem că cu cât este mai mic, cu atât valoarea raportului este mai aproape de.

a) Luați în considerare o funcție. Ca de obicei, găsim creșterea acestuia:

Să transformăm diferența de sinusuri într-un produs. Pentru a face acest lucru, folosim formula (amintiți-vă de subiectul „”):.

Acum derivata:

Să facem o înlocuire: . Apoi, pentru infinit de mic, este și infinit de mic: . Expresia pentru ia forma:

Și acum ne amintim asta cu expresia. Și, de asemenea, ce se întâmplă dacă o valoare infinit de mică poate fi neglijată în sumă (adică la).

Deci obținem următoarea regulă: derivata sinusului este egală cu cosinusul:

Acestea sunt derivate de bază („tabel”). Iată-le într-o singură listă:

Mai târziu le vom adăuga câteva, dar acestea sunt cele mai importante, deoarece sunt folosite cel mai des.

Practică:

  1. Aflați derivata unei funcții într-un punct;
  2. Aflați derivata funcției.

Solutii:

  1. În primul rând, găsim derivata în formă generală și apoi îi înlocuim valoarea:
    ;
    .
  2. Aici avem ceva similar cu o funcție de putere. Să încercăm să o aducem la
    vedere normala:
    .
    Ok, acum poți folosi formula:
    .
    .
  3. . Eeeeeee….. Ce este????

Bine, ai dreptate, încă nu știm cum să găsim astfel de derivate. Aici avem o combinație de mai multe tipuri de funcții. Pentru a lucra cu ei, trebuie să înveți mai multe reguli:

Exponent și logaritm natural.

Există o astfel de funcție în matematică, a cărei derivată pentru oricare este egală cu valoarea funcției în sine pentru aceeași. Se numește „exponent” și este o funcție exponențială

Baza acestei funcții - o constantă - este o fracție zecimală infinită, adică un număr irațional (cum ar fi). Se numește „numărul Euler”, motiv pentru care este notat cu o literă.

Deci regula este:

Este foarte ușor de reținut.

Ei bine, nu vom merge departe, vom lua în considerare imediat funcția inversă. Care este inversul funcției exponențiale? Logaritm:

În cazul nostru, baza este un număr:

Un astfel de logaritm (adică un logaritm cu o bază) se numește unul „natural” și folosim o notație specială pentru el: scriem în schimb.

Cu ce ​​este egal? Desigur, .

Derivata logaritmului natural este, de asemenea, foarte simplă:

Exemple:

  1. Aflați derivata funcției.
  2. Care este derivata functiei?

Raspunsuri: Exponentul și logaritmul natural sunt funcții care sunt unic simple în ceea ce privește derivata. Funcțiile exponențiale și logaritmice cu orice altă bază vor avea o derivată diferită, pe care o vom analiza mai târziu, după ce vom parcurge regulile de diferențiere.

Reguli de diferențiere

Ce reguli? Un alt termen nou, din nou?!...

Diferenţiere este procesul de găsire a derivatei.

Numai și totul. Care este un alt cuvânt pentru acest proces? Nu proizvodnovanie... Diferenţialul de matematică se numeşte însăşi incrementul funcţiei la. Acest termen provine din latinescul diferentia - diferenta. Aici.

Când derivăm toate aceste reguli, vom folosi două funcții, de exemplu, și. Vom avea nevoie și de formule pentru incrementele lor:

Sunt 5 reguli în total.

Constanta este scoasă din semnul derivatei.

Dacă - un număr constant (constant), atunci.

Evident, această regulă funcționează și pentru diferența: .

Să demonstrăm. Lasă, sau mai ușor.

Exemple.

Găsiți derivate ale funcțiilor:

  1. la punct;
  2. la punct;
  3. la punct;
  4. la punct.

Solutii:

  1. (derivata este aceeași în toate punctele, deoarece este o funcție liniară, vă amintiți?);

Derivat al unui produs

Totul este similar aici: introducem o nouă funcție și găsim incrementul acesteia:

Derivat:

Exemple:

  1. Găsiți derivate ale funcțiilor și;
  2. Aflați derivata unei funcții într-un punct.

Solutii:

Derivată a funcției exponențiale

Acum cunoștințele tale sunt suficiente pentru a învăța cum să găsești derivata oricărei funcții exponențiale și nu doar exponentul (ai uitat încă ce este?).

Deci unde este un număr.

Știm deja derivata funcției, așa că să încercăm să aducem funcția noastră la o nouă bază:

Pentru a face acest lucru, folosim o regulă simplă: . Apoi:

Ei bine, a funcționat. Acum încercați să găsiți derivata și nu uitați că această funcție este complexă.

S-a întâmplat?

Iată, verifică-te:

Formula s-a dovedit a fi foarte asemănătoare cu derivata exponentului: așa cum a fost, rămâne, a apărut doar un factor, care este doar un număr, dar nu o variabilă.

Exemple:
Găsiți derivate ale funcțiilor:

Raspunsuri:

Acesta este doar un număr care nu poate fi calculat fără un calculator, adică nu poate fi scris într-o formă mai simplă. Prin urmare, îl lăsăm în această formă în răspuns.

Derivată a unei funcții logaritmice

Aici este similar: știți deja derivata logaritmului natural:

Prin urmare, pentru a găsi un arbitrar din logaritm cu o bază diferită, de exemplu:

Trebuie să aducem acest logaritm la bază. Cum schimbi baza unui logaritm? Sper să vă amintiți această formulă:

Abia acum în loc de vom scrie:

Numitorul s-a dovedit a fi doar o constantă (un număr constant, fără o variabilă). Derivatul este foarte simplu:

Derivate ale funcțiilor exponențiale și logaritmice nu se găsesc aproape niciodată în examen, dar nu va fi de prisos să le cunoaștem.

Derivată a unei funcții complexe.

Ce este o „funcție complexă”? Nu, acesta nu este un logaritm și nu o arc tangentă. Aceste funcții pot fi greu de înțeles (deși dacă logaritmul ți se pare dificil, citește subiectul „Logaritmi” și totul va funcționa), dar în materie de matematică, cuvântul „complex” nu înseamnă „dificil”.

Imaginați-vă un transportor mic: doi oameni stau și fac niște acțiuni cu unele obiecte. De exemplu, primul înfășoară un baton de ciocolată într-un ambalaj, iar al doilea îl leagă cu o panglică. Se dovedește un astfel de obiect compozit: un baton de ciocolată înfășurat și legat cu o panglică. Pentru a mânca un baton de ciocolată, trebuie să faceți pașii opuși în ordine inversă.

Să creăm o conductă matematică similară: mai întâi vom găsi cosinusul unui număr, apoi vom pătra numărul rezultat. Așadar, ne dau un număr (ciocolată), îi găsesc cosinus (înveliș), iar apoi pătrați ce am primit (legați-l cu o panglică). Ce s-a întâmplat? Funcţie. Acesta este un exemplu de funcție complexă: când, pentru a-i găsi valoarea, executăm prima acțiune direct cu variabila, iar apoi o altă a doua acțiune cu ceea ce s-a întâmplat ca urmare a primei.

S-ar putea foarte bine să facem aceleași acțiuni în ordine inversă: mai întâi pătrați și apoi caut cosinusul numărului rezultat:. Este ușor de ghicit că rezultatul va fi aproape întotdeauna diferit. O caracteristică importantă a funcțiilor complexe: atunci când ordinea acțiunilor se schimbă, funcția se schimbă.

Cu alte cuvinte, O funcție complexă este o funcție al cărei argument este o altă funcție: .

Pentru primul exemplu, .

Al doilea exemplu: (la fel). .

Ultima acțiune pe care o facem va fi numită funcția „externă”., și acțiunea efectuată prima - respectiv funcția „internă”.(acestea sunt nume informale, le folosesc doar pentru a explica materialul într-un limbaj simplu).

Încercați să determinați singur ce funcție este externă și care este internă:

Raspunsuri: Separarea funcțiilor interioare și exterioare este foarte asemănătoare cu schimbarea variabilelor: de exemplu, în funcție

  1. Ce măsuri vom lua mai întâi? Mai întâi calculăm sinusul și abia apoi îl ridicăm la un cub. Deci este o funcție internă, nu una externă.
    Iar funcția inițială este compoziția lor: .
  2. Intern: ; extern: .
    Examinare: .
  3. Intern: ; extern: .
    Examinare: .
  4. Intern: ; extern: .
    Examinare: .
  5. Intern: ; extern: .
    Examinare: .

schimbăm variabile și obținem o funcție.

Ei bine, acum ne vom extrage ciocolata - căutați derivatul. Procedura este întotdeauna inversată: mai întâi căutăm derivata funcției exterioare, apoi înmulțim rezultatul cu derivata funcției interioare. Pentru exemplul original, arată astfel:

Alt exemplu:

Deci, să formulăm în sfârșit regula oficială:

Algoritm pentru găsirea derivatei unei funcții complexe:

Totul pare a fi simplu, nu?

Să verificăm cu exemple:

Solutii:

1) Intern: ;

Extern: ;

2) Intern: ;

(doar nu încercați să reduceți până acum! Nu se scoate nimic de sub cosinus, vă amintiți?)

3) Intern: ;

Extern: ;

Este imediat clar că aici există o funcție complexă cu trei niveluri: la urma urmei, aceasta este deja o funcție complexă în sine și încă extragem rădăcina din ea, adică efectuăm a treia acțiune (punem ciocolată într-un ambalaj iar cu o panglică într-o servietă). Dar nu există niciun motiv să ne fie frică: oricum, vom „despacheta” această funcție în aceeași ordine ca de obicei: de la sfârșit.

Adică mai întâi diferențiem rădăcina, apoi cosinusul și abia apoi expresia dintre paranteze. Și apoi înmulțim totul.

În astfel de cazuri, este convenabil să numerotați acțiunile. Adică să ne imaginăm ce știm. În ce ordine vom efectua acțiuni pentru a calcula valoarea acestei expresii? Să ne uităm la un exemplu:

Cu cât acțiunea este efectuată mai târziu, cu atât funcția corespunzătoare va fi mai „externă”. Secvența de acțiuni - ca și înainte:

Aici cuibărirea este în general pe 4 niveluri. Să stabilim cursul acțiunii.

1. Exprimarea radicală. .

2. Rădăcină. .

3. Sinusul. .

4. Pătrat. .

5. Punând totul împreună:

DERIVAT. SCURT DESPRE PRINCIPALA

Derivată de funcție- raportul dintre incrementul funcției și incrementul argumentului cu o creștere infinitezimală a argumentului:

Derivate de bază:

Reguli de diferențiere:

Constanta este scoasă din semnul derivatei:

Derivată a sumei:

Produs derivat:

Derivată a coeficientului:

Derivata unei functii complexe:

Algoritm pentru găsirea derivatei unei funcții complexe:

  1. Definim funcția „internă”, găsim derivata ei.
  2. Definim funcția „externă”, găsim derivata ei.
  3. Înmulțim rezultatele primului și celui de-al doilea punct.

Dacă urmărim definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la incrementul argumentului Δ X:

Totul pare a fi clar. Dar încercați să calculați prin această formulă, să zicem, derivata funcției f(X) = X 2 + (2X+ 3) · e X păcat X. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că așa-numitele funcții elementare pot fi distinse de întreaga varietate de funcții. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și introduse în tabel. Astfel de funcții sunt destul de ușor de reținut, împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. Mai mult, nu este greu să le memorezi - de aceea sunt elementare.

Deci, derivatele funcțiilor elementare:

Nume Funcţie Derivat
Constant f(X) = C, CR 0 (da, da, zero!)
Gradul cu exponent rațional f(X) = X n n · X n − 1
Sinusul f(X) = păcat X cos X
Cosinus f(X) = cos X − păcat X(minus sinus)
Tangentă f(X) = tg X 1/cos 2 X
Cotangentă f(X) = ctg X − 1/sin2 X
logaritmul natural f(X) = jurnal X 1/X
Logaritmul arbitrar f(X) = jurnal A X 1/(X ln A)
Functie exponentiala f(X) = e X e X(Nimic nu s-a schimbat)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcții este, de asemenea, ușor de calculat:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2X 3)' = 2 ( X 3)' = 2 3 X 2 = 6X 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite și multe altele. Așa vor apărea funcții noi, nu prea elementare, dar și diferențiabile după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Lasă funcțiile f(X) și g(X), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare, diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(X) = X 2 + sinx; g(X) = X 4 + 2X 2 − 3.

Funcţie f(X) este suma a două funcții elementare, deci:

f ’(X) = (X 2+ păcat X)’ = (X 2)' + (păcat X)’ = 2X+ cosx;

Argumentăm în mod similar pentru funcție g(X). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Răspuns:
f ’(X) = 2X+ cosx;
g ’(X) = 4X · ( X 2 + 1).

Derivat al unui produs

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata sumei este egală cu suma derivatelor, atunci derivata produsului grevă„\u003e egal cu produsul derivatelor. Dar smochine pentru tine! Derivatul produsului este calculat folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = X 3 cosx; g(X) = (X 2 + 7X− 7) · e X .

Funcţie f(X) este un produs al două funcții elementare, deci totul este simplu:

f ’(X) = (X 3 cos X)’ = (X 3)' cos X + X 3 (cos X)’ = 3X 2 cos X + X 3 (−sin X) = X 2 (3cos XX păcat X)

Funcţie g(X) primul multiplicator este puțin mai complicat, dar schema generală nu se schimbă de la aceasta. Evident, primul multiplicator al funcției g(X) este un polinom, iar derivata sa este derivata sumei. Noi avem:

g ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)' · e X + (X 2 + 7X− 7) ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X(2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Răspuns:
f ’(X) = X 2 (3cos XX păcat X);
g ’(X) = X(X+ 9) · e X .

Rețineți că în ultimul pas, derivata este factorizată. Formal, acest lucru nu este necesar, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a explora funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi găsite și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie descompusă în factori.

Dacă există două funcții f(X) și g(X), și g(X) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(X) = f(X)/g(X). Pentru o astfel de funcție, puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Dar așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați cu exemple specifice.

Sarcină. Găsiți derivate ale funcțiilor:

Există funcții elementare în numărătorul și numitorul fiecărei fracții, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Prin tradiție, factorăm numărătorul în factori - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luăm funcția f(X) = păcat Xși înlocuiți variabila X, să zicem, pe X 2+ln X. Se dovedește f(X) = păcat ( X 2+ln X) este o funcție complexă. Ea are și un derivat, dar nu va funcționa să-l găsești conform regulilor discutate mai sus.

Cum să fii? În astfel de cazuri, înlocuirea unei variabile și formula pentru derivata unei funcții complexe ajută:

f ’(X) = f ’(t) · t', dacă X este înlocuit cu t(X).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați cu exemple specifice, cu o descriere detaliată a fiecărui pas.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = e 2X + 3 ; g(X) = păcat ( X 2+ln X)

Rețineți că dacă în funcție f(X) în loc de expresia 2 X+ 3 va fi ușor X, atunci obținem o funcție elementară f(X) = e X. Prin urmare, facem o substituție: fie 2 X + 3 = t, f(X) = f(t) = e t. Căutăm derivata unei funcții complexe prin formula:

f ’(X) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuarea unei înlocuiri inverse: t = 2X+ 3. Obținem:

f ’(X) = e t · t ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Acum să ne uităm la funcție g(X). Evident că trebuie înlocuit. X 2+ln X = t. Noi avem:

g ’(X) = g ’(t) · t' = (păcat t)’ · t' = cos t · t

Înlocuire inversă: t = X 2+ln X. Apoi:

g ’(X) = cos( X 2+ln X) · ( X 2+ln X)' = cos ( X 2+ln X) · (2 X + 1/X).

Asta e tot! După cum se poate observa din ultima expresie, întreaga problemă a fost redusă la calcularea derivatei sumei.

Răspuns:
f ’(X) = 2 e 2X + 3 ;
g ’(X) = (2X + 1/X) cos( X 2+ln X).

Foarte des în lecțiile mele, în locul termenului „derivat”, folosesc cuvântul „accident vascular cerebral”. De exemplu, cursa sumei este egală cu suma curselor. Este mai clar? Asta e bine.

Astfel, calculul derivatei se rezumă la a scăpa chiar de aceste lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(X n)’ = n · X n − 1

Puțini știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este X 0,5 . Dar dacă există ceva complicat sub rădăcină? Din nou, se va dovedi o funcție complexă - le place să ofere astfel de construcții în teste și examene.

Sarcină. Aflați derivata unei funcții:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(X) = (X 2 + 8X − 7) 0,5 .

Acum facem o înlocuire: let X 2 + 8X − 7 = t. Găsim derivata prin formula:

f ’(X) = f ’(t) · t ’ = (t 0,5)' t' = 0,5 t−0,5 t ’.

Facem o substituție inversă: t = X 2 + 8X− 7. Avem:

f ’(X) = 0,5 ( X 2 + 8X− 7) −0,5 ( X 2 + 8X− 7)' = 0,5 (2 X+ 8) ( X 2 + 8X − 7) −0,5 .

În sfârșit, înapoi la rădăcini:

Operația de găsire a unei derivate se numește diferențiere.

Ca urmare a rezolvării problemelor de găsire a derivatelor celor mai simple (și nu foarte simple) funcții prin definirea derivatei ca limită a raportului dintre increment și increment al argumentului, a apărut un tabel de derivate și reguli de diferențiere precis definite. . Isaac Newton (1643-1727) și Gottfried Wilhelm Leibniz (1646-1716) au fost primii care au lucrat în domeniul găsirii derivatelor.

Prin urmare, în timpul nostru, pentru a găsi derivata oricărei funcții, nu este necesar să se calculeze limita menționată mai sus a raportului dintre creșterea funcției și creșterea argumentului, ci trebuie doar să se utilizeze tabelul a derivatelor şi regulile de diferenţiere. Următorul algoritm este potrivit pentru găsirea derivatei.

Pentru a găsi derivata, aveți nevoie de o expresie sub semnul stroke descompune funcțiile simpleși stabiliți ce acțiuni (produs, sumă, coeficient) aceste funcții sunt legate. În plus, găsim derivatele funcțiilor elementare în tabelul de derivate, iar formulele pentru derivatele produsului, sumă și coeficient - în regulile de diferențiere. Tabelul derivatelor și regulile de diferențiere sunt date după primele două exemple.

Exemplul 1 Aflați derivata unei funcții

Decizie. Din regulile de diferențiere aflăm că derivata sumei funcțiilor este suma derivatelor funcțiilor, adică.

Din tabelul derivatelor, aflăm că derivata lui „X” este egală cu unu, iar derivata sinusului este cosinus. Inlocuim aceste valori in suma derivatelor si gasim derivata ceruta de conditia problemei:

Exemplul 2 Aflați derivata unei funcții

Decizie. Diferențiați ca derivată a sumei, în care al doilea termen cu un factor constant, poate fi scos din semnul derivatei:

Dacă există încă întrebări despre unde vine ceva, acestea, de regulă, devin clare după citirea tabelului de derivate și a celor mai simple reguli de diferențiere. Mergem la ei chiar acum.

Tabel de derivate ale funcțiilor simple

1. Derivată a unei constante (număr). Orice număr (1, 2, 5, 200...) care se află în expresia funcției. Mereu zero. Acest lucru este foarte important de reținut, deoarece este necesar foarte des
2. Derivată a variabilei independente. Cel mai adesea „x”. Întotdeauna egal cu unu. Acest lucru este, de asemenea, important de reținut
3. Derivată de grad. Când rezolvați probleme, trebuie să convertiți rădăcinile nepătrate într-o putere.
4. Derivată a unei variabile la puterea lui -1
5. Derivată a rădăcinii pătrate
6. Derivat sinus
7. Derivat de cosinus
8. Derivată tangentă
9. Derivat de cotangente
10. Derivată a arcsinusului
11. Derivată a arccosinusului
12. Derivată de arc tangente
13. Derivată a tangentei inverse
14. Derivată a logaritmului natural
15. Derivata unei functii logaritmice
16. Derivată a exponentului
17. Derivată a funcției exponențiale

Reguli de diferențiere

1. Derivată a sumei sau a diferenței
2. Derivat al unui produs
2a. Derivată a unei expresii înmulțită cu un factor constant
3. Derivată a coeficientului
4. Derivată a unei funcții complexe

Regula 1Dacă funcţiile

sunt diferențiabile la un moment dat, apoi în același punct funcțiile

și

acestea. derivata sumei algebrice a funcțiilor este egală cu suma algebrică a derivatelor acestor funcții.

Consecinţă. Dacă două funcții diferențiabile diferă printr-o constantă, atunci derivatele lor sunt, adică

Regula 2Dacă funcţiile

sunt diferențiabile la un moment dat, atunci produsul lor este, de asemenea, diferențiabil în același punct

și

acestea. derivata produsului a două funcții este egală cu suma produselor fiecăreia dintre aceste funcții și derivata celeilalte.

Consecința 1. Factorul constant poate fi scos din semnul derivatei:

Consecința 2. Derivata produsului mai multor functii diferentiabile este egala cu suma produselor derivatei fiecaruia dintre factori si a tuturor celorlalti.

De exemplu, pentru trei multiplicatori:

Regula 3Dacă funcţiile

diferentiabil la un moment dat și , atunci în acest moment și câtul lor este diferențiabil.u/v și

acestea. derivata unui cât de două funcții este egală cu o fracție al cărei numărător este diferența dintre produsele numitorului și derivata numărătorului și numărătorului și derivata numitorului, iar numitorul este pătratul numărătorului anterior .

Unde să te uiți pe alte pagini

Când găsiți derivata produsului și coeficientul în probleme reale, este întotdeauna necesar să aplicați mai multe reguli de diferențiere simultan, așa că mai multe exemple despre aceste derivate sunt în articol.„Derivata unui produs și a unui coeficient”.

Cometariu. Nu trebuie să confundați o constantă (adică un număr) ca termen din sumă și ca factor constant! În cazul unui termen, derivata acestuia este egală cu zero, iar în cazul unui factor constant, se scoate din semnul derivatelor. Aceasta este o greșeală tipică care apare în etapa inițială a studiului derivatelor, dar pe măsură ce studentul obișnuit rezolvă mai multe exemple cu una-două componente, această greșeală nu mai face.

Și dacă, la diferențierea unui produs sau a unui coeficient, ai un termen u"v, în care u- un număr, de exemplu, 2 sau 5, adică o constantă, atunci derivata acestui număr va fi egală cu zero și, prin urmare, întregul termen va fi egal cu zero (un astfel de caz este analizat în exemplul 10) .

O altă greșeală comună este soluția mecanică a derivatei unei funcții complexe ca derivată a unei funcții simple. Asa de derivata unei functii complexe dedicat unui articol separat. Dar mai întâi vom învăța să găsim derivate ale funcțiilor simple.

Pe parcurs, nu te poți lipsi de transformări ale expresiilor. Pentru a face acest lucru, poate fi necesar să deschideți în noi manuale Windows Acțiuni cu puteri și rădăciniși Acțiuni cu fracții .

Dacă cauți soluții la derivate cu puteri și rădăcini, adică atunci când funcția arată ca , apoi urmează lecția „Derivată a sumei fracțiilor cu puteri și rădăcini”.

Dacă aveți o sarcină ca , atunci te afli la lecția „Derivate ale funcțiilor trigonometrice simple”.

Exemple pas cu pas - cum să găsiți derivatul

Exemplul 3 Aflați derivata unei funcții

Decizie. Determinăm părțile expresiei funcției: întreaga expresie reprezintă produsul, iar factorii săi sunt sume, în al doilea dintre care unul dintre termeni conține un factor constant. Aplicam regula de diferentiere a produsului: derivata produsului a doua functii este egala cu suma produselor fiecareia dintre aceste functii si derivata celeilalte:

În continuare, aplicăm regula de diferențiere a sumei: derivata sumei algebrice a funcțiilor este egală cu suma algebrică a derivatelor acestor funcții. În cazul nostru, în fiecare sumă, al doilea termen cu semnul minus. În fiecare sumă, vedem atât o variabilă independentă, a cărei derivată este egală cu unu, cât și o constantă (număr), a cărei derivată este egală cu zero. Deci, „x” se transformă în unu, iar minus 5 - în zero. În a doua expresie, „x” este înmulțit cu 2, așa că înmulțim doi cu aceeași unitate ca și derivata lui „x”. Obținem următoarele valori ale derivatelor:

Inlocuim derivatele gasite in suma produselor si obtinem derivata intregii functii ceruta de conditia problemei:

Exemplul 4 Aflați derivata unei funcții

Decizie. Ni se cere să găsim derivata coeficientului. Aplicam formula de diferentiere a unui cat: derivata unui cat de doua functii este egala cu o fractiune al carei numarator este diferenta dintre produsele numitorului si derivata numaratorului si numaratorului si derivata numitorului, si numitorul este pătratul fostului numărător. Primim:

Am găsit deja derivata factorilor din numărător în exemplul 2. De asemenea, să nu uităm că produsul, care este al doilea factor la numărător în exemplul curent, este luat cu semnul minus:

Dacă căutați soluții la astfel de probleme în care trebuie să găsiți derivata unei funcții, unde există o grămadă continuă de rădăcini și grade, cum ar fi, de exemplu, atunci bun venit la curs „Derivata sumei fracțiilor cu puteri și rădăcini” .

Dacă trebuie să aflați mai multe despre derivatele sinusurilor, cosinusurilor, tangentelor și altor funcții trigonometrice, adică atunci când funcția arată ca , atunci ai o lecție „Derivate ale funcțiilor trigonometrice simple” .

Exemplul 5 Aflați derivata unei funcții

Decizie. În această funcție, vedem un produs, unul dintre factorii căruia este rădăcina pătrată a variabilei independente, cu derivata căreia ne-am familiarizat în tabelul derivatelor. Conform regulii de diferențiere a produsului și a valorii tabelare a derivatei rădăcinii pătrate, obținem:

Exemplul 6 Aflați derivata unei funcții

Decizie. În această funcție, vedem coeficientul, al cărui dividend este rădăcina pătrată a variabilei independente. Conform regulii de diferențiere a coeficientului, pe care am repetat-o ​​și aplicat în exemplul 4, și a valorii tabelare a derivatei rădăcinii pătrate, obținem:

Pentru a scăpa de fracția din numărător, înmulțiți numărătorul și numitorul cu .

Cursul video „Obțineți A” include toate subiectele necesare promovării cu succes a examenului la matematică cu 60-65 de puncte. Complet toate sarcinile 1-13 din Profil USE în matematică. De asemenea, potrivit pentru promovarea USE de bază în matematică. Dacă vrei să treci examenul cu 90-100 de puncte, trebuie să rezolvi partea 1 în 30 de minute și fără greșeli!

Curs de pregătire pentru examen pentru clasele 10-11, precum și pentru profesori. Tot ce ai nevoie pentru a rezolva partea 1 a examenului la matematică (primele 12 probleme) și problema 13 (trigonometrie). Și asta înseamnă mai mult de 70 de puncte la examenul de stat unificat și nici un student de o sută de puncte, nici un umanist nu se pot descurca fără ele.

Toată teoria necesară. Soluții rapide, capcane și secrete ale examenului. Au fost analizate toate sarcinile relevante din partea 1 din sarcinile Băncii FIPI. Cursul respectă pe deplin cerințele USE-2018.

Cursul conține 5 subiecte mari, câte 2,5 ore fiecare. Fiecare subiect este dat de la zero, simplu și clar.

Sute de sarcini de examen. Probleme de text și teoria probabilității. Algoritmi simpli și ușor de reținut pentru rezolvarea problemelor. Geometrie. Teorie, material de referință, analiza tuturor tipurilor de sarcini USE. Stereometrie. Trucuri viclene pentru rezolvare, fișe utile, dezvoltarea imaginației spațiale. Trigonometrie de la zero - la sarcina 13. Înțelegerea în loc de înghesuială. Explicarea vizuală a conceptelor complexe. Algebră. Rădăcini, puteri și logaritmi, funcție și derivată. Baza pentru rezolvarea problemelor complexe din partea a 2-a a examenului.