Вклад ученых в развитие электротехники. Кто и в каком году изобрел электричество: история открытия

Мы хорошо понимаем, что сегодняшняя жизнь без электричества была бы невозможной. Человечеству понабилось несколько веков, чтобы изучить и «приручить» это природное явление. Среди тех, кто покорял электричество , были и российские ученые , которые внесли неоценимый вклад в развитие электротехники .

Павел Николаевич Яблочков

Павел Николаевич Яблочков известен, прежде всего, изобретением электрической свечи , которая вошла в историю как «свеча Яблочкова ». Деятельность ученого пришлась на вторую половину девятнадцатого века, и обозначилась значимыми изобретениями в области электротехники.

Первым опытом молодого Яблочкова стал «чернопишущий телеграфный аппарат », который он изобрел , будучи начальником телеграфа на железной дороге. Правда, об этом произведении вскоре забыли, и на сегодняшний день ничего неизвестно о «телеграфном аппарате » Яблочкова . На изобретение, которое уже принесло ему славу, Павла Николаевича вдохновил опыт А.Н. Лодыгина , и Яблочков стал посвящать все больше времени на улучшение дуговых ламп: его первые попытки в этом направлении обозначились работой над совершенствованием регулятора Фуко.

Уже позже, Павлу Николаевичу удалось изобрести самую близкую предшественницу «лампочки Ильича» - электрическую свечу , которая и прославила изобретателя . Именно с электрических свечей началось наружное освещение: городские площади, витрины магазинов, театры и улицы в темное время суток были озарены светом. Применение свечей Яблочкова началось в Париже, Лондоне и Берлине. Европа была просто поражена новым изобретением , которое современники прозвали «русским светом».

Сложно представить, но такие «лампы» служили немногим больше часа, поэтому существовала необходимость менять их на новые. Правда, вскоре для этой цели придумали фонари с автоматической заменой свечей . Кроме того, в сравнении с современными электрическими лампами, свет от свечей Яблочкова был тусклым и непостоянным. Но, несмотря на несовершенства, это изобретение стало первым, которое смогли широко применить в наружном освещении.

За свою жизнь Яблочков успел подарить человечеству еще несколько значимых изобретений . Так, ученый создал первый генератор переменного тока , а затем и трансформатор переменного тока . Именно Павел Николаевич первым применил переменный ток в промышленности. Благодаря своим открытиям, Яблочков стал первым среди всех ученых планеты, кто создал систему «дробления» электрического света. В его жизни было ещё много открытий и достижений, однако ученый вошел в историю своим главным триумфом – электрической свечой .


Александр Николаевич Лодыгин

Мы уже упоминали имя этого талантливого ученого в предыдущем рассказе, так как Александр Николаевич Лодыгин прославился не только своими изобретениями в области электротехники , но и оказал большое влияние на своих коллег-современников.

Прежде всего, Лодыгин стал известен как изобретатель лампы накаливания , он посветил многие годы своей жизни на изучение и совершенствование этого изобретения . Однако история не признаёт единственного создателя лампы накаливания – это продукт множества открытий разных ученых . Но Александр Николаевич занимает важное место в появлении и становлении этого изобретения – он первый стал применять вольфрам и закручивать нити в спираль, а также откачал из тела лампы воздух, чем увеличил ее срок службы в несколько раз. Таким образом, он стал родителем современной лампочки, которая широко применяется и сегодня.

В своей жизни Лодыгин уделял много времени созданию электролета , его изобретение должно было отправиться в Париж, но из-за поражения Франции в войне, Лодыгин отменил свои планы, и в дальнейшем его деятельность не касалась летательных аппаратов.

Кроме того, в его списке изобретений числятся такие важные проекты как автономный водолазный скафандр , индукционная печь , электрический обогреватель для отопления .

Борис Михайлович Гохберг

О самом изобретателе Гохберге известно немного: он был советским ученым Ленинградского физико-технического института; посвящал много времени изучению электрических свойств газов и открыл так называемый «элегаз », который активно используется в современной энергетике.

Благодаря пристальному вниманию к шестифтористой сере , ученый открыл уникальные свойства этого соединения, которое позже получило название «электрический газ ». Так, элегаз начали использовать в советской промышленности, а широкое применение он получил в 90-х годах прошлого века.

Элегаз безвреден в смеси с воздухом и является негорючим веществом. Именно им стали заменять трансформаторные масла, которые всегда несли в себе риск пожара. Элегаз также широко используется в высоковольтной электротехнике , а технологии с использованием элегаза до сих пор считаются передовыми.


Советские ученые

В СССР нередко труд ученых обобщался и обезличивался, поэтому в публикации мы не сможем назвать имена людей, которые изобрели первую атомную электростанцию . Это открытие стало настоящим прорывом в энергетике .

Во второй половине 40-х годов, ещё до окончания работ по созданию первой советской атомной бомбы, советские ученые приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого сразу же стала электроэнергетика . Так, в июне 1954 года в городе Обниск была запущена первая атомная электростанция . К концу ХХ века в мире насчитывалось уже более 400 атомных электростанций .

Рис.2. Ветряная мельница

Рис.1. Водяная мельница

С тех пор как существует мирозданье такого нет кто б не нуждался в знаньи.

Какой мы не возьмём язык и век, всегда стремился к знанью человек.

А. А. Д. Рудаки

2. ИСТОРИЯ ЭНЕРГЕТИКИ

2.1. Общая энергетика

С древнейших времен люди нуждались в силе, в двигателях, которые помогали бы выкорчевывать деревья, приводили бы в действие приспособления для подачи воды на поля, пахали землю, вращали жернова, мелющие зерно и т.п.

В странах Древнего Востока, в Египте, Индии, Китае для этой цели уже в 3-м тыс. до н.э. использовались животные и рабы. Затем на смену живым двигателям пришло водяное колесо – два диска на одном валу, между которыми помещались дощечки – лопасти.

Поток воды в реке давил на лопасти, пово-

рачивая колесо, а через вал колеса движение

передавалось жерновами (рис. 1).

В 3-м тысячелетии до н.э. люди использовали паруса для движения лодок, но только в VII в. н. э. персы изобрели ветряную мельницу с крыльями (рис. 2). Началась история ветряных двигателей.

Водяные колеса использовались на Ниле, Евфрате, Янцзы для подъема воды, вращали их рабы. Затем древние греки и римляне использовали водяные колеса в качестве двигателя для привода насосов и мельниц, для выжимания масла. Позднее водяные колеса стали широко использоваться в ремесле, затем в промышленности.

Римский писатель Марк Витрувий Полион в I в. до н. э. впервые опи-

Рис. 4. Эолипил Герона

Рис. 3. Архимед

сал водяное колесо. Водяные колеса и ветряные мельницы вплоть до XVII века являлись основными типами двигателей.

В конце XVIIначале XVIII веков в Италии, Франции, Англии, России, Испании и других государствах делались неоднократные попытки создать двигатель, не зависящий от движущейся воды рек и ветра. Идея использования пара для создания двигателя возникла благодаря размышлениям и опытам древних мыслителей.

Архимед (ок. 287 – 212 гг. до н.э.) (рис. 3), один из гениальных исследователей античного периода, творец древней механики, великий математик. Открыл гидростатический закон, теорию рычага. Создал начала математического

анализа, придумал катапульту, паровую пушку, водоподъемный «архимедов винт», зубчатый редуктор, приборы для измерения размеров удаленных тел и многое другое.

Герон из Александрии еще в 70-е гг. н.э. изобрел простейшую паровую турбину – эолипил Герона (рис. 4).

Сила пара, вырывающегося из шарообразного сосуда, в котором кипела вода, через Г- образные трубки, вращала этот сосуд.

В середине XVIII века человечество вплотную подошло к одному из важнейших моментов

в истории технического творчества – использованию водяного пара для приведения в действие различных механизмов

В истории попыток использования пара записаны имена многих ученых и изобретателей:

итальянцев – Леонардо да Винчи, Порта; французов – де Ко, Папена; англичан – Т. Сэвери, Т. Ньюкомена; русских – И.И. Ползунова, отца и сына Черепановых и многих других.

Леонардо да Винчи (1452 -1519) – гениальный мыслитель, многогранный талантливый изобретатель, художник (рис. 5).

Он оставил 5000 страниц научных и технических описаний, чертежей, эскизов: шлюзовые ворота со створками, текстильные станки, роликовые подшипники, центробежный

насос, паровая пушка, пистолет с колес-

ным затвором, гидравлический пресс,

механизмы, преобразующие возвратно-

поступательное движение во вращатель-

ное и наоборот, и многое другое.

Джамбаттиста делла Порта (1538-

1616) исследовал образование пара из

воды, что было важно для дальнейшего

использования пара в паровых машинах,

исследовал свойства магнита.

Инженер де Ко в 1615 году описал

Рис. 5. Леонардо да Винчи

паровые устройства для подъема воды.

Отто фон Герике (1602-1686) поста-

вил и описал опыты, демонстрирующие силу атмосферного давления на «магдебургских полушариях», из которых был удален воздух, а разряжение это достигалось с помощью конденсации пара. Для того, чтобы разъединить эти полушария, использовали восьмерку лошадей.

Дени Папен (1647-1714) по-

строил первую технически реализо-

пароатмосферную прими-

машину, представляющую

собой паровой котел в виде цилинд-

ра с поршнем, который поднимался

при помощи пара, а опускался под

действием атмосферного

давления.

Рис. 6. Схема насоса Сэвери:

Цилиндр был и котлом,

и рабочим 1 – охладительный сосуд; 2 – котел;

механизмом одновременно.

3 – соединительная труба;

Томас Сэвери (1650-1715) соз-

4 – кран; 5 – нагнетательная труба;

6 – клапаны

дал паровой насос, в котором паро-

вой котел был отделен от цилиндра (рис.6). Царь Петр I купил насос Сэвери для приведения в действие фонтанов в Летнем саду.

Томас Ньюкомен (1663-1729 ) усовершенствовал паровой насос, связал поршень с балансиром и штангой водоотливного насоса. Охлаждающая вода подавалась в цилиндр сверху для опускания поршня (рис. 7).

Машины Ньюкомена были приобретены Петром I для откачки воды из дока в Кронштадте.

Пароатмосферные машины и Сэвери и Ньюкомена были громоздки и имели малый коэффициент полезного дей-

ствия (≈ 0,3 %).

цилиндра с поршнями и отдельный паровой котел, из которого пар поочередно поступал в цилиндры через автоматический распре-

делитель – это первое применение автома-

тики в подобных машинах. Рабочее усилие

непрерывно подавалось на общий шкив,

вал которого передавал момент на привод

заводских механизмов – насоса или возду-

ходувного меха.

Это была первая универсальная паро-

вая машина, но все же она имела малый

КПД (≈ 1 %), потребляла большое количе-

ство топлива; она проработала около года

на рудниках; после смерти создателя сло-

малась и была забыта.

Первые паровые устройства и машины

Рис. 8. Схема двигателя

имели низкий КПД, так как не было теоре-

И. И. Ползунова

тических знаний о теплоте, давлении пара и

Михаил Васильевич Ломоносов (1711-1765) – гениальный русский ученый, мыслитель, экспериментатор, поэт (рис. 9).

Ломоносов много сделал в области различных наук и в каждой из них исследовал самые фундаментальные вопросы. Он изучал агре-

гатное состояние вещества, изучал термометрию, внедрял физические и химические методы исследования. Он экспериментально доказал и сформулировал в 1748 г. закон сохранения вещества. Это было за 18 лет до подобных опытов француза Лавуазье, которому мировая наука приписала откры-

тие закона сохранения материи. Ломоносов впервые дал правильное

объяснение теплоте, как движению мельчайших частиц – корпускул.

М. В. Ломоносов был не только выдающимся и разносторонним учёным, но и страстным пропагандистом научных знаний. Он понимал необходимость обучения для народа и уделял этому боль-

Рис. 9. М. В. Ломоносов шое внимание, помня завет Петра I: «…науки производить и оные распро-

странять.» Приведем обращение Ломоносова в стихотворной форме к своим ученикам:

О вы, которых ожидает Отечество от недр своих

И видеть таковых желает, Каких зовет от стран чужих. О, ваши дни благословенны! Дерзайте ныне ободренны Раченьем вашим показать,

Что может собственных Платонов

И быстрых разумом Невтонов Российская земля рождать.

О Ломоносове гениальный поэт и философ А.С. Пушкин писал: “Соединяя необыкновенную силу воли с необыкновенной силой понятия, Ломоносов объял все отрасли просвещения. Жажда науки была сильнейшею страстью его души. Историк, ритор, механик, химик, минералог, художник и стихотворец – он всё испытал и во всё проник. ”

Ученые, изобретатели, гениальные самоучки, механики продолжали работать над устройством и совершенствованием паровых машин и их применением, имея уже какое-то представление о теплоте.

Рис.10. Джеймс Уатт

Джеймс Уатт (1736-1819) , (рис. 10), английский механик, создал паровую машину двойного действия, рабочий ход поршня в ней производился не атмосферным давлением, а дав-

лением пара.

Машина Уатта управлялась золотниковым устройством, (центробежным регулятором пара). Содержала маховик и шатуннокривошипный механизм, совершала непрерывное вращательное движение. Конденсация пара производилась в отдельном устройстве – конденсаторе. Общий КПД машины равнялся 8 %. Во второй половине XVIII в. устройство паровой машины было отработано, она нашла широкое применение в промышленности крупных стран. В честь Д. Уатта единица мощности была названа “Ватт”.

В России паровые машины начали строиться в Петербурге (на Галерном острове), на Олонецком и других заводах.

Американец Р.Фултон в 1803 г. установил паровой двигатель на судне; такие суда стали называться пароходами.

В Петербурге с 1800 по 1825 г.

было изготовлено более 100 паровых машин заводских и 11 пароходных. Первый российский пароход “Елизавета” совершал рейсы «Петербург – Кронштадт» уже в 1815 г.

Черепанов Ефим Алексеевич вместе со своим сыномМироном Ефимовичем – механики нижнетагильских заводов – с 1820 г. по 1835 г. построи-

ли 20 различных паровых машин, а в 1833 году построили первый в России Рис. 11. Паровоз Черепановых

паровоз, (рис. 11), который двигался по чугунному рельсовому пути. Первая железная дорога в России “Петербург – Царское село”

была построена в 1837 году.

Д. Стефенсон в Англии, начиная с 1829 года, построил серию паровозов.

Рис. 12. Турбина Фурнейрона: 1-направляющий аппарат; 2-лопатки рабочего колеса; 3-вал

Создавались и изобретались различные конструкции паровых машин, появилась необходимость в теории и машин, и теплоносителя.

Французский ученый Сади Карно (1796-1832) в 1824 г. разработал основы теории паровых машин – циклы Карно. Он установил, что, чем больше разность температур подводимого и отводимого тепла у теплоносителя, тем выше эффективность тепловой машины. Со времен С. Карно тепловые (паровые, газовые и др.) машины стали развиваться в направлении повышения параметров теплоносителя – температуры и давления. Этими вопросами занимались Р. Стирлинг, Эриксон и др.

Водяные колеса и паровые двигатели совершенствовались, все больше внедрялись в промышленность, но они имели довольно низкий коэффициент полезного действия и сравнительно небольшую мощность. Требовалось создание новых машин с большим числом оборотов, с большей мощностью и большим КПД. Такими машинами стали различные модификации водяных, паровых, а позднее и газовых турбин (“турбо” – волчок).

Теорией турбин занимался Д. Бернулли (1700-1782), который исследовал динамику различных потоков энергии.

Во многих странах ученые, исследователи, механики предлагали различные варианты конструкций турбин. Был объявлен конкурс на лучшую теорию и лучшую конструкцию турбины.

Б. Фурнейрон (1802-1867) сконст-

руировал быстроходную турбину с подводом воды на лопатки радиально от центра турбины, (рис. 12). Такая турбина получила широкое использование.

Подобные активные турбины различного рода строили И. Сафонов в России, Ховд в США, Жирар во Франции и др.

Д. Френсис (1815-1892) построил радиально-осевую реактивную тур-

бину со специально изогнутыми лопатками (рис. 13),

получившую

А. Пельтоном (1829

1908) была создана

активная

ковшовая

ших напоров воды.

Ж. Понселе (1788-

Рис.13. Радиально-осевая турбина Френсиса (1)

и осевая поворотно-лопастная турбина Каплана (2)

послужила толчком

к созданию новых типов машин.

Современные гидравлические турбины созданы на основе отбора и совершенствования турбин, построенных многими талантливыми изобретателями и конструкторами. Турбины вращались под действием движущейся воды. Затем появились паровые турбины, в которых использовался перегретый пар, подаваемый на лопатки турбин под повышенным давлением. Прообразом таких турбин был эолипил Герона Александрийского рис. 4. Паровые турбины имели целый ряд преимуществ по сравнению с паровыми поршневыми машинами: быстроходность, равномерность вращения, экономичность. Появились идеи и конструкции целого ряда новых турбин.

К. Лаваль (1845-1913) разра-

ботал одноступенчатую активную

турбину с

четырьмя

паровыми

соплами, пар из которых пода-

(рис. 14), но использование ее

экономически

невыгодно,

хотя принцип очень ценен.

Рис.14. Турбина Лаваля

Ч. Парсонс (1854-1931) изо-

брел многоступенчатую осевую реактивную турбину большой мощности с особыми группами лопаток – подвижными и неподвижными. Такая конструкция была более удачной и получила дальнейшее развитие в работах конструкторов многих стран (Франции, Англии, Рос-

сии, Америки и др.). Дальнейшее развитие паровых турбин было связано помимо прочего с повышением температуры пара.

Паровые машины и турбины требовали устройства, в котором была бы топка, котел, охлаждающий агрегат. Они выполняли свое назначение, однако были очень громоздки и неудобны в эксплуатации.

Уже в конце XVII в. появилась идея создания двигателя внутреннего сгорания – ДВС, в котором не нужен котел и топка, так как газообразное рабочее тело получает энергию от сжигания топлива внутри рабочего цилиндра.

В двигателях внутреннего сгорания главная часть – цилиндр с поршнем, но на поршень давит не пар, а раскаленный сжатый газ, образовавшийся в результате сжигания топлива внутри цилиндра – отсюда и название ДВС – двигатель внутреннего сгорания.

В основе первой попытки создания ДВС легла идея Х.Гюйгенса (1629-1695) – пороховая машина. Однако она не была построена, так как в то время еще не было подходящего топлива. В последующие годы было много разработано моделей различных ДВС, но все они по тем или иным причинам не были реализованы.

Французский механик Э.Ленуар (1822-1900) изобрел горизонтальный двигатель внутреннего сгорания двойного действия. Он работал на смеси светильного газа и воздуха, имел КПД около 4 % и требовал хорошего охлаждения. Двигатель Ленуара получил довольно высокое распространение, хотя был далек от совершенства и тре-

бовал серьезных доработок. Первый четырёхтактный двига-

тель внутреннего сгорания был построен немцем Николаем Отто в 1876 году, затем он был усовершенствован русским инженеромО.Костовичем , который разработал карбюратор для сжигания легких фракций продуктов перегонки нефти. Этими же вопросами занимались немецкие изобретателиДаймлер и Бенц (основатели концерна

«Мерседес»).

Рис.15. Р. Дизель Немецкий инженер Рудольф Дизель (1858-1913) (рис. 15), разработал ДВС на тяжелом топливе – мазуте, соляровом масле. Работал он по принципу самовоспламене-

ния. Двигатели внутреннего сгорания, работающие по принципу самовоспламенения топлива в цилиндре, называются дизельными, по имени их изобретателя. Первый дизель-мотор был изготовлен в 1897 году, он содержал все основные элементы современного мотора, являлся самым экономичным из ДВС.

Г.В.Тринклер – инженер Путиловского завода, усовершенствовал процесс сжигания топлива, создал в 1889 г. двигатель со смешанным сгоранием, и с начала XX в. завод Нобеля («Русский дизель) стал выпускать в России дизельные моторы.

Большой вклад в развитие энергетики, создание двигателей, работающих на органическом топливе, вносили ученые, открывающие и разрабатывающие законы и теорию различных процессов в области химии и физики.

Дмитрий Иванович Менделеев (1834-1907) (рис. 16) – выдающийся русский ученый, автор фундаментального периодического закона химических элементов, открытие которого способствовало развитию химии, атомной и ядерной физики. Д.И. Менделеев разработал теорию горения топлива, которая позволяла определить теплотворную способность топлив различного состава, выбрать оптимальные режимы горения и многое другое. Помимо этого, Д.И. Менделеев разработал промышленные способы разделения нефти по фракциям – бензин, керосин, мазут, открыл и сформулировал положение о критическом состоянии вещества и многое другое. Он был разносторон-

ним ученым, патриотом своей стра- Рис.16. Д. И. Менделеев ны, пропагандистом научных откры-

тий, профессором Петербургского университета и других учреждений. Учебник Д.И.Менделеева “Основы химии” (1868) переиздавался много раз и является одним из лучших учебников по химии.

Работы ученых способствовали развитию прогресса, промышленности, энергетики.

В ХХ веке появляется турбореактивный двигатель и газовая турбина. Начало развитию таких двигателей положил англичанин Д. Барбер еще в 1791 году, когда он получил патент на тепловой двигатель, в котором продукты сгорания смеси воздуха и газа подавались на лопатки турбины.

Первый работающий газотурбинный двигатель был сконструирован и испытан в 1897 году русским изобретателем инженером П.Д. Кузьминским (1840-1900), топливом для этого двигателя служил керосин; в том же году им была построена газо-паровая турбина с постоянным давлением сгорания.

Работы по созданию турбореактивных двигателей, газовых турбин велись в Германии (Штольце), в США (Мосс), во Франции (Арменго), в России (Н. Герасимов, В.И. Базаров и др.).

Однако строительство такого рода двигателей и их длительная работа требовали жаропрочных материалов и разработки теории газовых турбин. Этими вопросами, а также созданием высокоэффективного компрессора, необходимого для этих двигателей, занимались в Англии, Германии (фирма Хейнкеля), Советском Союзе (А.А. Саблуков, Б.С. Стечкин), Франции, Италии, Швейцарии и других странах.

Газотурбинные двигатели нашли себе широкое применение в авиации, на парогазовых электростанциях и др.

После того как были изобретены различного рода двигатели – ветровые, водяные, паровые, турбореактивные, внутреннего сгорания

– встал вопрос о передаче энергии на расстояние.

Передачи придумывали самые разные – ременные (с помощью ремней), гидравлические (с помощью жидкости), пневматические (с помощью воздуха, газов). Все они могли передавать энергию, но на небольшие расстояния и со значительными потерями. Развитие промышленности, строительство фабрик, заводов, рост крупных городов требовали все большей энергии и передачи ее на дальние расстояния.

Важнейшим этапом в развитии энергетической базы промышленности, сельского хозяйства, бытовых удобств явилось изобретение и применение электрических двигателей.

Электрические двигатели удобнее и надежнее других двигателей

– паровых, ветряных, водяных. Они всегда готовы к работе, могут управляться на расстоянии, позволяют регулировать скорость и т.п.

Благодаря электрическим двигателям появились: высокопроизводительные машины, станки, заводы-автоматы, электрифицированный инструмент, электрический транспорт (электрички, трамваи, метро, троллейбусы), бытовые приборы (холодильники, стиральные машины, швейные машины) и многое другое.

Открытие электричества и использование электрической энергии было одним из величайших событий. Этому предшествовали усилия многих и многих людей, начиная с древних времен и до наших дней.

Для передачи энергии на большие расстояния и распределения ее между потребителями – самой удобной является именно электрическая энергия.

Считается, что полезной электрической энергии в природе нет, хотя существуют такие электрические атмосферные явления как молнии, северные сияния, имеют электрические заряды некоторые морские обитатели, например, электрический угорь, электрический скат.

Энергия движущейся воды, ветра, энергия топлива, производящего пар и газы, использовалась уже давно и продолжает использоваться человеком. Совершенствуются установки, устройства, двигатели, но увеличивается и энергопотребление. Этим обусловлена необходимость совершенствования методов использования энергоисточников и поиск новых возобновляемых природой источников.

Рост потребления человеком энергии в целом ряде случаев приводит к вредным итоговым воздействиям производства энергии на окружающую среду. Это касается органических видов топлива – угля, нефти, мазута, газа, которые при сгорании загрязняют воздух, воду, почву; это касается и ядерного топлива, загрязняющего атмосферу радиоактивными выбросами и требующего для своих радиоактивных отходов сооружения специальных могильников длительного хранения. В результате всего этого человечество все большее внимание обращает на использование энергии солнца – гелиоэнергетику, энергию морских приливов и биологическую энергетику, которая реализуется в результате переработки органических отходов – биомассы, общая масса которой составляет примерно 3,2 млрд т в год.

В дальнейшем изложении рассмотрим историю появления электричества и развития энергетики.

«Бережливое производство» - Вопросы экспертов к аудитории. Бережливое производство от Школы Эффективного Бизнеса. 1.Масштаб бизнеса. 5 важнейших вещей которые надо знать НОВИЧКУ о бережливом производстве. 10 идей про бережливое производство. Три основных критерия оценки лин развивается (вопрос НОВОМЕТ)? Наша фишка – «Бережливое производство для Вас, а не Вы для бережливого производства!».

«Экономика и экономическая деятельность» - Конкуренция. Пример иллюстрирует право собственника: Какое суждение верно? Причины инфляции. Виды рынков. Инфляция. Договорная дисциплина. Конвейер. 2. КАПИТАЛ – машины, инструменты, здания, деньги. Количество произведенных за единицу времени продуктов. Сбережения. Товары и услуги, удовлетворяющие наши потребности и имеющиеся в обществе в ограниченном количестве.

«Современное производство» - Растут противоречия между развитыми и развивающимися странами. Но компьютеры для многих заменяют общение с другими людьми. Отходы от производства загрязняют воздух и воду вокруг людей. О каких новых изобретениях вам стало известно в ходе урока? 2. Состав современного общества. Продолжите фразы: Мне нравится в современном обществе…

«Поток создания ценности» - Зачем нужна карта потока. Информационные потоки. Запасов. Данные для каждого этапа. Поток создания ценности (VSM). Карта текущего потока создания ценности. Коммуникация. Этапы процесса. Производство. Основные этапы процесса. Вычисление времени выполнения заказа. Детали о поставках. Создание Карты текущего состояния.

«Производство на предприятии» - Количество рабочих мест. Производственная структура. Факторы. Поточная линия. Оперативное время. Производственная структура цеха. Фаза. Время межоперационного пролеживания. Производственная структура предприятия с предметной специализацией. Цех. Непоточное производство. Технологические операции. Поточное производство.

«План продаж» - Процедура формирования ОПП: действия. Содержится в компьютерной системе предприятия. 3. Данные о ресурсах (производственных мощностях, персонале). Процедура формирования ОПП: выходная информация. Основные функции ОПП: Процедура формирования ОПП: входная информация. 1. Основной план на материалы и узлы по наименованиям и по периодам.

ЛОБУНОВА СВЕТЛАНА

В данном докладе показан вклад отечественных ученых в развитие научной области по электричеству и магнетизму

Скачать:

Предварительный просмотр:

Доклад

Вклад российских ученых

в изучение электромагнетизма

Ученицы 8 Б класса

Гимназии № 1 г. Брянска

Лобуновой Светланы

Первым сочинением по электричеству и магнетизму считается книга Вильяма Гильберта, придворного врача английской королевы Елизаветы, опубликованная в 1600 году. Он же ввел понятие «электричество», от греческого слова «электрон», что означает «янтарь». Гильберт всего лишь описал электризацию кусочков янтаря.

Настоящее же изучение электричества началось в России. Да и большинство значимых открытий сделано российскими учеными. Первый прибор для обнаружения электричества и количественного его измерения создан в России. Многие электрические явления, теперь служащие людям, были впервые обнаружены учеными нашей страны. Да и способы использование электричества на благо людям изобретали тоже россияне.

1. Первые шаги к истине

Первым «ученым», имеющим отношение к изучению электричества, физики с гордостью называют русского священника Авраамия Смоленского, жившего на рубеже ХII-XIII веков. Его причислили к лику святых, но не без сомнений. Причиной сомнений стал «компромат»: Авраамий читал «Голубиные книги», описывающие устройство мира не с церковной точки зрения. В частности, там обсуждались вопросы электричества: «Отчего у нас на земле громы пошли?» Более того, на вопрос «Который у нас камень каменьям отец?» Книга дает ответ «Алатырь-камень», то есть янтарь, давший имя электричеству.

Но настоящим ученым, углубившимся в вопросы изучения электромагнетизма, стал Михаил Ломоносов. 25 ноября 1753 года Михаил Васильевич от имени русской Академии наук поставил задачу ученым всего мира: «Сыскать подлинную електрической силы причину и составить точную ее теорию». Сроком для ответа был определен 1755 год.

Но и сам Ломоносов не сидел сложа руки. Со своим другом и коллегой Рихманом, Милаил Васильевич проводил опыты и систематизировал их результаты.

Для опытов использовали они находившиеся в ведении Рихмана «физические покои», как тогда часто называли физический кабинет Академии наук, в котором находились в числе прочего: магниты разнообразной формы, лабораторные и морские компасы, магнитные стальные иглы, трубки для «доказательства електрических свойств стекла».

Кроме того, в 1745 году Рихману была отведена «особливая камора» ‒ первая русская электрическая лаборатория.

В архиве Академии наук хранится программа работ Ломоносова по электричеству: «Наивящего примечания достойные елекгрические опыты».

Первый в мире электроизмерительный прибор ‒ «электрический указатель или электрический гномон» ‒ был создан на основе совместного труда Ломоносова и Рихмана. Рихман описал этот прибор в статье: «Об указателе електрическом и его употреблении при опытах електрических, как натурою, так и искусством произведенных».

Ломоносов открыл возможность передавать при помощи изолированной проволоки «електрическую силу на великое расстояние до тысячи сажен и далее». Он показал, что электричество можно получать искусственным путем. Кроме того, сказал «об електрической силе, не искусством человеческим, но действием самой натуры в облаках произведенной». Один из опытов Ломоносова назывался «Свет в трубах без воздуха Електрической». То есть, Ломоновов фактически построил первые газоразрядные лампы.

Но вернемся к поручению Ломоносова мировому научному сообществу ‒ изучить природу электричества к 1755 году. В 1754 году русские читатели получили труд Рихмана: «Опыты о магнитной силе, без магнита сообщенной». Поставленный план был выполнен. А в 1760 году Ломоносов написал книгу «О електрической силе», подводящей итог исследованиям.

Текст диссертации Ломоносова «Теория електричества. математическим способом разработанная» начинается словами: «Електрическая сила есть действие, вызванное легким трением в доступных чувствам телах; оно состоит в силах отталкивательных и притягательных, а также в произведении света и огня». «Електрическая сила есть жидкость», ‒ говорили на всем протяжении XVIII в. «Електрическая сила есть действие», - сказал Ломоносов.

Под вопросом о связи электричества и магнетизма подвел черту в 1758 году член Петербургской Академии наук Эпинус, произнеся «Речь о сходстве електрической силы с магнитною». Годим позже Эпинус опубликовал книгу «Опыт електрической магнитной теории».

Эпинус впервые обратил внимание ученого мира на так называемое пироэлектричество, или электричество, получаемое не при помощи обычного тогда трения, а за счет нагревания. Производя в Петербурге многочисленные опыты по изучению образования электричества при нагревании, Эпинус сделал Россию родиной этого открытия. В дальнейшем на основе его развилась обширная область изучения и использования термоэлектричества.

Эпинус открыл также явление электрической индукции и создал теорию действия электричества на расстоянии. Он открыл, как говорили в то время, электричество, получаемое «через влияние» (индукция).

Электричество перестало быть тайной и уделом узкого круга ученых. Начали выходить популярные книги. Например «Открытые тайны древних магиков и чародеев, или волшебные силы натуры, в пользу и увеселение употребленные», «Електрические опыты, любопытства и удивления достойные».

2. Наука и практика

Русские ученые не только разрабатывали теорию, но и активно внедряли результаты в практику. Так, Василий Петров открыл в 1802 году явление электрической дуги. До того были известны только электрические искры, проскакивающие между телами при их сближении. Петров же сумел получить принципиально иное: постоянное пламя, устанавливающееся между двумя углями, находящимися под током. Не ограничившись открытием этого явления, он указал на возможность использовать электрическую дугу для освещения. За рубежом электрическая дуга получила известность только десятилетие спустя.

В 1876 году Павел Николаевич Яблочков получил патент на электродуговую свечу. После ее демонстрации европейские газеты писали: «Россия ‒ родина электричества». Первое электрическое освещение в европейских столицах было выполнено на свечах Яблочкова. (Кроме того, Яблочков занимался усовершенствованием аккумуляторов и динамо-машины. Он первым сконструировал генератор переменного тока и создал трансформатор переменного тока).

В 1881 году Николай Николаевич Бернадос продемонстрировал первый в мире аппарат электродуговой сварки. Его изобретение стало использоваться по всему миру всего за два года. И до сих пор любая электросварка работает по принципам, разработанным Бернадосом, мало чем отличаясь от изобретенного им аппарата.

Точно также было и с другими сторонами электромагнетизма ‒ каждое частное явление тут же находило приложение в практике.

В 1872 году Александр Николаевич Лодыгин подал заявку получение патента на лампу накаливания. Эти лампы, практически не изменившись, служат нам по сей день.

В 1834 году Борис Семёнович Якоби построил первый электродвигатель. Каждый нынешний электродвигатель ‒ его копия, мало чем отличающаяся от прообраза. Якоби, кроме того, изобрел буквопечатающий телеграфный аппарат, который и сейчас кое-где используется и гальванопластику. Гальванопластика ‒ способ получения металлических изделий сложной формы. Она используется в неизменном виде со времен ее изобретения.

3. Рожденные в XIX веке

В XIX веке родилась целая плеяда гениальных ученых и конструкторов, ставших первооткрывателями.

Эмилий Христианович Ленц ‒ величайший исследователь электромагнетизма. Он открыл закон индукции («Правило Ленца»). Открыл закономерности выделения тепла в проводнике, при протекании по нему тока («Закон Джоуля и Ленца»).

Александр Григорьевич Столетов первым показал, что при увеличении намагничивающего поля магнитная восприимчивость железа сначала растёт, а затем, после достижения максимума, уменьшается. Столетов открыл ряд основных законов фотоэлектрических явлений, названных его именем (закон Столетова, константа Столетова), построил первый в мире фотоэлемент и разработал экспериментальную методику изучения разряда в газах.

Александр Степанович Попов не только изобрел первый в мире радиоприемник и осуществил первую в мире радиопередачу, но и сформулировал главнейшие принципы радиосвязи. Он разработал идею усиления слабых сигналов с помощью реле, изобрел приемную антенну и заземление; создал первые походные армейские и гражданские радиостанции и успешно провел работы, доказавшие возможность применения радио в сухопутных войсках и в воздухоплавании.

Михаил Михайлович Филиппов изучал коротковолновые электромагнитные излучения. С помощью изобретенных приборов из Петербурга смог зажечь люстру в Царском селе и расплавить валун, находящийся на расстоянии в несколько километров. После внезапной смерти ученого его записи и приборы были конфискованы, дальнейшая их судьба неизвестна. Но современные физики считают, что Филиппов изобрел лазер.

Дмитрий Александрович Лачинов открыл явление электролиза, изобрел регуляторы напряжения, решил проблему передачи электричества на большие расстояния, открыл явление термоэлектричества.

Василий Петрович Ижевский изобрел первую сталеплавильную электрическую печь.

Пётр Николаевич Лебедев исследовал электрмагнитные волны, подтвердил давление света на твердые тела.

Павел Львович Шиллинг изобрел первый телеграф, который нашел применение.

Владимир Козьмич Зворыкин изобрел электронное телевидение.

Федор Аполлонович Пироцкий изобрел трамвай на электрической тяге.

Александр Михайлович Понятов изобрел видеомагнитофон.

Павел Кондратьевич Ощепков изобрел радиолокацию.

4. Заключение

Вклад российских ученых в исследование и развитие теории электромагнетизма велик, но его принято занижать. Так, первенство изобретения лампы накаливания обычно отдают Эдиссону, радиосвязи ‒ Маркони. Эрстеду и Амперу приписывают открытие связи между электричеством и магнетизмом.

На самом деле, изучение истории физики открывает новый взгляд на роль россиян в мировом научно-техническом прогрессе.

Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. сайт и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.



Первый опыт

Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.

Устройство для получения статического электричества Отто фон Герике

Отто фон Герике, вероятно, первый наблюдал электролюминесценцию в 1663 г.

Именно эффект трения (как в случае с шерстью и янтарем ) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.

Учёный и шутник Стивен Грей

Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.

Стивен Грей смог открыть передачу электричества на расстоянии



Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании

Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа ».

Лейденская банка

У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.


Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру

Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус ».

Некто Бозе высказал желание быть убитым электричеством


Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».

Электрическая панацея

После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.


Обложка книги «Франкенштейн, или Современный Прометей», 1831 год

Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.

Вольт и гальванический элемент

Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.



Лаборатория, в которой Гальвани проводил свои опыты

Обозначение «вольт» произошло от фамилии ученого — Александро Вольта

Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.

Судьбоносный подарок

Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.


Фарадей за опытами в своей лаборатории

Фарадей сыграл едва ли не главную роль в становлении теории электричества


Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.