Видеолекция «Решение задач с параметрами на ЕГЭ по математике.

Пособия по математике серии «ЕГЭ 2017. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 18.
На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по темам «Уравнения и системы уравнений», «Неравенства и системы неравенств», «Задачи с параметром».
По сравнению с прошлым годом книга существенно доработана и дополнена.
Пособие предназначено для учащихся старшей школы, учителей математики, родителей.

Нелинейные уравнения и неравенства с параметром.
Круг задач, решение которых основывается на стандартных преобразованиях и логическом переборе, довольно широк, а их формулировки достаточно разнообразны. Ключевым признаком такой задачи является то, что её решение, как отмечалось выше, не предполагает знакомства с какими-то новыми идеями и методами, которых нет в школьных учебниках, а требует лишь умения выполнять преобразования, отвечать на вопросы о существовании корней уравнения или решений неравенства, удовлетворяющих определённым условиям, находить, если требуется, сами эти решения, выполнять необходимый логический перебор.

Пример 1. Найдите все значения параметра а, при каждом из которых уравнение х3 - (а + 4)х2 + 4ах = 0 имеет ровно два различных корня.
Решение. Вынесем за скобку общий множитель левой части уравнения: х(х2 - (а + 4)х + 4а) = 0, откуда х = 0 или х2 - (а 4- 4)х + 4а = 0. Корнями последнего уравнения являются х = 4 и х = а (эти корни можно найти, воспользовавшись формулами Виета или формулой корней квадратного уравнения). Ровно два различных корня данное уравнение имеет, только если а = 0 или а = 4.
Ответ: а = 0, а = 4.

Содержание
Предисловие
Глава 1. Логический перебор в задачах с параметром и нестандартных задачах
§1.1. Линейные уравнения и неравенства с параметром
§1.2. Нелинейные уравнения и неравенства с параметром
§1.3. Задачи с целочисленными неизвестными
Глава 2. Квадратный трёхчлен в задачах с параметром и нестандартных задачах
§2.1. Исследование дискриминанта и формулы Виета
§2.2. Расположение корней квадратного трёхчлена
§2.3. Задачи, сводимые к исследованию квадратного трёхчлена
Глава 3. Применение свойств функций к решению уравнений и неравенств
§3.1. Монотонность
§3.2. Ограниченность
§3.3. Инвариантность
Глава 4. Графические интерпретации
§4.1. Метод областей
§4.2. Преобразования графиков
§4.3. Геометрические идеи
Глава 5. Другие методы
§5.1. Метод упрощающего значения
§5.2. Параметр как переменная
§5.3. Тригонометрические подстановки
§5.4. Векторные интерпретации в алгебре
Диагностическая работа 1
Диагностическая работа 2
Диагностическая работа 3
Диагностическая работа 4
Диагностическая работа 5
Ответы.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу ЕГЭ 2017, Математика, Задачи с параметром, Задача 18, Профильный уровень, Шестаков С.А., Ященко И.В. - fileskachat.com, быстрое и бесплатное скачивание.

  • ЕГЭ 2019, Математика, Значения выражений, Задача 9, Профильный уровень, Задача 2 и 5, Базовый уровень, Рабочая тетрадь, Шестаков С.А., Ященко И.В.
  • ЕГЭ 2019, Математика, Задачи по стереометрии, Задача 8, Профильный уровень, Задача 13 и 16, Базовый уровень, Рабочая тетрадь, Шестаков С.А., Ященко И.В.
  • ЕГЭ 2019, Математика, Простейшие уравнения, Задача 5, Профильный уровень, Задача 4 и 7, Базовый уровень, Рабочая тетрадь, Шестаков С.А., Ященко И.В.
  • ЕГЭ 2019, Математика, Задачи с параметром, Задача 18, Профильный уровень, Шестаков С.А., Ященко И.В.

Следующие учебники и книги:

  • ЕГЭ 2017, Математика, Графики и диаграммы, Задача 2, Профильный уровень, Задача 11, Базовый уровень, Рабочая тетрадь, Трепалин А.С., Ященко И.В.
  • ЕГЭ 2017, Математика, Арифметические задачи, Задача 1, Профильный уровень, Задачи 3 и 6, Базовый уровень, Рабочая тетрадь, Шноль Д.Э., Ященко И.В.

ЕГЭ 2017. Математика. Задание 18. Задачи с параметром. Садовничий Ю.В.

М.: 2017. - 128 с.

Данная книга посвящена задачам, аналогичным задаче 18 ЕГЭ по математике (задача с параметром). Рассматриваются различные методы решения таких задач, также большое внимание уделяется графическим иллюстрациям. Книга будет полезна учащимся старших классов, учителям математики, репетиторам.

Формат: pdf

Размер: 1,6 Мб

Смотреть, скачать: drive.google

СОДЕРЖАНИЕ
Введение 4
§1. Линейные уравнения и системы линейных уравнений 5
Задачи для самостоятельного решения 11
§2. Исследование квадратного трехчлена с помощью дискриминанта 12
Задачи для самостоятельного решения 19
§3. Теорема Виета 20
Задачи для самостоятельного решения 26
§4. Расположение корней квадратного трехчлена 28
Задачи для самостоятельного решения 43
§5. Применение графических иллюстраций
к исследованию квадратного трехчлена 45
Задачи для самостоятельного решения 55
§6. Ограниченность функции. Нахождение области значений 56
Задачи для самостоятельного решения 67
§7. Другие свойства функций 69
Задачи для самостоятельного решения 80
§8. Логические задачи с параметром 82
Задачи для самостоятельного решения 93
Иллюстрации на координатной плоскости 95
Задачи для самостоятельного решения 108
Метод «Оха» 110
Задачи для самостоятельного решения 119
Ответы 120

Данная книга посвящена задачам, аналогичным задаче 18 ЕГЭ по математике (задача с параметром). Наряду с задачей 19 (задача, при решении которой используются свойства целых чисел) задача 18 является наиболее сложной в варианте. Тем не менее, в книге предпринята попытка систематизировать задачи данного типа по различным методам их решения.
Несколько параграфов посвящены казалось бы такой популярной теме, как исследование квадратного трехчлена. Однако подчас подобные задачи требуют разных, порой самых неожиданных подходов к их решению. Один из таких нестандартных подходов продемонстрирован в примере 7 параграфа 2.
Часто при решении задачи с параметром необходимо исследовать данную в условии функцию. В книге формулируются некоторые утверждения, касающиеся таких свойств функций, как ограниченность, четность, непрерывность; после на примерах демонстрируется применение этих свойств к решению задач.

Задание 1 #6329

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система \[\begin{cases} (x-2a-2)^2+(y-a)^2=1\\ y^2=x^2\end{cases}\]

имеет ровно четыре решения.

(ЕГЭ 2018, основная волна)

Второе уравнение системы можно переписать в виде \(y=\pm x\) . Следовательно, рассмотрим два случая: когда \(y=x\) и когда \(y=-x\) . Тогда количество решений системы будет равно сумме количества решений в первом и во втором случаях.

1) \(y=x\) . Подставим в первое уравнение и получим: \ (заметим, что в случае \(y=-x\) мы поступим так же и тоже получим квадратное уравнение)
Чтобы исходная система имела 4 различных решения, нужно, чтобы в каждом из двух случаев получилось по 2 решения.
Квадратное уравнение имеет два корня, когда его \(D>0\) . Найдем дискриминант уравнения (1):
\(D=-4(a^2+4a+2)\) .
Дискриминант больше нуля: \(a^2+4a+2<0\) , откуда \(a\in (-2-\sqrt2; -2+\sqrt2)\) .

2) \(y=-x\) . Получаем квадратное уравнение: \ Дискриминант больше нуля: \(D=-4(9a^2+12a+2)>0\) , откуда \(a\in \left(\frac{-2-\sqrt2}3; \frac{-2+\sqrt2}3\right)\) .

Необходимо проверить, не совпадают ли решения в первом случае с решениями во втором случае.

Пусть \(x_0\) – общее решение уравнений (1) и (2), тогда \ Отсюда получаем, что либо \(x_0=0\) , либо \(a=0\) .
Если \(a=0\) , то уравнения (1) и (2) получаются одинаковыми, следовательно, имеют одинаковые корни. Этот случай нам не подходит.
Если \(x_0=0\) – их общий корень, то тогда \(2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=0\) , откуда \((2a+2)^2+a^2-1=0\) , откуда \(a=-1\) или \(a=-0,6\) . Тогда вся исходная система будет иметь 3 различных решения, что нам не подходит.

Учитывая все это, в ответ пойдут:

Ответ:

\(a\in\left(\frac{-2-\sqrt2}3; -1\right)\cup\left(-1; -0,6\right)\cup\left(-0,6; -2+\sqrt2\right)\)

Задание 2 #4032

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых система \[\begin{cases} (a-1)x^2+2ax+a+4\leqslant 0\\ ax^2+2(a+1)x+a+1\geqslant 0 \end{cases}\]

имеет единственное решение.

Перепишем систему в виде: \[\begin{cases} ax^2+2ax+a\leqslant x^2-4\\ ax^2+2ax+a\geqslant -2x-1 \end{cases}\] Рассмотрим три функции: \(y=ax^2+2ax+a=a(x+1)^2\) , \(g=x^2-4\) , \(h=-2x-1\) . Из системы следует, что \(y\leqslant g\) , но \(y\geqslant h\) . Следовательно, чтобы система имела решения, график \(y\) должен находиться в области, которая задается условиями: “выше” графика \(h\) , но “ниже” графика \(g\) :

(будем называть “левую” область областью I, “правую” область – областью II)
Заметим, что при каждом фиксированном \(a\ne 0\) графиком \(y\) является парабола, вершина которой находится в точке \((-1;0)\) , а ветви обращены либо вверх, либо вниз. Если \(a=0\) , то уравнение выглядит как \(y=0\) и графиком является прямая, совпадающая с осью абсцисс.
Заметим, что для того, чтобы исходная система имела единственное решение, нужно, чтобы график \(y\) имел ровно одну общую точку с областью I или с областью II (это значит, что график \(y\) должен иметь единственную общую точку с границей одной из этих областей).

Рассмотрим по отдельности несколько случаев.

1) \(a>0\) . Тогда ветви параболы \(y\) обращены вверх. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) касалась границы области I или границы области II, то есть касалась параболы \(g\) , причем абсцисса точки касания должна быть \(\leqslant -3\) или \(\geqslant 2\) (то есть парабола \(y\) должна коснуться границы одной из областей, которая находится выше оси абсцисс, раз парабола \(y\) лежит выше оси абсцисс).

\(y"=2a(x+1)\) , \(g"=2x\) . Условия касания графиков \(y\) и \(g\) в точке с абсциссой \(x_0\leqslant -3\) или \(x_0\geqslant 2\) : \[\begin{cases} 2a(x_0+1)=2x_0\\ a(x_0+1)^2=x_0^2-4 \\ \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right. \end{cases} \quad\Leftrightarrow\quad \begin{cases} \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right.\\ a=\dfrac{x_0}{x_0+1}\\ x_0^2+5x_0+4=0 \end{cases}\] Из данной системы \(x_0=-4\) , \(a=\frac43\) .
Получили первое значение параметра \(a\) .

2) \(a=0\) . Тогда \(y=0\) и видно, что прямая имеет бесконечное множество общих точек с областью II. Следовательно, это значение параметра нам не подходит.


3) \(a<0\) . Тогда ветви параболы \(y\) обращены вниз. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) имела одну общую точку с границей области II, лежащей ниже оси абсцисс. Следовательно, она должна проходить через точку \(B\) , причем, если парабола \(y\) будет иметь еще одну общую точку с прямой \(h\) , то эта общая точка должна быть “выше” точки \(B\) (то есть абсцисса второй точки должна быть \(<1\) ).

Найдем \(a\) , при которых парабола \(y\) проходит через точку \(B\) : \[-3=a(1+1)^2\quad\Rightarrow\quad a=-\dfrac34\] Убеждаемся, что при этом значении параметра вторая точка пересечения параболы \(y=-\frac34(x+1)^2\) с прямой \(h=-2x-1\) – это точка с координатами \(\left(-\frac13; -\frac13\right)\) .
Таким образом, получили еще одно значение параметра.

Так как мы рассмотрели все возможные случаи для \(a\) , то итоговый ответ: \

Ответ:

\(\left\{-\frac34; \frac43\right\}\)

Задание 3 #4013

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых система уравнений \[\begin{cases} 2x^2+2y^2=5xy\\ (x-a)^2+(y-a)^2=5a^4 \end{cases}\]

имеет ровно два решения.

1) Рассмотрим первое уравнение системы как квадратное относительно \(x\) : \ Дискриминант равен \(D=9y^2\) , следовательно, \ Тогда уравнение можно переписать в виде \[(x-2y)\cdot (2x-y)=0\] Следовательно, всю систему можно переписать в виде \[\begin{cases} \left[\begin{gathered}\begin{aligned} &y=2x\\ &y=0,5x\end{aligned}\end{gathered}\right.\\ (x-a)^2+(y-a)^2=5a^4\end{cases}\] Совокупность задает две прямые, второе уравнение системы задает окружность с центром в \((a;a)\) и радиусом \(R=\sqrt5a^2\) . Чтобы исходное уравнение имело два решения, нужно, чтобы окружность пересекала график совокупности ровно в двух точках. Вот чертеж, когда, например, \(a=1\) :


Заметим, что так как координаты центра окружности равны, то центр окружности “бегает” по прямой \(y=x\) .

2) Так как у прямой \(y=kx\) тангенс угла наклона этой прямой к положительному направлению оси \(Ox\) равен \(k\) , то тангенс угла наклона прямой \(y=0,5x\) равен \(0,5\) (назовем его \(\mathrm{tg}\,\alpha\) ), прямой \(y=2x\) – равен \(2\) (назовем его \(\mathrm{tg}\,\beta\) ). Заметим, что \(\mathrm{tg}\,\alpha\cdot \mathrm{tg}\,\beta=1\) , следовательно, \(\mathrm{tg}\,\alpha=\mathrm{ctg}\,\beta=\mathrm{tg}\,(90^\circ-\beta)\) . Следовательно, \(\alpha=90^\circ-\beta\) , откуда \(\alpha+\beta=90^\circ\) . Это значит, что угол между \(y=2x\) и положительным направлением \(Oy\) равен углу между \(y=0,5x\) и положительным направлением \(Ox\) :


А так как прямая \(y=x\) является биссектрисой I координатного угла (то есть углы между ней и положительными направлениями \(Ox\) и \(Oy\) равны по \(45^\circ\) ), то углы между \(y=x\) и прямыми \(y=2x\) и \(y=0,5x\) равны.
Все это нам нужно было для того, чтобы сказать, что прямые \(y=2x\) и \(y=0,5x\) симметричны друг другу относительно \(y=x\) , следовательно, если окружность касается одной из них, то она обязательно касается и второй прямой.
Заметим, что если \(a=0\) , то окружность вырождается в точку \((0;0)\) и имеет лишь одну точку пересечения с обеими прямыми. То есть этот случай нам не подходит.
Таким образом, для того, чтобы окружность имела 2 точки пересечения с прямыми, нужно, чтобы она касалась этих прямых:


Видим, что случай, когда окружность располагается в третьей четверти, симметричен (относительно начала координат) случаю, когда она располагается в первой четверти. То есть в первой четверти \(a>0\) , а в третьей \(a<0\) (но такие же по модулю).
Поэтому рассмотрим только первую четверть.


Заметим, что \(OQ=\sqrt{(a-0)^2+(a-0)^2}=\sqrt2a\) , \(QK=R=\sqrt5a^2\) . Тогда \ Тогда \[\mathrm{tg}\,\angle QOK=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}}\] Но, с другой стороны, \[\mathrm{tg}\,\angle QOK=\mathrm{tg}\,(45^\circ-\alpha)=\dfrac{\mathrm{tg}\, 45^\circ-\mathrm{tg}\,\alpha}{1+\mathrm{tg}\,45^\circ\cdot \mathrm{tg}\,\alpha}\] следовательно, \[\dfrac{1-0,5}{1+1\cdot 0,5}=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}} \quad\Leftrightarrow\quad a=\pm \dfrac15\] Таким образом, мы уже сразу получили и положительное, и отрицательное значение для \(a\) . Следовательно, ответ: \

Ответ:

\(\{-0,2;0,2\}\)

Задание 4 #3278

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , для каждого из которых уравнение \

имеет единственное решение.

(ЕГЭ 2017, официальный пробный 21.04.2017)

Сделаем замену \(t=5^x, t>0\) и перенесем все слагаемые в одну часть: \ Получили квадратное уравнение, корнями которого по теореме Виета являются \(t_1=a+6\) и \(t_2=5+3|a|\) . Для того, чтобы исходное уравнение имело один корень, достаточно, чтобы полученное уравнение с \(t\) тоже имело один (положительный!) корень.
Заметим сразу, что \(t_2\) при всех \(a\) будет положительным. Таким образом, получаем два случая:

1) \(t_1=t_2\) : \ &a=-\dfrac14 \end{aligned} \end{gathered} \right.\]

2) Так как \(t_2\) всегда положителен, то \(t_1\) должен быть \(\leqslant 0\) : \

Ответ:

\((-\infty;-6]\cup\left\{-\frac14;\frac12\right\}\)

Задание 5 #3252

Уровень задания: Равен ЕГЭ

\[\sqrt{x^2-a^2}=\sqrt{3x^2-(3a+1)x+a}\]

имеет ровно один корень на отрезке \(\) .

(ЕГЭ 2017, резервный день)

Уравнение можно переписать в виде: \[\sqrt{(x-a)(x+a)}=\sqrt{(3x-1)(x-a)}\] Таким образом, заметим, что \(x=a\) является корнем уравнения при любых \(a\) , так как уравнение принимает вид \(0=0\) . Для того, чтобы этот корень принадлежат отрезку \(\) , нужно, чтобы \(0\leqslant a\leqslant 1\) .
Второй корень уравнения находится из \(x+a=3x-1\) , то есть \(x=\frac{a+1}2\) . Для того, чтобы это число было корнем уравнения, нужно, чтобы оно удовлетворяло ОДЗ уравнения, то есть: \[\left(\dfrac{a+1}2-a\right)\cdot \left(\dfrac{a+1}2+a\right)\geqslant 0\quad\Rightarrow\quad -\dfrac13\leqslant a\leqslant 1\] Для того, чтобы этот корень принадлежал отрезку \(\) , нужно, чтобы \ Таким образом, чтобы корень \(x=\frac{a+1}2\) существовал и принадлежал отрезку \(\) , нужно, чтобы \(-\frac13\leqslant a\leqslant 1\) .
Заметим, что тогда при \(0\leqslant a\leqslant 1\) оба корня \(x=a\) и \(x=\frac{a+1}2\) принадлежат отрезку \(\) (то есть уравнение имеет два корня на этом отрезке), кроме случая, когда они совпадают: \ Таким образом, нам подходят \(a\in \left[-\frac13; 0\right)\) и \(a=1\) .

Ответ:

\(a\in \left[-\frac13;0\right)\cup\{1\}\)

Задание 6 #3238

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственный корень на отрезке \(.\)

(ЕГЭ 2017, резервный день)

Уравнение равносильно: \ ОДЗ уравнения: \[\begin{cases} x\geqslant 0\\ x-a\geqslant 0\\3a(1-x) \geqslant 0\end{cases}\] На ОДЗ уравнение перепишется в виде: \

1) Пусть \(a<0\) . Тогда ОДЗ уравнения: \(x\geqslant 1\) . Следовательно, для того, чтобы уравнение имело единственный корень на отрезке \(\) , этот корень должен быть равен \(1\) . Проверим: \ Не подходит под \(a<0\) . Следовательно, эти значения \(a\) не подходят.

2) Пусть \(a=0\) . Тогда ОДЗ уравнения: \(x\geqslant 0\) . Уравнение перепишется в виде: \ Полученный корень подходит под ОДЗ и входит в отрезок \(\) . Следовательно, \(a=0\) – подходит.

3) Пусть \(a>0\) . Тогда ОДЗ: \(x\geqslant a\) и \(x\leqslant 1\) . Следовательно, если \(a>1\) , то ОДЗ – пустое множество. Таким образом, \(0 Рассмотрим функцию \(y=x^3-a(x^2-3x+3)\) . Исследуем ее.
Производная равна \(y"=3x^2-2ax+3a\) . Определим, какого знака может быть производная. Для этого найдем дискриминант уравнения \(3x^2-2ax+3a=0\) : \(D=4a(a-9)\) . Следовательно, при \(a\in (0;1]\) дискриминант \(D<0\) . Значит, выражение \(3x^2-2ax+3a\) положительно при всех \(x\) . Следовательно, при \(a\in (0;1]\) производная \(y">0\) . Следовательно, \(y\) возрастает. Таким образом, по свойству возрастающей функции уравнение \(y(x)=0\) может иметь не более одного корня.

Следовательно, для того, чтобы корень уравнения (точка пересечения графика \(y\) с осью абсцисс) находился на отрезке \(\) , нужно, чтобы \[\begin{cases} y(1)\geqslant 0\\ y(a)\leqslant 0 \end{cases}\quad\Rightarrow\quad a\in \] Учитывая, что изначально в рассматриваемом случае \(a\in (0;1]\) , то ответ \(a\in (0;1]\) . Заметим, что корень \(x_1\) удовлетворяет \((1)\) , корни \(x_2\) и \(x_3\) удовлетворяют \((2)\) . Также заметим, что корень \(x_1\) принадлежит отрезку \(\) .
Рассмотрим три случая:

1) \(a>0\) . Тогда \(x_2>3\) , \(x_3<3\) , следовательно, \(x_2\notin .\) Тогда уравнение будет иметь один корень на \(\) в одном из двух случаях:
- \(x_1\) удовлетворяет \((2)\) , \(x_3\) не удовлетворяет \((1)\) , или совпадает с \(x_1\) , или удовлетворяет \((1)\) , но не входит в отрезок \(\) (то есть меньше \(0\) );
- \(x_1\) не удовлетворяет \((2)\) , \(x_3\) удовлетворяет \((1)\) и не равен \(x_1\) .
Заметим, что \(x_3\) не может быть одновременно меньше нуля и удовлетворять \((1)\) (то есть быть больше \(\frac35\) ). Учитывая это замечание, случаи записываются в следующую совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3-a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3-a> Решая данную совокупность и учитывая, что \(a>0\) , получим: \

2) \(a=0\) . Тогда \(x_2=x_3=3\in .\) Заметим, что в этом случае \(x_1\) удовлетворяет \((2)\) и \(x_2=3\) удовлетворяет \((1)\) , то есть уравнение имеет два корня на \(\) . Это значение \(a\) нам не подходит.

3) \(a<0\) . Тогда \(x_2<3\) , \(x_3>3\) и \(x_3\notin \) . Рассуждая аналогично пункту 1), нужно решить совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3+a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3+a> \dfrac35\end{cases} \end{aligned}\end{gathered}\right.\] Решая данную совокупность и учитывая, что \(a<0\) , получим: \\]

Ответ:

\(\left(-\frac{13}5;-\frac{12}5\right] \cup\left[\frac{12}5;\frac{13}5\right)\)

Видеолекция "Решение задач с параметрами на ЕГЭ по математике" содержит пошаговые решения задач с параметрами, которые предлагались на диагностических и тренировочных работах по математике, а также на реальном ЕГЭ по математике в 2017 году.

Видеолекция "Решение задач с параметрами на ЕГЭ по математике" состоит из пяти частей, ее общая продолжительность около 120 мин.

Стоимость видеолекции "Решение задач с параметрами на ЕГЭ по математике" 510 руб.

Познакомьтесь с содержанием видеолекции и посмотрите ее фрагмент.

1. Найдите все значения параметра a, при каждом из которых система неравенств

имеет хотя бы одно решение на отрезке (Досрочный ЕГЭ, 2017)

2. Найдите все такие значения параметра a, при каждом из которых уравнение

имеет решения на отрезке (Санкт-Петербург, пробный ЕГЭ, 2017)

3. Найдите все такие значения параметра a, для каждого из которых уравнение

имеет единственное решение. (МИОО , 2017)

4. Найдите все такие значения параметра a, при которых уравнение

имеет единственный корень на отрезке . (МИОО , 2017)

5. Найдите все такие значения параметра a, при которых уравнение

(МИОО , 2017)

6. Найдите все значения параметра a, при каждом из которых уравнение

имеет ровно три решения. (МИОО , 2017)

7. Найдите все неотрицательные значения параметра a, при каждом из которых множество решений неравенства

состоит из одной точки, и найдите это решение. (МИОО , 2017)

8. Найдите все значения параметра a, при каждом из которых система

не имеет решений. (МИОО , 2017)

9. Найдите все значения параметра a, при каждом из которых система

не имеет решений. (МИОО, 2017)

10. Найдите все значения параметра a, при каждом из которых система

имеет единственное решение. (МИОО , 2017)

11. Найдите все значения параметра a, при каждом из которых множество значений функции

содержит отрезок . (МИОО , 2017)

12. Найдите все значения параметра a, при каждом из которых уравнение

имеет единственный корень на отрезке . (ЕГЭ, 2017)

13. Найдите все значения параметра a, при каждом из которых уравнение

имеет единственный корень на отрезке . (ЕГЭ, 2017)

14. Найдите все значения параметра a, при каждом из которых уравнение

имеет единственный корень на отрезке