Формула суммы логарифмов. Логарифмы: примеры и решения


В центре внимания этой статьи – логарифм . Здесь мы дадим определение логарифма, покажем принятое обозначение, приведем примеры логарифмов, и скажем про натуральные и десятичные логарифмы. После этого рассмотрим основное логарифмическое тождество.

Навигация по странице.

Определение логарифма

Понятие логарифма возникает при решении задачи в известном смысле обратной , когда нужно найти показатель степени по известному значению степени и известному основанию.

Но хватит предисловий, пришло время ответить на вопрос «что такое логарифм»? Дадим соответствующее определение.

Определение.

Логарифм числа b по основанию a , где a>0 , a≠1 и b>0 – это показатель степени, в который нужно возвести число a , чтобы в результате получить b .

На этом этапе заметим, что произнесенное слово «логарифм» должно сразу вызывать два вытекающих вопроса: «какого числа» и «по какому основанию». Иными словами, просто логарифма как бы нет, а есть только логарифм числа по некоторому основанию.

Сразу введем обозначение логарифма : логарифм числа b по основанию a принято обозначать как log a b . Логарифм числа b по основанию e и логарифм по основанию 10 имеют свои специальные обозначения lnb и lgb соответственно, то есть, пишут не log e b , а lnb , и не log 10 b , а lgb .

Теперь можно привести : .
А записи не имеют смысла, так как в первой из них под знаком логарифма находится отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.

Теперь скажем о правилах чтения логарифмов . Запись log a b читается как «логарифм b по основанию a ». Например, log 2 3 - это логарифм трех по основанию 2 , а - это логарифм двух целых двух третьих по основанию квадратный корень из пяти. Логарифм по основанию e называют натуральным логарифмом , а запись lnb читается как «натуральный логарифм b ». К примеру, ln7 – это натуральный логарифм семи, а мы прочитаем как натуральный логарифм пи. Логарифм по основанию 10 также имеет специальное название – десятичный логарифм , а запись lgb читается как «десятичный логарифм b ». Например, lg1 - это десятичный логарифм единицы, а lg2,75 - десятичный логарифм двух целых семидесяти пяти сотых.

Стоит отдельно остановиться на условиях a>0 , a≠1 и b>0 , при которых дается определение логарифма. Поясним, откуда берутся эти ограничения. Сделать это нам поможет равенство вида , называемое , которое напрямую следует из данного выше определения логарифма.

Начнем с a≠1 . Так как единица в любой степени равна единице, то равенство может быть справедливо лишь при b=1 , но при этом log 1 1 может быть любым действительным числом. Чтобы избежать этой многозначности и принимается a≠1 .

Обоснуем целесообразность условия a>0 . При a=0 по определению логарифма мы бы имели равенство , которое возможно лишь при b=0 . Но тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Избежать этой многозначности позволяет условие a≠0 . А при a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Наконец, условие b>0 следует из неравенства a>0 , так как , а значение степени с положительным основанием a всегда положительно.

В заключение этого пункта скажем, что озвученное определение логарифма позволяет сразу указать значение логарифма, когда число под знаком логарифма есть некоторая степень основания. Действительно, определение логарифма позволяет утверждать, что если b=a p , то логарифм числа b по основанию a равен p . То есть, справедливо равенство log a a p =p . Например, мы знаем, что 2 3 =8 , тогда log 2 8=3 . Подробнее об этом мы поговорим в статье

По мере развития общества, усложнения производства развивалась и математика. Движение от простого к сложному. От обычного учёта методом сложения и вычитания, при их многократном повторении, пришли к понятию умножения и деления. Сокращение многократно повторяемой операции умножения стало понятием возведения в степень. Первые таблицы зависимости чисел от основания и числа возведения в степень были составлены ещё в VIII веке индийским математиком Варасена. С них и можно отсчитывать время возникновения логарифмов.

Исторический очерк

Возрождение Европы в XVI веке стимулировало и развитие механики. Требовался большой объем вычисления , связанных с умножением и делением многозначных чисел. Древние таблицы оказали большую услугу. Они позволяли заменять сложные операции на более простые – сложение и вычитание. Большим шагом вперёд стала работа математика Михаэля Штифеля, опубликованная в 1544 году, в которой он реализовал идею многих математиков. Что позволило использовать таблицы не только для степеней в виде простых чисел, но и для произвольных рациональных.

В 1614 году шотландец Джон Непер, развивая эти идеи, впервые ввёл новый термин «логарифм числа». Были составлены новые сложные таблицы для расчёта логарифмов синусов и косинусов, а также тангенсов. Это сильно сократило труд астрономов.

Стали появляться новые таблицы, которые успешно использовались учёными на протяжении трёх веков. Прошло немало времени, прежде чем новая операция в алгебре приобрела свой законченный вид. Было дано определение логарифма, и его свойства были изучены.

Только в XX веке с появлением калькулятора и компьютера человечество отказалось от древних таблиц, успешно работавших на протяжении XIII веков.

Сегодня мы называем логарифмом b по основанию a число x, которое является степенью числа а, чтобы получилось число b. В виде формулы это записывается: x = log a(b).

Например, log 3(9) будет равен 2. Это очевидно, если следовать определению. Если 3 возвести в степень 2, то получим 9.

Так, сформулированное определение ставит только одно ограничение, числа a и b должны быть вещественными.

Разновидности логарифмов

Классическое определение носит название вещественный логарифм и фактически является решением уравнения a x = b. Вариант a = 1 является пограничным и не представляет интереса. Внимание: 1 в любой степени равно 1.

Вещественное значение логарифма определено только при основании и аргументе больше 0, при этом основание не должно равняться 1.

Особое место в области математики играют логарифмы, которые будут называться в зависимости от величины их основания:

Правила и ограничения

Основополагающим свойством логарифмов является правило: логарифм произведения равен логарифмической сумме. log abp = lоg a(b) + log a(p).

Как вариант этого утверждения будет: log с(b/p) = lоg с(b) — log с(p), функция частного равна разности функций.

Из предыдущих двух правил легко видно, что: lоg a(b p) = p * log a(b).

Среди других свойств можно выделить:

Замечание. Не надо делать распространённую ошибку - логарифм суммы не равен сумме логарифмов.

Многие века операция поиска логарифма была довольно трудоёмкой задачей. Математики пользовались известной формулой логарифмической теории разложения на многочлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*((x^n)/n), где n - натуральное число больше 1, определяющее точность вычисления.

Логарифмы с другими основаниями вычислялись, используя теорему о переходе от одного основания к другому и свойстве логарифма произведения.

Так как этот способ очень трудоёмкий и при решении практических задач трудноосуществим, то использовали заранее составленные таблицы логарифмов, что значительно ускоряло всю работу.

В некоторых случаях использовали специально составленные графики логарифмов, что давало меньшую точность, но значительно ускоряло поиск нужного значения. Кривая функции y = log a(x), построенная по нескольким точкам, позволяет с помощью обычной линейки находить значения функции в любой другой точке. Инженеры длительное время для этих целей использовали так называемую миллиметровую бумагу.

В XVII веке появились первые вспомогательные аналоговые вычислительные условия, которые к XIX веку приобрели законченный вид. Наиболее удачное устройство получило название логарифмическая линейка. При всей простоте устройства, её появление значительно ускорило процесс всех инженерных расчётов, и это переоценить трудно. В настоящее время уже мало кто знаком с этим устройством.

Появление калькуляторов и компьютеров сделало бессмысленным использование любых других устройств.

Уравнения и неравенства

Для решения различных уравнений и неравенств с использованием логарифмов применяются следующие формулы:

  • Переход от одного основания к другому: lоg a(b) = log c(b) / log c(a);
  • Как следствие предыдущего варианта: lоg a(b) = 1 / log b(a).

Для решения неравенств полезно знать:

  • Значение логарифма будет положительным только в том случае, когда основание и аргумент одновременно больше или меньше единицы; если хотя бы одно условие нарушено, значение логарифма будет отрицательным.
  • Если функция логарифма применяется к правой и левой части неравенства, и основание логарифма больше единицы, то знак неравенства сохраняется; в противном случае он меняется.

Примеры задач

Рассмотрим несколько вариантов применения логарифмов и их свойства. Примеры с решением уравнений:

Рассмотрим вариант размещения логарифма в степени:

  • Задача 3. Вычислить 25^log 5(3). Решение: в условиях задачи запись аналогична следующей (5^2)^log5(3) или 5^(2 * log 5(3)). Запишем по-другому: 5^log 5(3*2), или квадрат числа в качестве аргумента функции можно записать как квадрат самой функции (5^log 5(3))^2. Используя свойства логарифмов, это выражение равно 3^2. Ответ: в результате вычисления получаем 9.

Практическое применение

Являясь исключительно математическим инструментом, кажется далёким от реальной жизни, что логарифм неожиданно приобрёл большое значение для описания объектов реального мира. Трудно найти науку, где его не применяют. Это в полной мере относится не только к естественным, но и гуманитарным областям знаний.

Логарифмические зависимости

Приведём несколько примеров числовых зависимостей:

Механика и физика

Исторически механика и физика всегда развивались с использованием математических методов исследования и одновременно служили стимулом для развития математики, в том числе логарифмов. Теория большинства законов физики написана языком математики. Приведём только два примера описания физических законов с использованием логарифма.

Решать задачу расчёта такой сложной величины как скорость ракеты можно, применяя формулу Циолковского, которая положила начало теории освоения космоса:

V = I * ln (M1/M2), где

  • V – конечная скорость летательного аппарата.
  • I – удельный импульс двигателя.
  • M 1 – начальная масса ракеты.
  • M 2 – конечная масса.

Другой важный пример - это использование в формуле другого великого учёного Макса Планка, которая служит для оценки равновесного состояния в термодинамике.

S = k * ln (Ω), где

  • S – термодинамическое свойство.
  • k – постоянная Больцмана.
  • Ω – статистический вес разных состояний.

Химия

Менее очевидным будет использования формул в химии, содержащих отношение логарифмов. Приведём тоже только два примера:

  • Уравнение Нернста, условие окислительно-восстановительного потенциала среды по отношению к активности веществ и константой равновесия.
  • Расчёт таких констант, как показатель автопролиза и кислотность раствора тоже не обходятся без нашей функции.

Психология и биология

И уж совсем непонятно при чём здесь психология. Оказывается, сила ощущения хорошо описывается этой функцией как обратное отношение значения интенсивности раздражителя к нижнему значению интенсивности.

После вышеприведённых примеров уже не удивляет, что и в биологии широко используется тема логарифмов. Про биологические формы, соответствующие логарифмическим спиралям, можно писать целые тома.

Другие области

Кажется, невозможно существование мира без связи с этой функцией, и она правит всеми законами. Особенно, когда законы природы связаны с геометрической прогрессией. Стоит обратиться к сайту МатПрофи, и таких примеров найдётся множество в следующих сферах деятельности:

Список может быть бесконечным. Освоив основные закономерности этой функции, можно окунуться в мир бесконечной мудрости.

    Начнем со свойства логарифма единицы . Его формулировка такова: логарифм единицы равен нулю, то есть, log a 1=0 для любого a>0 , a≠1 . Доказательство не вызывает сложностей: так как a 0 =1 для любого a , удовлетворяющего указанным выше условиям a>0 и a≠1 , то доказываемое равенство log a 1=0 сразу следует из определения логарифма.

    Приведем примеры применения рассмотренного свойства: log 3 1=0 , lg1=0 и .

    Переходим к следующему свойству: логарифм числа, равного основанию, равен единице , то есть, log a a=1 при a>0 , a≠1 . Действительно, так как a 1 =a для любого a , то по определению логарифма log a a=1 .

    Примерами использования этого свойства логарифмов являются равенства log 5 5=1 , log 5,6 5,6 и lne=1 .

    К примеру, log 2 2 7 =7 , lg10 -4 =-4 и .

    Логарифм произведения двух положительных чисел x и y равен произведению логарифмов этих чисел: log a (x·y)=log a x+log a y , a>0 , a≠1 . Докажем свойство логарифма произведения. В силу свойств степени a log a x+log a y =a log a x ·a log a y , а так как по основному логарифмическому тождеству a log a x =x и a log a y =y , то a log a x ·a log a y =x·y . Таким образом, a log a x+log a y =x·y , откуда по определению логарифма вытекает доказываемое равенство.

    Покажем примеры использования свойства логарифма произведения: log 5 (2·3)=log 5 2+log 5 3 и .

    Свойство логарифма произведения можно обобщить на произведение конечного числа n положительных чисел x 1 , x 2 , …, x n как log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Данное равенство без проблем доказывается .

    Например, натуральных логарифм произведения можно заменить суммой трех натуральных логарифмов чисел 4 , e , и .

    Логарифм частного двух положительных чисел x и y равен разности логарифмов этих чисел. Свойству логарифма частного соответствует формула вида , где a>0 , a≠1 , x и y – некоторые положительные числа. Справедливость этой формулы доказывается как и формула логарифма произведения: так как , то по определению логарифма .

    Приведем пример использования этого свойства логарифма: .

    Переходим к свойству логарифма степени . Логарифм степени равен произведению показателя степени на логарифм модуля основания этой степени. Запишем это свойство логарифма степени в виде формулы: log a b p =p·log a |b| , где a>0 , a≠1 , b и p такие числа, что степень b p имеет смысл и b p >0 .

    Сначала докажем это свойство для положительных b . Основное логарифмическое тождество позволяет нам представить число b как a log a b , тогда b p =(a log a b) p , а полученное выражение в силу свойство степени равно a p·log a b . Так мы приходим к равенству b p =a p·log a b , из которого по определению логарифма заключаем, что log a b p =p·log a b .

    Осталось доказать это свойство для отрицательных b . Здесь замечаем, что выражение log a b p при отрицательных b имеет смысл лишь при четных показателях степени p (так как значение степени b p должно быть больше нуля, в противном случае логарифм не будет иметь смысла), а в этом случае b p =|b| p . Тогда b p =|b| p =(a log a |b|) p =a p·log a |b| , откуда log a b p =p·log a |b| .

    Например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

    Из предыдущего свойства вытекает свойство логарифма из корня : логарифм корня n -ой степени равен произведению дроби 1/n на логарифм подкоренного выражения, то есть, , где a>0 , a≠1 , n – натуральное число, большее единицы, b>0 .

    Доказательство базируется на равенстве (смотрите ), которое справедливо для любых положительных b , и свойстве логарифма степени: .

    Вот пример использования этого свойства: .

    Теперь докажем формулу перехода к новому основанию логарифма вида . Для этого достаточно доказать справедливость равенства log c b=log a b·log c a . Основное логарифмическое тождество позволяет нам число b представить как a log a b , тогда log c b=log c a log a b . Осталось воспользоваться свойством логарифма степени: log c a log a b =log a b·log c a . Так доказано равенство log c b=log a b·log c a , а значит, доказана и формула перехода к новому основанию логарифма .

    Покажем пару примеров применения этого свойства логарифмов: и .

    Формула перехода к новому основанию позволяет переходить к работе с логарифмами, имеющими «удобное» основание. Например, с ее помощью можно перейти к натуральным или десятичным логарифмам, чтобы можно было вычислить значение логарифма по таблице логарифмов . Формула перехода к новому основанию логарифма также позволяет в некоторых случаях находить значение данного логарифма, когда известны значения некоторых логарифмов с другими основаниями.

    Часто используется частный случай формулы перехода к новому основанию логарифма при c=b вида . Отсюда видно, что log a b и log b a – . К примеру, .

    Также часто используется формула , которая удобна при нахождении значений логарифмов. Для подтверждения своих слов покажем, как с ее помощью вычисляется значение логарифма вида . Имеем . Для доказательства формулы достаточно воспользоваться формулой перехода к новому основанию логарифма a : .

    Осталось доказать свойства сравнения логарифмов.

    Докажем, что для любых положительных чисел b 1 и b 2 , b 1 log a b 2 , а при a>1 – неравенство log a b 1

    Наконец, осталось доказать последнее из перечисленных свойств логарифмов. Ограничимся доказательством его первой части, то есть, докажем, что если a 1 >1 , a 2 >1 и a 1 1 справедливо log a 1 b>log a 2 b . Остальные утверждения этого свойства логарифмов доказываются по аналогичному принципу.

    Воспользуемся методом от противного. Предположим, что при a 1 >1 , a 2 >1 и a 1 1 справедливо log a 1 b≤log a 2 b . По свойствам логарифмов эти неравенства можно переписать как и соответственно, а из них следует, что log b a 1 ≤log b a 2 и log b a 1 ≥log b a 2 соответственно. Тогда по свойствам степеней с одинаковыми основаниями должны выполняться равенства b log b a 1 ≥b log b a 2 и b log b a 1 ≥b log b a 2 , то есть, a 1 ≥a 2 . Так мы пришли к противоречию условию a 1

Список литературы.

  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

В соотношении

может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х.

Пусть число N положительно: число а положительно и не равно единице: .

Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через

Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи

имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у.

Пример 1. Найти

Решение. Для получения числа следует возвести основание 2 в степень Поэтому.

Можно проводить записи при решении таких примеров в следующей форме:

Пример 2. Найти .

Решение. Имеем

В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами.

Рассмотрим некоторые свойства логарифмов.

Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны.

Доказательство. Пусть По определению логарифма имеем а откуда

Обратно, пусть Тогда по определению

Свойство 2. Логарифм единицы по любому основанию равен нулю.

Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда

что и требовалось доказать.

Верно и обратное утверждение: если , то N = 1. Действительно, имеем .

Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с.

Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен.

Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен.

Требуется рассмотреть четыре случая:

Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно.

Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать.

Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны:

Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы;

б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа;

в) , так как 3,1 и 0,8 лежат по разные стороны от единицы;

г) ; почему?

д) ; почему?

Следующие свойства 4-6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них.

Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию.

Доказательство. Пусть даны положительные числа .

Для логарифма их произведения напишем определяющее логарифм равенство (26.1):

Отсюда найдем

Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:

Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим

В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей.

Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим

что и требовалось доказать.

Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени.

Доказательство. Запишем снова основное тождество (26.1) для числа :

что и требовалось доказать.

Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:

Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6.

Пример 4. Прологарифмировать по основанию а:

а) (предполагается, что все величины b, с, d, е положительны);

б) (преполагается, что ).

Решение, а) Удобно перейти в данном выражении к дробным степеням:

На основании равенств (26.5)-(26.7) теперь можно записать:

Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении - вычитаются и т.д.

Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29).

Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень».

При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов - логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма.

Пример 5. Найти N, если известно, что

Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим

Теперь разность логарифмов заменим логарифмом частного:

для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25).

Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее - больший).

Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны:

При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80).

Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим

(а и N/М лежат по одну сторону от единицы). Отсюда

Случай а следует , читатель разберет самостоятельно.

Логарифм числа b (b > 0) по основанию a (a > 0, a ≠ 1) – показатель степени, в которую нужно возвести число a, чтобы получить b.

Логарифм числа b по основанию 10 можно записать как lg(b) , а логарифм по основанию e (натуральный логарифм) – ln(b) .

Часто используется при решении задач с логарифмами:

Свойства логарифмов

Существует четыре основных свойства логарифмов .

Пусть a > 0, a ≠ 1, x > 0 и y > 0.

Свойство 1. Логарифм произведения

Логарифм произведения равен сумме логарифмов:

log a (x ⋅ y) = log a x + log a y

Свойство 2. Логарифм частного

Логарифм частного равен разности логарифмов:

log a (x / y) = log a x – log a y

Свойство 3. Логарифм степени

Логарифм степени равен произведению степени на логарифм:

Если в степени находится основание логарифма, то действует другая формула:

Свойство 4. Логарифм корня

Данной свойство можно получить из свойства логарифм степени, так как корень n-ой степени равен степени 1/n:

Формула перехода от логарифма в одном основании к логарифму при другом основании

Данная формула также часто применяется при решении различных заданий на логарифмы:

Частный случай:

Сравнение логарифмов (неравенства)

Пусть у нас есть 2 функции f(x) и g(x) под логарифмами с одинаковыми основаниями и между ними стоит знак неравенства:

Чтобы их сравнить, нужно сначала посмотреть на основание логарифмов a:

  • Если a > 0, то f(x) > g(x) > 0
  • Если 0 < a < 1, то 0 < f(x) < g(x)

Как решать задачи с логарифмами: примеры

Задания с логарифмами включены в состав ЕГЭ по математике для 11 класса в задании 5 и задании 7, вы можете найти задания с решениями на нашем сайте в соответствующих разделах. Также задания с логарифмами встречаются в банке заданий по математике. Все примеры вы можете найти через поиск по сайту.

Что такое логарифм

Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.

Мы же определим логарифм просто и наглядно. Для этого составим таблицу:

Итак, перед нами степени двойки.

Логарифмы – свойства, формулы, как решать

Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь - собственно, определение логарифма:

по основанию a от аргумента x - это степень, в которую надо возвести число a, чтобы получить число x.

Обозначение: log a x = b, где a - основание, x - аргумент, b - собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм - это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где - аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами - не что иное как определение логарифма. Вспомните: логарифм - это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень - на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии - и никакой путаницы не возникает.

Как считать логарифмы

С определением разобрались - осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ - без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто - достаточно разложить его на простые множители. Если в разложении есть хотя бы два различных множителя, число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точная степень;
35 = 7 · 5 - снова не является точной степенью;
14 = 7 · 2 - опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

от аргумента x - это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x. Обозначение: lg x.

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

от аргумента x - это логарифм по основанию e, т.е. степень, в которую надо возвести число e, чтобы получить число x. Обозначение: ln x.

Многие спросят: что еще за число e? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459…

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e - основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 - и т.д. С другой стороны, ln 2 - иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Смотрите также:

Логарифм. Свойства логарифма (степень логарифма).

Как представить число в виде логарифма?

Используем определение логарифма.

Логарифм — это показатель степени, в которую надо возвести основание, чтобы получить число, стоящее под знаком логарифма.

Таким образом, чтобы представить некоторое число c в виде логарифма по основанию a, надо под знак логарифма поставить степень с тем же основанием, что и основание логарифма, а в показатель степени записать это число c:

В виде логарифма можно представить абсолютно любое число — положительное, отрицательное, целое, дробное, рациональное, иррациональное:

Чтобы в стрессовых условиях контрольной или экзамена не перепутать a и c, можно воспользоваться таким правилом для запоминания:

то, что внизу, идёт вниз, то, что вверху, идёт вверх.

Например, нужно представить число 2 в виде логарифма по основанию 3.

У нас есть два числа — 2 и 3. Эти числа — основание и показатель степени, которую мы запишем под знак логарифма. Остаётся определить, которое из этих чисел нужно записать вниз, в основание степени, а которое — вверх, в показатель.

Основание 3 в записи логарифма стоит внизу, значит, когда мы будем представлять двойку в виде логарифма по основанию 3, 3 также запишем вниз, в основание.

2 стоит выше тройки. И в записи степени двойку запишем выше тройки, то есть, в показатель степени:

Логарифмы. Начальный уровень.

Логарифмы

Логарифмом положительного числа b по основанию a , где a > 0, a ≠ 1 , называется показатель степени, в которую надо возвести число a , чтобы получить b .

Определение логарифма можно кратко записать так:

Это равенство справедливо при b > 0, a > 0, a ≠ 1. Его обычно называют логарифмическим тождеством.
Действие нахождения логарифма числа называют логарифмированием.

Свойства логарифмов:

Логарифм произведения:

Логарифм частного от деления:

Замена основания логарифма:

Логарифм степени:

Логарифм корня:

Логарифм со степенным основанием:





Десятичные и натуральные логарифмы.

Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут   lg b
Натуральным логарифмом числа называют логарифм этого числа по основанию e , где e — иррациональное число, приближенно равное 2,7. При этом пишут ln b .

Другие заметки по алгебре и геометрии

Основные свойства логарифмов

Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y. Тогда их можно складывать и вычитать, причем:

  1. log a x + log a y = log a (x · y);
  2. log a x − log a y = log a (x: y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания . Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Log 6 4 + log 6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Задача. Найдите значение выражения: log 2 48 − log 2 3.

Основания одинаковые, используем формулу разности:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Задача. Найдите значение выражения: log 3 135 − log 3 5.

Снова основания одинаковые, поэтому имеем:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм.

Как решать логарифмы

Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log 7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log 2 7. Поскольку log 2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм log a x. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log 5 16 · log 2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log 9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию.

В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Заметим, что log 25 64 = log 5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. log a a = 1 — это. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. log a 1 = 0 — это. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a 0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.