Двигатель внутреннего сгорания проблемы экологии. Экологические проблемы использования тепловых двигателей

Анализ проблемы продления механизмов Киотского протокола после окончания первого периода обязательств

дипломная работа

2.3 Определение категорий источников выбросов, связанных со сжиганием топлива на энергетические нужды

В пересмотренных Руководящих принципах МГЭИК 1996 года вводится следующая классификация основных категорий источников:

1) Энергетика. В эту категорию входят тепловые электростанции и ТЭЦ РАО ЕЭС, и региональных АО энерго, промышленные ТЭЦ, прочие электростанции, муниципальные и промышленные котельные, отпускающие энергию в сети общего пользования на нужды электро- и теплоснабжения региона, а также предприятия топливной промышленности. Учитывается расход топлива на выработку электроэнергии и теплоты и на собственные нужды, а также потери;

2) Промышленность и строительство. В эту категорию суммарно включаются предприятия всех отраслей промышленности, действующих в регионе, в том числе черная металлургия, цветная металлургия, химическая и нефтехимическая промышленность, легкая промышленность, пищевая, лесная (лесозаготовка) и деревообрабатывающая и целлюлозно-бумажная, машиностроительная, производство строительных материалов и собственно строительство и пр. Учитывается расход топлива, сжигаемого на все конечные (собственные) энергетические нужды во всех основных (производственных) и вспомогательных цехах и объектах предприятий (организаций);

3) Транспорт. Включает железнодорожный, воздушный, водный, автомобильный и трубопроводный. Учитывается расход топлива, сжигаемого непосредственно транспортными средствами, исключая внутрихозяйственные перевозки и вспомогательные нужды транспортных предприятий;

4) Коммунально-бытовой сектор включает социальную сферу услуг, городское хозяйство, торговлю, общественное питание и услуги. Учитывается расход топлива, непосредственно сжигаемого предприятиями на конечные энергетические нужды;

5) Население. Учитывается расход топлива, сжигаемого в домашнем хозяйстве на различные энергетические нужды;

6) Сельское хозяйство. Учитывается расход топлива, сжигаемого стационарными и мобильными источниками при проведении различных сельскохозяйственных работ организациями любых типов. Это обусловлено составом информации о расходе топлива и энергии в сельском хозяйстве, принятым в российской статистике;

7) Прочие стационарные и мобильные источники. Учитывается расход топлива, сжигаемого на все остальные нужды, по которым имеется статистическая информация о расходе топлива, но не очевидно, к какой категории ее отнести.

В РКИК имеется и ряд особенностей в вопросе принадлежности выбросов ПГ, которые должны быть отмечены особо.

Выбросы от производства электроэнергии целиком принадлежат тому, кто ее выработал (и продал). То есть экономия электроэнергии является снижением выброса парниковых газов, только если электростанция тоже включена в проект или программу снижения выбросов и на станции реально наблюдается снижение.

Выбросы, связанные с бункерным топливом, проданным судам и самолетам, являющимся международными транспортными средствами, докладываются отдельно и не включаются в национальные выбросы. То есть пока они фактически исключены из системы ограничения выбросов из-за невозможности достичь консенсуса по вопросу принадлежности выбросов (порт отгрузки топлива, флаг судна, место регистрации судна и т.п.).

Выбросы, связанные с утилизацией и переработкой отходов, принадлежат не предприятиям, производящим отходы, а организациям, занимающимся эксплуатацией свалок и очистных сооружений.

Как правило, выбросы парниковых газов оцениваются там по валовым данным о переработке твердых или жидких отходов.

Выбросы от сжигания или разложения древесины и продуктов из нее, равно как и сельскохозяйственных отходов (соломы и т.п.), предполагаются там, где древесина была заготовлена и в год заготовки. Из этого есть очень важное следствие: использование продуктов или отходов древесины в качестве топлива не является выбросом. Подразумевается, что вывоз древесины из леса уже учтен как выброс при подсчете общего баланса СО 2 в лесах (поглощение минус выброс).

Существуют прямые и косвенные выбросы парниковых газов.

Прямые выбросы парниковых газов -- это выбросы источников, которые принадлежат или находятся под контролем предприятия, проводящего инвентаризацию, например выбросы из котлов, производственных и вентиляционных установок через фабричные трубы, выбросы автотранспорта, принадлежащего предприятию.

Косвенные выбросы парниковых газов -- выбросы, которые происходят в результате деятельности данного предприятия, но вне его контроля, например: выбросы при производстве электричества, которое предприятие покупает; выбросы при производстве продукции, покупаемой по контрактам; выбросы, связанные с использованием произведенной продукции. Согласно методике МГЭИК инвентаризация подразумевает учет только прямых выбросов. Методики инвентаризации на уровне компании, например разработанный Всемирным бизнес советом по устойчивому развитию Протокол учета ПГ, рекомендуют учитывать в определенных случаях и косвенные выбросы. Также при планировании проектов по снижению выбросов желательно хотя бы приближенно оценить косвенные выбросы, так как их изменения в результате проекта могут существенно повысить или снизить ценность проекта.

Поглощение СО 2 лесами и сельскохозяйственными землями является "выбросом со знаком минус".

Согласно РКИК и Киотскому протоколу поглощение (также называемое стоками или абсорбцией парниковых газов) также подлежит учету, но отдельно от выбросов. В ряде случаев оно считается эквивалентным выбросам, например при подсчете выполнения обязательств на уровне стран на первый период обязательств по Киотскому протоколу. Но в большинстве случаев поглощение СО2 лесами находится в сильно неравном положении, что в какой-то мере отражает временность и неустойчивость такого поглощения, ведь леса не могут вечно накапливать углерод, в конце концов древесина либо разлагается, либо сжигается -- и СО 2 возвращается назад в атмосферу. Для этого введены специальные единицы абсорбции, есть сильные ограничения по типам лесных проектов и т.п.

В методическом плане вопросы учета поглощения пока еще окончательно не решены на международном уровне. Так, методика МГЭИК вообще не содержит главы по поглощению в результате изменений в землепользовании. Из-за больших сложностей было решено подготовить отдельное методическое пособие, работа над которым близится к завершению.

Поскольку данное издание имеет общеобразовательный характер, без акцента на лесохозяйственную деятельность, то огромный массив проблем и сложностей учета поглощения СО 2 лесами здесь детально не рассматривается.

Известные методики инвентаризации позволяют подходить к ней весьма гибко. Они практически подразумевают несколько "уровней" детальности и точности оценивания выбросов. Простейший уровень (уровень 1) обычно требует минимума данных и аналитических возможностей. Более сложный (уровень 2) основывается на детальных данных и, как правило, учитывает специфические особенности страны/региона. Наиболее высокий уровень (уровень 3) подразумевает детализацию данных до уровня предприятий и отдельных установок и прямые измерения выбросов большинства газов.

Обязательность использования того или иного уровня обычно не регламентируется международной методикой, но зависит от решений на национальном уровне. Детально эти вопросы рассматриваются ниже, в методическом разделе.

В подавляющем большинстве случаев выбросы от источника не измеряются, а рассчитываются по данным о потреблении топлива и производстве продукции (если ее производство ведет к выбросам парниковых газов) и т.п. В самом общем виде расчет строится по схеме:

(данные о какой-либо деятельности, например о сжигании топлива) х (коэффициенты эмиссии) = (выбросы)

Водно-экологический анализ водопользования города

Среднесуточный расход воды определяется по формуле Qсут. среднее = , м3 / сут, где Кн - коэффициент, учитывающий расход воды на нужды учреждений, организаций и предприятий социально-гарантированного обслуживания...

Определение выбросов загрязняющих веществ при сжигании топлива автотранспортом

Условие задачи На товарно-сырьевой бирже предлагается 5 сортов углей по одной цене-1,0 руб./ГДж требуется определить (с учетом экологических свойств различных видов и сортов углей) наиболее выгодный вариант обеспечения предприятия топливом...

Оценка воздействия на окружающую среду от производства стеклопластика

К организованным источникам на предприятии относится вентиляционная шахта, к неорганизованным - склад готовой продукции, склад хранения бобин о стекложгутом, площадка откачки сырья при доставке автоцистернами...

Разработка проекта предельно допустимых выбросов и экологического мониторинга гостиницы "Октябрьская"

Инвентаризация выбросов (в соответствии с ГОСТ 17.2.1.04--77) - это систематизация сведений о распределении источников на территории предприятия, параметрах источников выбросов...

Расчет выбросов от предприятия по производству керамических кувшинов

Котельная МК-151 работает на топливе апсаткского угля марки СС и угля других месторождений. Выбросы загрязняющих веществ в атмосферу приведены в таблице 1. Таблица 1 - Выбросы загрязняющих веществ при сжигании топлива в котлоагрегатах «КВСМ-1...

Расчет выбросов угольной пыли

Расчетный расход топлива рассчитывается следующим образом (формула (7)): , (7) где Вс - расчетный расход топлива, т/год; В - фактический расход топлива, 1166,5 т/год; q4 - потеря тепла от механической неполноты сгорания, 9,8%...

Методика предназначена для расчета выбросов вредных веществ с газообразными продуктами сгорания при сжигании твердого топлива, мазута и газа в топках действующих промышленных и коммунальных котлоагрегатов и бытовых теплогенераторов...

Проанализировать содержание неорганических и органических полютантов (ПАВ, красителей, тяжелых металлов и др.) в сточных водах текстильных предприятий, выявить технологические решения...

Современные геоэкологические проблемы текстильной промышленности

Предприятия угольной промышленности оказывают существенное отрицательное влияние на водные и земельные ресурсы. Основные источники выброса вредных веществ в атмосферу - промышленные...

Экологическая оценка источника выбросов сажи и пентана котельной грузопассажирского порта и определение загрязнения приземного слоя атмосферы сажей

В соответствии с требованиями ГОСТ 17.2.302.78 для источника выброса (стационарного или передвижного) устанавливается предельно допустимый выброс каждого вредного вещества в атмосферу (ПДВi), который учитывает...

Для расчета количества загрязняющих веществ, выделяющихся при гальванической обработке, принят удельный показатель q, отнесенный к площади поверхности гальванической ванны (см. табл. 2.21). В этом случае количество загрязняющего вещества (г/с)...

Экологическое обоснование проектируемого промышленного объекта

В условиях негативного изменения качественного состава атмосферного воздуха под воздействием антропогенных факторов важнейшей задачей является полный учёт выбросов загрязняющих веществ и оценка их воздействия на окружающую среду...

Энергетические загрязнения

В качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепродукты, природный газ и реже древесину и торф. Основными компонентами горючих материалов являются углерод, водород и кислород...

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии.

ЭКОЛОГЧЕСКИЙ КРИЗИС, нарушение взаимосвязей внутри экосистемы или необратимые явления в биосфере, вызванные антропогенной деятельностью и угрожающие существованию человека как вида. По степени угрозы естественной жизни человека и развитию общества выделяются неблагоприятная экологическая ситуация, экологическое бедствие и экологическая катастрофа

Загрязнения от тепловых двигателей:

1. Химическое.

2. Радиоактивное.

3. Тепловое.

КПД тепловых двигателей < 40%, в следствии чего больше 60% теплоты двигатель отдаёт холодильнику.

При сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается

Сжигание топлива сопровождается выделением в атмосферу углекислого газа, азотных, серных и других соединений.

Меры предотвращения загрязнений:

1.Снижение вредных выбросов.

2.Контроль за выхлопными газами, модификация фильтров.

3.Сравнение эффективности и экологической безвредности различных видов топлива, перевод транспорта на газовое топливо.

К основным токсичным выбросам автомобиля относятся: отработавшие газы, картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат окись углерода, углеводороды, окислы азота, бензапирен, альдегиды и сажу.В среднем при пробеге автомобилем в год 15 тыс.км им сжигается более 2 т топлива и потребляется около 30 т воздуха. При этом в атмосферу выбрасывается около 700 кг угарного газа (СО), 400 кг диоксида азота, 230 кг углеводородов и других загрязняющих веществ, общее количество которых составляет более чем 200 наименований. Ежегодно в атмосферный воздух с отработавшими газами мобильными источниками выбрасывается около 1 млн.т загрязняющих веществ.

Некоторые из этих веществ, например, тяжелые металлы и отдельные хлорорганические соединения, стойкие органические загрязнители накапливаются в природной среде и представляют серьезную угрозу, как для окружающей среды, так и здоровья людей. При сохранении существующих темпов роста парка автомобилей прогнозируется, что к 2015 году объем выбросов загрязняющих веществ в атмосферный воздух возрастет до 10% и более.

Кардинально решить проблему загрязнения атмосферы транспортом мог бы электромобиль. Сегодня наиболее широкое применение электровозы нашли на железнодорожном транспорте.

2. С экологической точки зрения в качестве топлива для автомобилей лучше всего подходит водород, который, к тому же, является самым теплотворным

3. Предпринимаются попытки создания двигателей использующих в виде топлива воздух, спирт, биотопливо и др. Но, к сожалению, пока все эти двигатели можно скорее назвать экспериментальными образцами. Но наука не стоит на месте, будем надеяться, что процесс создания экологически чистого автомобиля не «за горами»
Причины загрязнения воздуха отработавшими газами
автомобилей.

Основная причина загрязнения воздуха заключается в неполном и неравномерном сгорании топлива. Всего 15% его расходуется на движение автомобиля, а 85 % «летит на ветер». К тому же камеры сгорания автомобильного двигателя – это своеобразный химический реактор, синтезирующий ядовитые вещества и выбрасывающий их в атмосферу. Даже невинный азот из атмосферы, попадая в камеру сгорания, превращается в ядовитые окислы азота.
В отработавших газах двигателя внутреннего сгорания (ДВС) содержится свыше 170 вредных компонентов, из них около 160 – производные углеводородов, прямо обязанные своим появлением неполному сгоранию топлива в двигателе. Наличие в отработавших газах вредных веществ обусловлено в конечном итоге видом и условиями сгорания топлива.
Отработавшие газы, продукты износа механических частей и покрышек автомобиля, а также дорожного покрытия составляют около половины атмосферных выбросов антропогенного происхождения. Наиболее исследованными являются выбросы двигателя и картера автомобиля. В состав этих выбросов, помимо азота, кислорода, углекислого газа и воды, входят такие вредные компоненты, как окись. Двигаясь со скоростью 80-90 км/ч в среднем, автомобиль превращает в углекислоту столько же кислорода, сколько 300-350 человек. Но дело не только в углекислоте. Годовой выхлоп одного автомобиля – это 800 кг окиси углерода,40 кг окислов азота и более 200 кг различных углеводородов. В этом наборе весьма коварна окись углерода. Из-за высокой токсичности её допустимая концентрация в атмосферном воздухе не должна превышать 1 мг/м3. Известны случаи трагической гибели людей, запускавших двигатели автомобилей при закрытых воротах гаража. В одноместном гараже смертельная концентрация окиси углерода возникает уже через 2-3 минуты после включения стартера. В холодное время года, остановившись для ночлега на обочине дороги, неопытные водители иногда включают двигатель для обогрева машины. Из-за проникновения окиси углерода в кабину такой ночлег может оказаться последним.
Окислы азота токсичны для человека и, кроме того, обладают раздражающим действием. Особо опасной составляющей отработавших газов являются канцерогенные углеводороды, обнаруживаемые, прежде всего, на перекрёстках у светофоров (до 6,4 мкг/100 м3, что в 3 раза больше, чем в середине квартала).
При использовании этилированного бензина автомобильный двигатель выбрасывает соединения свинца. Свинец опасен тем, что способен накапливаться, как во внешней среде, так и в организме человека.
Уровень загазованности магистралей и при магистральных территорий зависит от интенсивности движения автомобилей, ширины и рельефа улицы, скорости ветра, доли грузового транспорта и автобусов в общем потоке и других факторов. При интенсивности движения 500 транспортных единиц в час концентрация окиси углерода на открытой территории на расстоянии 30-40 м от автомагистрали снижается в 3 раза и достигает нормы. Затруднено рассеивание выбросов автомобилей на тесных улицах. В итоге практически все жители города испытывают на себе вредное влияние загрязнённого воздуха.
Из соединений металлов, входящих в состав твёрдых выбросов автомобилей, наиболее изученными являются соединения свинца. Это обусловлено тем, что соединения свинца, поступая в организм человека и теплокровных животных с водой, воздухом и пищей, оказывают на него наиболее вредное действие. До 50 % дневного поступления свинца в организм приходится на воздух, в котором значительную долю составляют отработавшие газы автомобилей.
Поступления углеводородов в атмосферный воздух происходит не только при работе автомобилей, но и при разливе бензина. По данным американских исследователей в Лос-Анджелесе за сутки испаряется в воздух около 350 тонн бензина. И повинен в этом не столько автомобиль, сколько сам человек. Чуть-чуть пролили при заливке бензина в цистерну, забыли плотно закрыть крышку при перевозке, плеснули на землю при заправке на автозаправочной станции, и в воздух потянулись различные углеводороды.
Каждый автомобилист знает: вылить из шланга весь бензин в бак практически невозможно, какая-то часть его из ствола «пистолета» обязательно выплёскивается на землю. Немного. Но сколько сегодня у нас автомобилей? И с каждым годом их число будет расти, а, значит, будут увеличиваться и вредные испарения в атмосферу. Лишь 300 г. бензина, пролитого при заправке автомобиля, загрязняют 200 тысяч кубических метров воздуха. Самый простой путь решения проблемы – создать заправочные автоматы новой конструкции, не позволяющие пролиться на землю даже одной капле бензина.

Вывод

Можно без преувеличения говорить о том, что тепловые двигатели в настоящее время являются основными преобразователями топлива в другие виды энергии, и без них был бы невозможен прогресс в развитии современной цивилизации. Тем не менее, все виды тепловых двигателей являются источниками загрязнения окружающей среды. (Кострюков Денис)

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ И ЭКОЛОГИЯ.

1.3. Альтернативные топлива

1.5. Нейтрализация

Список литературы

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ И ЭКОЛОГИЯ

1.1. Вредные выбросы в составе отработавших газов и их воздействие на живую природу

При полном сгорании углеводородов конечными продуктами являются углекислый газ и вода. Однако полного сгорания в поршневых ДВС достичь технически невозможно. Сегодня порядка 60% из общего количества вредных веществ, выбрасываемых в атмосферу крупных городов, приходится на автомобильный транспорт.

В состав отработавших газов ДВС входит более 200 различных химических веществ. Среди них:

  • продукты неполного сгорания в виде оксида углерода, альдегидов, кетонов, углеводородов, водорода, перекисных соединений, сажи;
  • продукты термических реакций азота с кислородом – оксиды азота;
  • соединения неорганических веществ, которые входят в состав топлива, – свинца и других тяжелых металлов, диоксид серы и др.;
  • избыточный кислород.

Количество и состав отработавших газов определяются конструктивными особенностями двигателей, их режимом работы, техническим состоянием, качеством дорожных покрытий, метеоусловиями. На рис. 1.1 показаны зависимости содержания основных веществ в составе отработавших газов.

В табл. 1.1 приведена характеристика городского ритма движения автомобиля и усредненные значения выбросов в процентах к их суммарному значению за полный цикл условного городского движения.

Оксид углерода (СО) образуется в двигателях при сгорании обогащенных топливовоздушных смесей, а также вследствие диссоциации диоксида углерода, при высоких температурах. В обычных условиях СО – бесцветный газ без запаха. Токсическое действие СО заключается в его способности превращать часть гемоглобина крови в карбо-ксигемоглобин, вызывающий нарушение тканевого дыхания. Наряду с этим СО оказывает прямое влияние на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса и т. д. Токсический эффект СО связан также с его непосредственным влиянием на клетки центральной нервной системы. При действии на человека СО вызывает головную боль, головокружение, быструю утомляемость, раздражительность, сонливость, бо-ли в области сердца. Острые отравления наблюдаются при вдыхании воздуха с концентрацией СО более 2.5 мг/л в течение 1 часа.

Таблица 1.1

Характеристика городского ритма движения автомобиля

Оксиды азота в отработавших газах образуются в результате обратимой реакции окисления азота кислородом воздуха под воздействием высоких температур и давления. По мере охлаждения отработавших газов и разбавления их кислородом воздуха оксид азота превращается в диоксид. Оксид азота (NO) – бесцветный газ, диоксид азота (NO 2) – газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм человека соединяются с водой. При этом они образуют в дыхательных путях соединения азотной и азотистой кислоты. Оксиды азота раздражающе действуют на слизистые оболочки глаз, носа, рта. Воздействие NO 2 способствует развитию заболеваний легких. Симптомы отравления проявляются только через 6 часов в виде кашля, удушья, возможен нарастающий отек легких. Также NО Х участвуют в формировании кислотных дождей.

Оксиды азота и углеводороды тяжелее воздуха и могут накапливаться вблизи дорог и улиц. В них под воздействием солнечного света проходят различные химические реакции. Разложение оксидов азота приводит к образованию озона (О 3). В нормальных условиях озон не стоек и быстро распадается, но в присутствии углеводородов процесс его распада замедляется. Он активно вступает в реакции с частичками влаги и другими соединениями, образуя смог. Кроме того, озон разъедает глаза и легкие.

Отдельные углеводороды СН (бензапирен) являются сильнейшими канцерогенными веществами, переносчиками которых могут быть частички сажи.

При работе двигателя на этилированных бензинах образуются частицы твердого оксида свинца вследствие распада тетраэтилсвинца. В отработавших газах они содержатся в виде мельчайших частиц размером 1–5 мкм, которые долго сохраняются в атмосфере. Присутствие свинца в воздухе вызывает серьезные поражения органов пищеварения, центральной и периферической нервной системы. Воздействие свинца на кровь проявляется в снижении количества гемоглобина и разрушении эритроцитов.

Состав отработавших газов дизельных двигателей отличается от бензиновых (табл. 10.2). В дизельном двигателе происходит более полное сгорание топлива. При этом образуется меньше окиси углерода и несгоревших углеводородов. Но, вместе с этим, за счет избытка воздуха в дизеле образуется большее количество оксидов азота.

Кроме того, работа дизельных двигателей на определенных режимах характеризуется дымностью. Черный дым представляет собой продукт неполного сгорания и состоит из частиц углерода (сажи) размером 0.1–0.3 мкм. Белый дым, образующийся в основном при работе двигателя на холостом ходу, состоит, главным образом, из альдегидов, обладающих раздражающим действием, частичек испарившегося топлива и капелек воды. Голубой дым образуется при охлаждении на воздухе отработавших газов. Он состоит из капелек жидких углеводородов.

Особенностью отработавших газов дизельных двигателей является содержание канцерогенных полициклических ароматических углеводородов, среди которых наиболее вреден диоксин (циклический эфир) и бензапирен. Последний, так же как и свинец, относится к первому классу опасности загрязняющих веществ. Диоксины и близкие им соединения во много раз токсичнее таких ядов, как кураре и цианистый калий.

Таблица 1.2

Количество токсичных компонентов (в г),

образующееся при сгорании 1 кг топлива

В отработавших газах обнаружен также акреолин (особенно при работе дизельных двигателей). Он имеет запах пригорелых жиров и при содержании более 0.004 мг/л вызывает раздражение верхних дыхательных путей, а также воспаление слизистой оболочки глаз.

Вещества, содержащиеся в выхлопных газах автомобилей, могут вызвать прогрессирующие поражения центральной нервной системы, печени, почек, мозга, половых органов, летаргию, синдром Паркинсона, пневмонию, эндемическую атаксию, подагру, бронхиальный рак, дерматиты, интоксикацию, аллергию, респираторные и другие заболевания. Вероятность возникновения заболеваний возрастает по мере увеличения времени воздействия вредных веществ и их концентрации.

1.2. Законодательные ограничения выбросов вредных веществ

Первые шаги по ограничению количества вредных веществ в отработавших газах были сделаны в Соединенных Штатах, где проблема загазованности в крупных городах стала наиболее актуальной после Второй мировой войны. В конце 60-х годов, когда мегаполисы Америки и Японии стали задыхаться от смога, инициативу взяли на себя правительственные комиссии этих стран. Законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей заставили производителей заняться усовершенствованием двигателей и разработкой систем нейтрализации.

В 1970 году в Соединенных Штатах был принят закон, в соответствие с которым уровень токсичных компонентов в отработавших газах автомобилей 1975 модельного года должен был быть меньше, чем у машин 1960 года выпуска: СН – на 87%, СО – на 82% и NОх – на 24%. Аналогичные требования были узаконены в Японии и в Европе.

Разработкой общеевропейских правил, предписаний и стандартов в области экологии автомобильной техники занимается действующий в рамках Европейской экономической комиссии ООН (EЭK ООН) Комитет по внутреннему транспорту. Выпускаемыеим документы получили название Правил ЕЭК ООН и обязательны для стран-участников Женевского соглашения 1958 года, к которому присоединилась и Россия.

Согласно этим правилам допустимые выбросы вредных веществ с 1993 году были ограничены: по оксиду углерода с 15 г/км в 1991 году до 2.2 г/км в 1996 году, а по сумме углеводородов и оксидов азота с 5.1 г/км в 1991 году до 0.5 г/км в 1996 году. В 2000 году введены еще более строгие нормы (рис. 1.2). Резкое ужесточение норм предусмотрено также и для дизелей грузовых автомобилей (рис. 1.3).

Рис. 1.2. Динамика ограничений вредных выбросов

для автомобилей массой до 3.5 тонн (бензин)

Нормы, введенные для автомобилей в 1993 году, получили название EBPO-I, в 1996 – ЕВРО-II, в 2000 – ЕВРО-III. Введение таких норм вывело европейские правила на уровень стандартов США.

Одновременно с количественным ужесточением норм происходит и их качественное изменение. Вместо ограничений по дымности введено нормирование твердых частиц, на поверхности которых адсорбируются опасные для здоровья человека ароматические углеводороды, в частности бензапирен.

Нормирование выброса твердых частиц ограничивает их количество в значительно больших пределах, чем при ограничении дымности, которая позволяет оценивать только такое количество твердых частиц, которое делает отработавшие газы видимыми.

Рис. 1.3. Динамика ограничений вредных выбросов для дизельных грузовых автомобилей с полной массой более 3.5 т, установленных ЕЭК

Для того чтобы ограничить выброс токсичных углеводородов, вводятся нормы на содержание в отработавших газах безметановой группы углеводородов. Намечается введение ограничений на выброс формальдегида. Предусмотрено ограничение испарений топлива из системы питания автомобилей с бензиновыми двигателями.

Как в США, так и в Правилах ЕЭК ООН регламентируются пробеги автомобилей (80 тыс. и 160 тыс. км), на протяжении которых они должны соответствовать установленным нормам по токсичности.

В России стандарты, ограничивающие выброс вредных веществ автотранспортными средствами, начали вводиться в 70-е годы: ГОСТ 21393-75 “Автомобили с дизелями. Дымность отработавших газов. Нормы и методы измерений. Требования безопасности” и ГОСТ 17.2.1.02-76 “Охрана природы. Атмосфера. Выбросы двигателей автомобилей, тракторов, самоходных сельскохозяйственных и строительно-дорожных машин. Термины и определения”.

В восьмидесятых годах был принят ГОСТ 17.2.2.03-87 “Охрана природы. Атмосфера. Нормы и методы измерений содержания окиси углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями. Требования безопасности” и ГОСТ 17.2.2.01-84 “Охрана природы. Атмосфера. Дизели автомобильные. Дымность отработавших газов. Нормы и методы измерений”.

Нормы, в соответствии с ростом парка и ориентацией на аналогичные Правила ЕЭК ООН, постепенно ужесточались. Однако уже с начала 90-х годов российские стандарты по жесткости начали существенно уступать нормам, введенным ЕЭК ООН.

Причины отставания – неподготовленность инфраструктуры эксплуатации автотракторной техники. Для профилактики, ремонта и технического обслуживания автомобилей, оснащенных электроникой и системами нейтрализации, требуется развитая сеть станций технического обслуживания с квалифицированным персоналом, современным ремонтным оборудованием и измерительной аппаратурой, в том числе и на местах.

Действует ГОСТ 2084-77, предусматривающий выпуск в России бензинов, содержащих тетраэтилэтилен свинца. Транспортировка и хранение топлива не гарантируют от попадания в неэтилированный бензин остатков этилированного. Нет условий, при которых владельцы автомобилей с системами нейтрализации были бы гарантированы от заправки бензином с присадками свинца.

Тем не менее работа по ужесточению экологических требований ведется. Постановлением Госстандарта РФ от 1 апреля 1998 года № 19 утверждены “Правила по проведению работ в системе сертификации механических транспортных средств и прицепов”, которые определяют временный порядок применения в России Правил ЕЭК ООН № 834 и № 495.

С 1 января 1999 года введен ГОСТ Р 51105.97 “Топлива для двигателей внутреннего сгорания. Неэтилированный бензин. Технические условия”. В мае 1999 года Госстандарт принял постановление о введении в действие государственных стандартов, ограничивающих выделение загрязняющих веществ автомобилями. Стандарты содержат аутентичный текст с Правилами № 49 и № 83 ЕЭК ООН и вводятся в действие с 1 июля 2000 г. В том же году был принят стандарт ГОСТ Р 51832-2001 “Двигатели внутреннего сгорания с принудительным зажиганием, работающие на бензине, и автотранспортные средства полной массой более 3.5 т, оснащенные этими двигателями. Выбросы вредных веществ. Технические требования и методы испытаний”. С первого января 2004 года вступил в силу ГОСТ Р 52033-2003 “Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами. Нормы и методы контроля при оценке технического состояния”.

Для выполнения все более ужесточающихся норм по выбросу загрязняющих веществ производители автотракторной техники проводят совершенствование систем питания и зажигания, применение альтернативных топлив, нейтрализацию отработавших газов, разработку комбинированных силовых установок.

1.3. Альтернативные топлива

Во всем мире большое внимание уделяется замене жидких нефтяных топлив сжиженным углеводородным газом (пропан-бутановая смесь) и сжатым природным газом (метаном), а также спиртосодержащими смесями. В табл. 1.3 приведены сравнительные показатели выбросов вредных веществ при работе ДВС на различных топливах.

Таблица 1.3

Преимущества газового топлива – высокое октановое число и возможность применения нейтрализаторов. Однако при их использовании уменьшается мощность двигателя, а большая масса и габариты топливной аппаратуры снижают эксплуатационные показатели автомобиля. К недостаткам газообразных топлив относится также высокая чувствительность к регулировкам топливной аппаратуры. При неудовлетворительном качестве изготовления топливной аппаратуры и при низкой культуре эксплуатации токсичность отработавших газов двигателя, работающего на газовом топливе, может превышать значения бензинового варианта.

В странах с жарким климатом распространение получили автомобили с двигателями, работающими на спиртовых топливах (метаноле и этаноле). Применение спиртов снижает выброс вредных веществ на 20–25%. К недостаткам спиртовых топлив относится существенное ухудшение пусковых качеств двигателя и высокая коррозионная агрессивность и токсичность самого метанола. В России спиртовые топлива для автомобилей в настоящее время не применяются.

Все большее внимание как у нас в стране, так и за рубежом уделяется идее применения водорода. Перспективность этого топлива определяется его экологической чистотой (у автомобилей, работающих на данном топливе, выброс оксида углерода уменьшается в 30–50 раз, оксидов азота в 3–5 раз и углеводородов в 2–2.5 раза), неограниченностью и возобновляемостью сырьевых ресурсов. Однако внедрение водородного топлива сдерживается созданием энергоемких систем хранения водорода на борту автомобиля. Применяемые в настоящее время металлогидридные аккумуляторы, реакторы разложения метанола и другие системы очень сложны и дороги. Учитывая также трудности, связанные с требованиями компактного и безопасного образования и хранения водорода на борту автомобиля, автомобили с водородным двигателем какого-либо заметного практического применения пока не имеют.

В качестве альтернативы ДВС большой интерес представляют электрические силовые установки, использующие электрохимические источники энергии, аккумуляторные батареи и электрохимические генераторы. Электромобили отличаются хорошей приспособляемостью к переменным режимам городского движения, простотой технического обслуживания и экологической чистотой. Однако их практическое применение остается пока проблематичным. Во-первых, нет надежных, легких и достаточно энергоемких электрохимических источников тока. Во-вторых, перевод автомобильного парка на питание электрохимическими аккумуляторами приведет к расходованию огромного количества энергии наих подзарядку. Эта энергия в большинстве своем вырабатывается на тепловых электростанциях. При этом за счет многократной конвертации энергии (химическая – тепловая – электрическая – химическая – электрическая – механическая) общий КПД системы очень низкий и экологическое загрязнение районов вокруг электростанций многократно превысит нынешние значения.

1.4. Совершенствование систем питания и зажигания

Одним из недостатков карбюраторных систем питания является неравномерное распределение топлива по цилиндрам двигателя. Это вызывает неравномерную работу ДВС и невозможность обеднения регулировок карбюратора из-за переобеднения смеси и прекращения горения в отдельных цилиндрах (рост СН) при обогащенной смеси в остальных (большое содержание в отработавших газах СО). Для устранения этого недостатка изменили порядок работы цилиндров с 1–2–4–3 на 1–3–4–2 и оптимизации формы впускных трубопроводов, например, применение ресиверов во впускной магистрали. Кроме этого, под карбюраторы устанавливали различные рассекатели, направляющие потока, впускной трубопровод подогревают. В СССР была разработана и внедрена в массовое производство автономная система холостого хода (ХХ). Эти мероприятия позволили уложиться в требования на режимах ХХ.

Как было сказано выше, при городском цикле до 40% времени автомобиль работает в режиме принудительно холостого хода (ПХХ) – торможения двигателем. При этом под дроссельной заслонкой разряжение много выше, чем на режиме ХХ, что вызывает переобогащение топливовоздушной смеси и прекращение ее горения в цилиндрах двигателя, растет количество вредных выбросов. Для уменьшения выбросов на режимах ПХХ были разработаны системы демпфирования дроссельной заслонки (приоткрыватели) и экономайзеры принудительного холостого хода ЭПХХ. Первые системы, приоткрывая дроссельную заслонку, уменьшают разряжения под ней, тем самым предотвращают переобогащение смеси. Вторые перекрывают поступление топлива в цилиндры двигателя на режимах ПХХ. Системы ПЭХХ позволяют до 20% снизить количество вредных выбросов и до 5% повысить топливную экономичность в условиях городской эксплуатации.

С выбросами окислов азота NОх боролись, понижая температуру сгорания горючей смеси. Для этого системы питания как бензиновых, так и дизельных двигателей оснащали устройствами рециркуляции отработавших газов. Система, на определенных режимах работы двигателя, перепускала часть отработавших газов из выпускного во впускной трубопровод.

Инерционность топливодозирующих систем не позволяет создать конструкцию карбюратора, полностью отвечающего всем требованиям точности дозирования для всех режимов работы двигателя, особенно переходных. Для преодоления недостатков карбюратора были разработаны так называемые “инжекторные” системы питания.

Вначале это были механические системы с постоянной подачей топлива в район впускных клапанов. Данные системы позволяли выполнять начальные экологические требования. В настоящее время это электронно-механические системы с фразированным впрыском и обратной связью.

В 70-е годы основным способом снижения количества вредных выбросов было применение все более бедных топливовоздушных смесей. Для их бесперебойного воспламенения потребовалось совершенствование систем зажигания с целью увеличения мощности искры. Сдерживающим факиром в этом служили механический разрыв первичной цепи и механическое распределение высоковольтной энергии. Для преодоления этого недостатка были разработаны контактно-транзисторные и бесконтактные системы.

Сегодня все большее распространение получают бесконтактные системы зажигания со статическим распределением высоковольтной энергии под управлением электронного блока, одновременно оптимизирующего топливоподачу и углы опережения зажигания.

У дизельных двигателей основным направлением совершенствования системы питания явилось повышение давления впрыска. На сегодняшний день нормой является давления впрыска порядка 120 МПа, у перспективных двигателей до 250 МПа. Это позволяет более полно сжигать топливо, снизив содержание в отработавших газах СН и твердых частиц. Так же как и для бензиновых, для дизельных систем питания разработаны электронные системы управления двигателем, которые не позволяют двигателям выходить на режимы дымления.

Разрабатываются различные системы нейтрализации отработавших газов. Так, например, разработана система с фильтром в выпускном тракте, который удерживает твердые частицы выхлопа. После определенной наработки, электронный блок отдает команду на увеличение подачи топлива. Это приводит к росту температуры отработавших газов, что, в свою очередь, приводит к выжиганию сажи и регенерации фильтра.

1.5. Нейтрализация

В тех же 70-х годах стало ясно, что добиться существенного улучшения ситуации с токсичностью без применения дополнительных устройств невозможно, поскольку уменьшение одного параметра влечет увеличение других. Поэтому активно занялись совершенствованием систем нейтрализации отработавших газов.

Системы нейтрализации применялись и ранее для автотракторной техники, работающей в особых условиях, например на прокладке туннелей и разработке шахт.

Существует два основных принципа построения нейтрализаторов – термический и каталитический.

Термический нейтрализатор представляет собой камеру сгорания, которая размещается в выпускном тракте двигателя для дожигания продуктов неполного сгорания топлива – СН и СО. Он может устанавливаться на месте выпускного трубопровода и выполнять его функции. Реакции окисления СО и СН протекают достаточно быстро при температуре свыше 830 °С и при наличии в зоне реакций несвязанного кислорода. Термические нейтрализаторы применяются на двигателях с принудительным воспламенением, в которых необходимая для эффективного протекания термических реакций окисления температура обеспечивается без подачи дополнительного топлива. И без того высокая температура выпускных газов у этих двигателей повышается в зоне реакции в результате догорания части СН и СО, концентрация которых значительно выше, чем у дизелей.

Термический нейтрализатор (рис. 1.4) состоит из корпуса с подводящими (выпускными) патрубками и одной или двух жаровых труб-вставок из жаропрочной листовой стали. Хорошее перемешивание дополнительного воздуха, необходимого для окисления СН и СО, с выпускными газами достигается интенсивным вихреобразованием и турбулизацией газов при перетекании через отверстия в трубах и в результате изменения направления их движения системой перегородок. Для эффективного догорания СО и СН требуется достаточно большое время, поэтому скорость газов в нейтрализаторе задается невысокой, вследствие чего объем его получается сравнительно большим.

Рис. 1.4. Термический нейтрализатор

Чтобы предотвратить падение температуры выпускных газов в результате теплоотдачи в стенки, выпускной трубопровод и нейтрализатор покрывают тепловой изоляцией, устанавливают тепловые экраны в выпускных каналах, размещают нейтрализатор по возможности ближе к двигателю. Несмотря на это, для прогрева термического нейтрализатора после пуска двигателя требуется значительное время. Для сокращения этого времени повышают температуру выпускных газов, что достигается обогащением горючей смеси и уменьшением угла опережения зажигания, хотя и то, и другое повышает расход топлива. К подобным мерам прибегают для поддержания стабильного пламени на переходных режимах работы двигателя. Уменьшению времени до начала эффективного окисления СН и СО способствует также жаровая вставка.

Каталитические нейтрализаторы – устройства, содержащие в себе вещества, ускоряющие реакции, – катализаторы. Каталитические нейтрализаторымогут быть “однокомпонентными” “двухкомпонентными” и “трехкомпонентными”.

Однокомпонентные и двухкомпонентные нейтрализаторы окислительного типа дожигают (доокисляют) СО (однокомпонентные) и СН (двухкомпонентные).

2СО + О 2 = 2СО 2 (при 250–300°С).

С m Н n + (m + n/4)О 2 = mСО 2 + n/2Н 2 О (свыше 400°С).

Нейтрализатор представляет собой корпус из нержавеющей стали, включенный в систему выпуска. В корпусе располагается блок носителя активного элемента. Первые нейтрализаторы заполнялись металлическими шариками, покрытыми тонким слоем катализатора (см. рис. 1.5).

Рис. 1.5. Устройство каталитического нейтрализатора

В качестве активного вещества использовались: алюминий, медь, хром, никель. Основными недостатками нейтрализаторов первых поколений были низкая эффективность и малый срок службы. Наиболее стойким к “отравляющему” воздействию серных, кремнийорганических и прочих соединений, образующихся вследствие сгорания содержащихся в цилиндре двигателя топлива и масла, оказались каталитические нейтрализаторы на основе благородных металлов – платины и палладия.

Носителем активного вещества в таких нейтрализаторах служит спецкерамика – монолит с множеством продольных сот-ячеек. На поверхность сот нанесена специальная шероховатая подложка. Это позволяет увеличить эффективную площадь контакта покрытия с выхлопными газами до ~20 тыс. м 2 . Количество благородных металлов, нанесенных на подложку на этой площади, составляет 2–3 грамма, что позволяет организовать массовое производство относительно недорогих изделий.

Керамика выдерживает температуру до 800–850 °С. Неисправности системы питания (затрудненный пуск) и длительная работа на переобогащенной рабочей смеси приводят к тому, что избыточное топливо будет сгорать в нейтрализаторе. Это приводит к оплавлению сот и выходу нейтрализатора из строя. Сегодня в качестве носителей каталитического слоя применяют металлические соты. Это позволяет увеличить площадь рабочей поверхности, получить меньшее противодавление, ускорить разогрев нейтрализатора до рабочей температуры и расширить температурный диапазон до 1000–1050 °С.

Каталитические нейтрализаторы с восстановительной средой, или трехкомпонентные нейтрализаторы, используются в системах выпуска отработавших газов, как для снижения выбросов СО и СН, так и для снижения выбросов окислов азота. Каталитический слой нейтрализатора содержит, кроме платины и палладия, редкоземельный элемент родий. В результате химических реакций на поверхности разогретого до 600–800 °С катализатора СО, СН, Nоx, содержащиеся в отработавших газах, превращаются в H 2 O, СО 2 , N 2:

2NO + 2СО = N 2 + 2СО 2 .

2NO + 2Н 2 = N 2 + 2Н 2 О.

Эффективность трехкомпонентного каталитического нейтрализатора достигает в реальных условиях эксплуатации 90%, но лишь при условии, что состав горючей смеси отличается от стехиометрического не более чем на 1%.

Из-за изменения параметров двигателя вследствие его износа, работы на нестационарных режимах, дрейфа настроек систем питания поддерживать стехиометрический состав горючей смеси только за счет конструкции карбюраторов или инжекторов не представляется возможным. Необходима обратная связь, которая оценивала бы состав топливовоздушной смеси, поступающей в цилиндры двигателя.

На сегодняшний день наибольшее распространение получила система обратной связи с использованием так называемого датчика кислорода (лямбда-зонда) на основе циркониевой керамики ZrO 2 (рис. 1.6).

Чувствительным элементом лямбда-зонда является циркониевый колпачок 2 . Внутренняя и внешняя поверхности колпачка покрыты тонкими слоями из платинородиевого сплава, которые выполняют роль внешнего 3 и внутреннего 4 электродов. С помощью резьбовой части 1 датчик устанавливается в выпускной тракт. При этом внешний электрод омывается обработавшими газами, а внутренний – атмосферным воздухом.

Рис. 1.6. Конструкция датчика кислорода

Двуокись циркония при температурах свыше 350°С приобретает свойство электролита, а датчик становится гальваническим элементом. Величина ЭДС на электродах датчика определяется соотношением парциальных давлений кислорода на внутренней и внешней сторонах чувствительного элемента. При наличии свободного кислорода в отработавших газах датчик вырабатывает ЭДС порядка 0.1 В. При отсутствии в отработавших газах свободного кислорода ЭДС практически скачком возрастает до 0.9 В.

Управление составом смеси происходит после прогрева датчика до рабочих температур. Состав смеси поддерживается изменением количества подаваемого в цилиндры двигателя топлива на границе перехода ЭДС зонда с низкого на высокий уровень напряжения. Для уменьшения времени выхода на рабочий режим применяют датчики с электроподогревом.

Основными недостатками систем с обратной связью и трехкомпонентным каталитическим нейтрализатором являются: невозможность работы двигателя на этилированном топливе, достаточно низкий ресурс нейтрализатора и лямбда-зонда (порядка 80000 км) и увеличение сопротивления выпускной системы.

Список литературы

  1. Вырубов Д. Н. Двигатели внутреннего сгорания: теория поршневых и комбинированных двигателей / Д. Н. Вырубов и др. М.: Машиностроение, 1983.
  2. Автомобильные и тракторные двигатели. (Теория, системы питания, конструкции и расчет)/ Под ред. И. М. Ленина. М.: Высш. шк., 1969.
  3. Автомобильные и тракторные двигатели: В 2 ч. Конструкция и расчет двигателей / Под ред. И. М. Ленина. 2-е изд., доп. и перераб. М.: Высш. шк., 1976.
  4. Двигатели внутреннего сгорания: Устройство и работа поршневых и комбинированных двигателей / Под ред. А. С. Орлина, М. Г. Круглова. 3-е изд., перераб. и доп. М.: Машиностроение, 1980.
  5. Архангельский В. М. Автомобильные двигатели / В. М. Архангельский. М.: Машиностроение, 1973.
  6. Колчин А. И. Расчет автомобильных и тракторных двигателей / А. И. Колчин, В. П. Демидов. М.: Высш. шк., 1971.
  7. Двигатели внутреннего сгорания / Под ред. д-ра техн. наук проф. В. Н. Луканина. М.: Высш. школа, 1985.
  8. Хачиян А. С. Двигатели внутреннего сгорания / А. С. Хачиян и др. М.: Высш. шк., 1985.
  9. Росс Твег. Системы впрыска бензина. Устройство, обслуживание, ремонт: Практ. пособие / Росс Твег. М.: Издательство “За рулем", 1998.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство науки Российской Федерации

Самарский государственный аэрокосмический университет имени академика С.П. Королёва

Кафедра экологии

Экологические проблемы ДВС и пути их решения

Студент Р.А. Игнатенко, гр. 233

Преподаватель В.Н. Вякин

Самара 2004

Введение

Устройства обработки топлива

Укрощение ДВС

Это странное слово «гибрид»

Диметиловый эфир

Заключение

Введение

углеводородный дизельный автотранспорт топливо

На сегодняшний день одной из актуальных экологических проблем является проблема автотранспорта, т. к. двигатели внутреннего сгорания, работающие на продуктах нефтепереработки, оказывают наибольшее антропогенное воздействие на окружающую среду. Ежегодно в атмосферу Земли выбрасывается 250 млн. т. мелкодисперсных аэрозолей. Сейчас в биосфере содержится около 3 млн. химических соединений, никогда ранее не встречавшихся в природе.

Проблема экологической безопасности при эксплуатации двигателей внутреннего сгорания требует разработки экологически чистых моторных топлив.

Экологические проблемы использования углеводородного топлива

Выхлопные газы двигателей внутреннего сгорания являются источником таких органических токсикантов, как фенантрен, антрацен, флуорантен, пирен, хризен, дибензпирилен и др., обладающие сильной канцерогенной активностью, а так же раздражающие кожу и слизистые оболочки дыхательных путей.

Анализ механизмов химических реакций проходящих внутри двигателя при сгорании топлива показал, что основной причиной образования органических токсикантов является неполное сгорание топлива:

в процессе сгорания топлива металлы, из которых состоит сплав двигателя, являются катализаторами многих химических процессов, приводящих к образованию конденсирующих ароматических соединений и их производных;

образование сажи при неполном сгорании топлива способствует ароматизации углеводородов;

химический состав бензина существенно определяет концентрацию образующихся конденсированных соединений.

Наибольшую опасность представляет бензин каталитического риформинга, по причине высокой непредельности входящих в его состав углеводородов и высокого содержания ароматических углеводородов.

Меньшую опасность представляет бензин каталитического крекинга, хотя и имеющий меньшую теплоту сгорания.

Уменьшить выбросы органических токсикантов, образующихся при сгорании углеводородного топлива, можно несколькими способами:

увеличить поступление кислорода в камеру сгорания топлива, что увеличит процент сгорания органических веществ;

подавить каталитическую активность никеля и железа, входящих в состав сплава конструкции камеры сгорания, введя небольшое количество металлического свинца, являющегося каталитическим ядом для этих металлов;

использовать топливо, в составе которого преобладают предельные углеводороды, природный газ, петролейный эфир, синтетический бензин.

Современные методы улучшения качества дизельных топлив

Получение дизельных топлив, соответствующих современным требованиям, возможно путем повышения качества нефтепереработки и введения пакета присадок различного назначения.

Основными достоинствами дизельных двигателей по сравнению с другими двигателями внутреннего сгорания являются экономичность и сравнительная дешевизна топлива, поэтому их применение постоянно расширяется. Растущая во всем мире, в том числе и в России, дизелизация легкового и грузового автотранспорта требует неотложного решения вопросов повышения качества топлив, поскольку выхлопные газы ДВС стали основным источником загрязнения атмосферного воздуха.

Правительствами индустриально развитых стран и рядом международных организаций были проведены фундаментальные исследования по выяснению влияния наиболее значимых факторов качества дизельных топлив (ДТ) на эксплуатационные характеристики двигателей и загрязнение окружающей среды продуктами сгорания. Эти работы завершились принятием новых стандартов на дизельное топливо. В частности, Всемирной топливной хартией и европейским стандартом EN 590, которые в отличие от действующего российского ГОСТа 305-82 жестко ограничивают содержание в топливе серы, ароматических и полиароматических углеводородов, вводится новый показатель "смазывающая способность топлива" и устанавливается значительно более высокий уровень цетанового числа.

Автомобили - главная причина появления смога в крупных городах. Доля выхлопных газов достигает 4/5 от общего объема вредных выбросов в атмосферу.

ГОСТ 305-82 перестал отвечать современным требованиям по перечисленным выше показателям, что уже сказывается на состоянии воздушного бассейна и здоровье россиян. Назрела необходимость принятия нового, обязательного для исполнения, российского стандарта, может быть, даже более жесткого, чем европейский. Такое развитие событий представляется неизбежным. Хотя производство нового топлива требует значительных усилий от нефтепереработчиков, это позволит в значительной степени решить проблемы экологической безопасности и качественной эксплуатации дизельных двигателей.

Если сегодня основная масса отечественных ДТ, по сути, представляет собой гидроочищенный до содержания серы 0,2% продукт атмосферной перегонки нефти, то получение современных экологически чистых ДТ представляет технологически более сложную задачу, причем достижение таких показателей как цетановое число, смазывающая способность, температура застывания на сегодняшний день невозможно без введения соответствующих присадок.

Одним из основных показателей качества ДТ является цетановое число (ЦЧ), которое служит критерием самовоспламеняемости топлива, определяет долговечность и КПД двигателя, полноту сгорания топлива и, во многом, дымность и состав отработанных газов.

Борьба за снижение выбросов автотранспортом наиболее опасного загрязнителя - сернистых газов привела к появлению на рынке глубоко гидроочищенных малосернистых ДТ. Однако на практике оказалось, что их применение быстро выводит из строя дизельную топливную аппаратуру (топливные насосы, форсунки), т.к. с уменьшением содержания серы ниже 0,1% в результате гидроочистки резко падают смазывающие свойства топлива, обусловленные имеющимися в нем естественными гетероатомными органическими соединениями. На практике смазывающую способность ДТ определяют по диаметру пятна износа на специальной шариковой машине трения или в результате стендовых испытаний на натурных узлах или непосредственно на двигателях. Она, кстати, заметно ухудшается при введении в ДТ некоторых цетаноповышающих и депрессорных присадок из-за особенностей их химического строения.

Улучшение экологических характеристик ДТ возможно также с помощью антидымных присадок, которые снижают количество одного из самых токсичных компонентов отработанных газов дизельных двигателей - сажи с адсорбированными на ней канцерогенными полиароматическими соединениями. Эффективность антидымных присадок зависит от типа двигателя и режима его работы. Отечественный ассортимент антидымных присадок представлен в основном растворимыми в топливе соединениями бария: ИХП-702, ИХП-706, ЭФАП-Б, ЭКО-1. Их применяют в концентрации 0,05-0,2%, возможно в комбинации с цетаноповышающими присадками (ЦПП) или другими присадками. За рубежом в последнее время отказываются от применения барийсодержащих присадок из-за определенной токсичности выносимого оксида бария.

Применение нашли т.н. модификаторы (катализаторы) горения, представляющие собой топливорастворимые комплексы переходных металлов (прежде всего железа), которые снижают не только содержание в отработанных газах сажи, токсичных оксидов углерода и азота, но и расход топлива. В России допущены к применению присадки к дизтопливам ФК-4, Ангарад-2401 и "0010" на основе комплексных соединений железа.

Анализ основных тенденций развития нефтепереработки показывает, что одним из наиболее эффективных способов получения современных экологически чистых дизельных топлив наряду с глубокой гидроочисткой является применение различных взаимно совместимых присадок последнего поколения, как правило, в составе пакета.

Устройства обработки топлива

Можно регулярно проверять и регулировать “выхлоп” на станциях техобслуживания.

Российские ученые на протяжении многих лет работали над проблемой повышения экологической чистоты двигателей внутреннего сгорания, использующих в качестве топлива нефтепродукты (бензин, дизтопливо, мазут, керосин). Во время проведения многочисленных исследований ученые заметили, что топливо изменяет свои характеристики под воздействием электрического поля. Результаты испытаний “измененного” топлива показали, что оно способно значительно уменьшать содержание вредных веществ в выхлопных газах - и не только. Дальнейшие испытания показали, что экспериментальное топливо имеет еще несколько положительных качеств: сокращает расход топлива, повышает мощность двигателя, снижает уровень шума работы двигателя и облегчает его запуск в холодное время, очищает камеры сгорания и увеличивает срок службы силового агрегата.

После того, как технология была запатентована, российская компания “А.М.Б. Сфера” разработала промышленные образцы нового устройства обработки топлива, которые с успехом прошли независимые стендовые и эксплуатационные испытания в ведущих научно-исследовательских институтах России и ближнего зарубежья. После этого устройства, получившие фирменное название “Сфера 2000”, были испытаны в реальных условиях на автомобилях при движении в различных циклах (городском, загородном и смешанном). В испытаниях были задействованы новые и бывшие в эксплуатации грузовые и легковые автомобили производства крупнейших отечественных и зарубежных автопроизводителей: МАЗ, ВАЗ, ГАЗ, КамАЗ, Ikarus, Mercerdes-Benz, Nissan и др.

Конечно же, феноменальных результатов никто и не ожидал, но продемонстрированные качества позволяют говорить о реальной эффективности устройства обработки топлива “Сфера 2000”:

уменьшение расхода топлива на бензиновых двигателях на 2-7%, на дизельных - на 5-15%;

повышение мощности двигателя до 5%;

снижение токсичности выхлопных газов на бензиновых двигателях СО на 20-60%, СН на 40-50%, на дизельных двигателях СО до 48%, СН до 50% и NOx до 17%.

Укрощение ДВС

Однако сделать автомобиль «зеленым» не так-то просто. Возьмем хотя бы двигатель внутреннего сгорания -- основной источник автомобильно-экологических проблем. Похоже, что, несмотря на все попытки, найти ему равнозначную замену в ближайшем будущем так и не удастся. А это означает, что для создания «дружелюбного» автомобиля нужно создать, прежде всего «дружелюбный» ДВС. Судя по тому, что можно было увидеть во Франкфурте, ведущие автопроизводители мира работают -- и не без успеха -- именно в этом направлении. Современная техника позволяет сделать автомобильные моторы более мощными, экономичными и экологичными. Это касается как бензиновых двигателей, так и дизелей. Примером тому могут служить разработанные специалистами Peugeot-Citroen дизели семейства HDi и бензиновые моторы серии GDI от Mitsubishi, значительно снижающие потребление топлива и улучшающие экологические параметры автомобиля.

Некоторые производители пошли еще дальше, заменив жидкое топливо сжиженным или сжатым газом. BMW, например, и ряд других компаний выпускают такие машины уже серийно. Но, во-первых, газ тоже относится к невосполнимым ресурсам, а, во-вторых, полностью избежать загрязнения окружающей среды здесь также не удается, хотя, конечно, газовый двигатель более «чистый», чем бензиновый или дизельный. Как видим, первые шаги к обузданию «хищника» уже сделаны. Однако как волка ни корми, он все равно в лес смотрит, и каждому ясно, что вообще отказаться от использования топлива природного происхождения в ДВС или сделать его выхлопы абсолютно безвредными пока практически невозможно. А раз так, то приходится признать, что создание «дружелюбного» ДВС -- отнюдь не решение проблемы в целом, а только отсрочка, более или менее значительная.

Сегодня модно говорить и писать об альтернативных двигателях. Одним из них по традиции считается электрический. Но и здесь все далеко не так ясно, как может показаться с первого взгляда. Действительно, сам электродвигатель атмосферы не загрязняет, да к тому же его использование позволяет избежать множества чисто инженерных проблем, связанных с эксплуатацией транспортных средств. А вот кардинально решить экологические проблемы такой мотор, к сожалению, не может. Достаточно вспомнить, что выработка электроэнергии сегодня -- дело достаточно «грязное». Производство аккумуляторов также сопряжено с использованием невосполнимых ресурсов и загрязнением -- да еще каким! -- окружающей среды. Если же к этому приплюсовать неудобства, связанные с ограниченной емкостью существующих ныне аккумуляторов, проблемами их перезарядки, а также с переработкой отслуживших свой срок батарей, то становится ясно, что электродвигатель на самом деле никакая не альтернатива, а очередной паллиатив. Разумеется, машины, оснащенные электромоторами, будут в ближайшее время появляться все чаще, но займут они, скорее всего, лишь определенную и достаточно узкую нишу. В частности, электромобили вполне уместны в роли городского транспорта. Во Франкфурте, например, японские автомобилестроители представили публике городской электрический концепт-кар Карро. Основными его потребителями должны стать инвалиды и пожилые люди, которым не по силам пользоваться обычным автомобилем. Мощность установленного на Kappo электродвигателя равна всего 0,6 кВт, что не позволяет машине развивать высокие скорости, обеспечивая тем самым дополнительные меры безопасности.

Это странное слово «гибрид»

Гораздо в большей степени призваны сделать автомобиль «родным и близким» так называемые «гибридные» или «смешанные» силовые установки. Идея эта не нова. Еще в начале века молодой Фердинанд Порше успешно работал над такой машиной на фирме Lohner. Принцип «гибрида» состоит в том, что сама машина приводится в движение при помощи электромотора, а энергию для него вырабатывает генератор, приводимый ДВС. Возможен и второй вариант -- оба мотора работают на то, чтобы приводить автомобиль в движение. Казалось бы, чего уж тут хорошего: недостатки электродвигателя множатся на минусы ДВС. Однако не спешите с выводами. Здесь, как в математике, умножение «минуса» на «минус» дает плюс. Дело в том, что ДВС, приводящий электрогенератор, работает все время в одном и том же режиме, а, как известно, именно изменения режима работы двигателя приводят к увеличению расхода топлива и выбросов вредных веществ в атмосферу. Кроме того, ДВС, как мы уже убедились, может быть достаточно экономичным и экологически чистым. Так что «гибриды» -- тоже шаг вперед. Целый ряд франкфуртских новинок оснащался именно такими силовыми установками. Достаточно упомянуть гибридный концепт-кар Mitsubishi SUW Advance, который расходует всего 3,6 л топлива на 100 км пробега. (Представьте, насколько уменьшаются выбросы!) Привлекли внимание посетителей и новый Honda Insight, и специально подготовленный для Европы, первый в мире серийный «гибрид» Toyota Prius, который, кстати, уже успел завоевать признание у себя на родине.

Что касается Honda Insight, то этот автомобиль поступил в продажу уже в конце прошлого года. Машина оснащена однолитровым трехцилиндровым двигателем, потребляющим всего 3,4 л топлива на 100 км. По заявлению представителя компании, это наименьший расход топлива у серийных двигателей массового производства. При этом выброс в атмосферу двуокиси углерода составляет 80 г на один километр пробега, что также является рекордом. Да и скорость у Insight вполне приличная -- до 180 км/ч.

Но заманчивее всего было бы одновременно отказаться от потребления топлива, получаемого из ископаемых ресурсов, и полностью уничтожить вредные выбросы. Для этого нужно всего лишь использовать в ДВС кислородно-водородную смесь. Тогда и двигатель работает довольно эффективно, и в атмосферу выбрасывается безобидный водяной пар. Достаточное же количество необходимых газов можно получить электролизом, разлагая воду на составляющие. А вот энергию для электролиза в идеале должны давать солнечные батареи. Кстати, во Франкфурте именно этой проблеме были посвящены несколько стендов в экспозициях компаний Daimler-Benz и BMW. На этих фирмах уже созданы и «кислородно-водородные» автомобили, которые успешно проходят испытания.

Ну а последним «писком» в борьбе за «чистый» автомобиль, безусловно, являются топливные элементы, или, как их еще называют на английский манер, fuel cells. По оценкам экспертов, это фантастически перспективный источник энергии, -- этакая малогабаритная химическая электростанция, где электричество производится в результате разложения метанола на кислород и водород. Процесс весьма сложный, требующий применения самых современных технологий и материалов, а поэтому достаточно дорогой. Но игра, как говорится, стоит свеч, ведь в результате использования топливных элементов выброс в атмосферу углекислоты сокращается в два раза, а окиси азота при реакциях такого рода вообще не выделяются.

Проблема выбросов автотранспортом в городских условиях и аспекты решения данной проблемы

Состояние экологии одна из важнейших проблем современности. В результате своей жизнедеятельности человечество постоянно нарушает экологический баланс, происходит это при добыче полезных ископаемых, при производстве материальных и энергетических средств. Усугубляет ситуацию и то, что значительная доля загрязняющих веществ и СО выбрасывается в атмосферу в процессе эксплуатации двигателями внутреннего сгорания, применяемыми во всех сферах нашей жизни.

В странах ЕЭС на долю автотранспорта приходится до 70% выбросов оксида углерода, до 50 % - оксида азота, до 45% - углеводородов и до 90% - свинца, и это при жестких экологических требованиях к транспорту и применяемым топливам (Евро 1-4).

В России на долю автотранспорта приходится больше половины всех вредных выбросов в окружающую среду, которые в крупных городах - главный источник загрязнения атмосферы. В отработавших газах двигателей содержится около 280 компонентов. В среднем при пробеге 15 тыс. км за год каждый автомобиль сжигает 2 тонны топлива и около 20-30 тонн воздуха, в том числе 4,5 тонны кислорода. При этом автомобиль выбрасывает в атмосферу (кг/т): угарного газа - 700, диоксида азота - 40, несгоревших углеводородов - 230 и твердых веществ - 2-5. Кроме того, из-за применения этилированного бензина выбрасывается много весьма опасных для здоровья соединений свинца, в странах ЕЭС для решения этой проблемы в бензины с высокооктановым числом добавляют другие антидетонаторы.

Усугубляется положение в нашей стране и тем, что львиная доля транспорта эксплуатируемого предприятиями имеет предельный физический износ. По ряду объективных факторов не происходит морального обновления подвижного состава. Связанно это, прежде всего с экономическим положением предприятий, тем, что отечественный автопаром выпускает устаревшие модели не блещущие экономичностью, экологической и санитарной безопасностью, а иностранные марки не доступны из-за цены.

Электромобиль не роскошь, а средство выживания

Электромобиль - транспортное средство, ведущие колеса которого приводятся от электромотора, питаемого аккумуляторными батареями. Впервые появился он в Англии и во Франции в начале 80-х годов девятнадцатого века, то есть раньше автомобилей с двигателями внутреннего сгорания. Тяговый электродвигатель в таких машинах получал питание от батарей свинцовых аккумуляторов с энергоемкостью всего 20 ватт-часов на килограмм. В общем, чтобы питать двигатель мощностью в 20 киловатт в течение часа, требовался свинцовый аккумулятор массой в 1 тонну. Поэтому с изобретением двигателя внутреннего сгорания производство автомобилей стало стремительно набирать обороты, а об электромобилях забыли до возникновения серьезных экологических проблем. Во-первых, развитие парникового эффекта с последующим необратимым изменением климата и, во-вторых, снижение иммунитета многих людей вследствие нарушения основ генетической наследственности.

Данные проблемы были спровоцированы токсическими веществами, которые в достаточно больших количествах содержатся в отработавших газах двигателя внутреннего сгорания. Решение проблем состоит в снижении уровня токсичности отработавших газов, особенно окиси и двуокиси углерода, притом, что объем производства автомобилей нарастает.

Ученые, проведя ряд исследований, наметили несколько направлений решения перечисленных задач, одной из которых является производство электромобилей. Это, по сути, первая технология, официально получившая статус нулевого выброса, и она уже представлена на рынке.

Концерн General Motors одним из первых приступил к продаже серийных электромобилей массового производства. Толчком к этому послужило калифорнийское законодательство, согласно которому автопроизводители, желающие присутствовать на рынке штата Калифорния, должны поставлять 2% автомобилей с нулевыми выбросами в атмосферу.

У нас разработкой электромобилей занимается в основном Волжский автозавод, не считая конструкторских фирм. В его арсенале «ВАЗ-2109Э», «ВАЗ-2131Э», «Эльф», «Рапан», семейство электромобилей «Гольф». Надо сказать, что эксплуатационные расходы в электромобиле существенно меньше, чем в стандартном автомобиле, требующем затраты на поддержание систем охлаждения, питания, выхлопа. Долговечность электродвигателя составляет примерно десять тысяч часов.

Таким образом, количество операций по обслуживанию электродвигателя сведено к минимуму. Например, в двигателе постоянного тока нужно только периодически менять щетки, а вот более современный трехфазный электродвигатель и синхронный электродвигатель переменного тока практически не нуждаются в обслуживании.

Если говорить об электромобилях вазовского производства, то там в качестве силового агрегата применяют два двигателя постоянного тока: мощностью 25кВт с крутящим моментом 110 Н*м и мощностью 40 кВт с крутящим моментом 190 Н*м. Двигатели первого типа, как правило, устанавливаются на легкие электромобили, такие, как «Гольф», «Ока Электро», «Эльф», а более мощные - на машины семейств ВАЗ-2108, ВАЗ-2109, «Ниву».

Почему, несмотря на бесшумность, простоту управления и нулевую эмиссию электромобиль не стал массовым средством передвижения? Главная проблема заключается в несовершенстве аккумуляторных батарей: незначительный пробег от одной зарядки, длительный цикл перезарядки и высокая цена. В настоящее время делают ставку на никель-металлогидридные и литий-ионовые аккумуляторные батареи. В России уже приступили к производству опытных партий никель-металлогидридных батарей, а вот с литий-ионовыми батареями пока только идут опытные работы.

Несмотря на эти недостатки, европейцы верят в электромобили как в средство способное очистить сильно загрязненные улицы. Станет ли электромобиль реальной альтернативой автомобилю - еще вопрос. Но его применение в мегаполисах, курортах, парках, то есть в зонах с повышенными экологическими требованиями вполне оправдано.

Диметиловый эфир

Одна из острейших экологических проблем больших городов - прогрессирующее загрязнение их воздушного бассейна вредными выбросами двигателей внутреннего сгорания (в Москве в 1986 г. - 870 тыс. т, в 1995 г. - 1,7 млн. т). Известные способы снижения токсичности двигателей, такие, как применение каталитической обработки выхлопных газов, использование альтернативных топлив типа метанола, этанола, природного газа не приводят к радикальному решению указанной проблемы.

Одним из выходов может стать приспособление двигателей к работе на новом альтернативном топливе - диметиловом эфире (ДМЭ). Его благоприятные физико-химические показатели способствуют полному устранению дымности выхлопных газов и снижению их токсичности (а также шумности).

Диметиловый эфир (CH3-O-CH3) обладает очень важными свойствами - он является газообразным при нормальных условиях и его молекулы не имеют углерод-углеродных химических связей, способствующих сажеобразованию при горении. В настоящее время ДМЭ применяется, главным образом, в качестве вытеснительного газа в аэрозольных упаковках.

В настоящее время в ряде стран отрабатываются способы приспособления двигателей к работе на ДМЭ. К примеру, в Дании уже проводятся эксплуатационные испытания приспособленных к работе на ДМЭ городских автобусов. В нашей стране работы по переводу дизелей на ДМЭ ведутся в инициативном порядке с 1996 г. в НИИД, который имеет многолетний опыт создания дизелей специального назначения. Ожидается, что в результате этой работы будет обеспечено радикальное снижение токсичности автомобильных двигателей до уровня зарубежных норм на 2000 гг.

Для создания экологически чистого автомобиля был использован «АМО ЗИЛ» 5301 («Бычок») с дизелем Д-245.12 производства Минского моторного завода. Двигатель, снабженный турбокомпрессором, имеет номинальную мощность 80 кВт при частоте вращения 2400 об/мин.

Нормы токсичности отработанных газов по правилам 49 ЕЭК ООН:

Наименование

СО, г/кВт-ч

СН, г/кВт-ч

NOx, г/кВт-ч

PT (частицы), г/кВт-ч

Дата введения

Показатели выбросов при работе по внешней характеристике:

Мощность и экономичность (в энергетическом эквиваленте) двигателя при питании его ДМЭ и ДТ оказались практически одинаковыми. На всех режимах, включая режим запуска и холостого хода, двигатель устойчиво работал на ДМЭ при полностью бездымном выхлопе (коэффициент оптической плотности К=0), в то время как при работе на ДТ наблюдался типичный для дизелей уровень дымности отработавших газов, соответствующий К=17...28 %.

Уровень абсолютных и удельных вредных выбросов при работе на ДМЭ, оцениваемый по методике Правил № 49-02 ЕЭК ООН, имел следующие особенности:

Уровень выбросов окислов азота (NOx) на всех режимах был существенно меньше, чем на ДТ. Особенно значительная разница - снижение в 2...3 раза - наблюдалась на наиболее нагруженных режимах Ne=50...100 %.

При нагрузке Ne=50...100 % на режиме максимального крутящего момента (n=1600 об/мин) уровень выбросов несгоревших углеводородов (СН) понижался на 20...70 % по сравнению с ДТ, а на режимах малых нагрузок (Ne=10...20 %) значительно превышал уровень на дизельном топливе, достигая 2000...3000 чнм.

Уровень выбросов окиси углерода (СО) при работе на ДМЭ на всех режимах превышал соответствующие величины на ДТ, достигая 1000 чнм.

По сравнению с природным газом работа двигателя на режимах внешней характеристики на ДМЭ обеспечивала уменьшение выбросов NOx - в 2,5...3,0 раза, СО - в 5...6 раз, а СН - в 3,0...3,5 раза.

Природный газ в качестве топлива для транспортного двигателя (без использования нейтрализатора) имеет преимущества лишь по сравнению с бензином. Поэтому в программах конвертирования двигателей и перехода на газовое топливо предусматривается применение 3-ступенчатых каталитических нейтрализаторов, например, фирмы J. Matthey со степенью очистки газов: от NOх - 35...80 %, от СО - 85...95 %, от СН - 50...80 %. И только в этом случае уровень вредных выбросов приближается к достигнутому при работе на ДМЭ без дополнительной очистки отработавших газов.

Снижения уровня выбросов СО и СН, зарегистрированного в опытах с ДМЭ на малых нагрузках, можно добиться путем оптимизации топливоподачи и воздухоснабжения. Применение каталитического нейтрализатора при работе двигателя на ДМЭ приведет к практически полному устранению вредных выбросов.

В плане первых мероприятий по совершенствованию рабочего процесса на режимах малых нагрузок, где наблюдается повышенный уровень выбросов СО и СН, подготовлена к проверке опытная конструкция выхлопной трассы двигателя, перепускающая часть отработанных газов мимо турбокомпрессора. Кроме того, ведется дальнейшее совершенствование топливной системы грузового автомобиля.

Проведенные исследования показали, что наиболее трудно решаемая экологическая задача значительного уменьшения выбросов окиси азота и дымности с переводом дизеля на работу на ДМЭ полностью решается. Специалисты считают, что новые жесткие нормы отработанных газов (ULEV, EURO-3) не могут быть достигнуты без применения ДМЭ.

Заключение

Сегодня крупные российские города, особенно такие мегаполисы, как Москва, С-Петербург, Екатеринбург и другие задыхаются в смраде выхлопных газов, извергаемого легковым и грузовым автотранспортом. Как решить эту проблему? Радикальные меры - полное запрещение движения машин - приведут к нарушению производственных и культурных связей городов и потому не приемлемы. Один из выходов - создание экологически чистого городского транспорта.

Возможность выхода из тупиковой ситуации путем перевода городского автопарка на электротягу не является решением вопроса, так как общий коэффициент полезного действия (КПД) электромобиля (если считать его с момента получения электрической энергии до факта движения электротранспорта) примерно вдвое ниже, чем КПД современного автомобиля, оборудованного двигателем внутреннего сгорания. Таким образом, для обеспечения возможности движения городского транспорта, базирующегося на электромобилях, придется сжигать вдвое больше органического топлива, чем это требуется для обеспечения возможности движения современного парка автомобилей. На сегодняшний день единственно рациональным путем решения сложившейся проблемы является создание машин с двигателем внутреннего сгорания, работающим в режиме минимально возможных расходов топлива с минимальной токсичностью выхлопных газов. При этом понятное дело, должны сохраняться все необходимые показатели производительности транспортной единицы, будь то легковое такси или тяжелый грузовик.

Для решения экологической проблемы транспорта необходимо создать энергоустановку (ЭУ), включающую двигатель внутреннего сгорания (ДВС) и обеспечивающую возможность работы ДВС в постоянном режиме минимального удельного расхода топлива с минимальной токсичностью выхлопа. Традиционные автомобили со ступенчатой передачей энергии от ЭУ к ведущим колесам проблемы решить принципиально не могут, поскольку регулирование скорости таких транспортных средств осуществляется за счет перевода двигателя внутреннего сгорания на частичные режимы с обязательным уходом из зоны работы с минимальными расходами топлива и минимальной токсичностью выхлопа. Большинство применяемых бесступенчатых передач также радикально проблемы не решают. Наиболее известная в инженерной практике гидромеханическая передача, также как и механическая, обеспечивает регулирование скорости транспортного средства за счет перевода двигателя внутреннего сгорания на частичные режимы с отходом от зоны минимальных расходов топлива и минимальной токсичности. К тому же несколько меньший КПД таких передач ведет к некоторому увеличению расхода топлива в сравнении со ступенчатой механической передачей.

Список используемых источников

1. Спектрофотометрическое определение микроколичеств свинца (II) в аэрозольных вы-бросах автотранспорта и придорожных отложениях // Г.И. Савенко, Н.М. Малахова, А.Н. Чеботарев, М.Г. Торосян, Н.Х. Копыт, А.И. Стручаев / Вестник Инженерной академии Украины, 1998. Специальный выпуск «Инжстратегия-97». - с.76-78.

2. Саблина З.А., Гуреев А.А. Присадки к моторным топливам. - М.: Химия, 1988.- 472 с.

3. Малахова Н.М., Никипелова Е.М., Савенко Г.И. Фотометрическое определение свинца (II) в природных объектах с его предварительным сорбционным концентрированием // Химия и технология воды. - 1990. -Т. 12, №7. - С. 627 - 629.

4. Предельно допустимые концентрации вредных веществ в воздухе и воде. - Л.: Химия, 1985.-456с.

Размещено на Allbest.ru

Подобные документы

    Пути решения экологических проблем города: экологические проблемы и загрязнения воздушной среды, почвы, радиации, воды территории. Решение экологических проблем: приведение к санитарным нормам, уменьшение выбросов, переработка отходов.

    реферат , добавлен 30.10.2012

    Что такое экология. Почему ухудшается экологическое состояние окружающей среды. Главные экологические проблемы современности. Основные экологические проблемы области. Как решать экологические проблемы и предотвратить загрязнение окружающей среды.

    курсовая работа , добавлен 28.09.2014

    Эффективность использования водных ресурсов в бассейне Волги. Современные экологические проблемы загрязнения водных ресурсов Волжского бассейна и пути их решения. Геоэкологические проблемы использования ресурсов малых рек и Волго-Ахтубинской поймы.

    реферат , добавлен 30.08.2009

    Характеристика экологических проблем современности. Основные экологические проблемы исследуемой области. Анализ периодических изданий по проблеме исследования. Пути предотвращения загрязнения окружающей среды: воздуха, воды, грунта. Проблема отходов.

    курсовая работа , добавлен 06.10.2014

    Рассмотрение устройства и принципа работы тепловых четырехтактных двигателей внутреннего сгорания, отличительные особенности карбюраторных и дизельных моторов. Описание химического состава отработанных газов и воздействия выбросов на окружающую среду.

    презентация , добавлен 13.05.2011

    Необходимость нормирования экологических показателей двигателей внутреннего сгорания. Женевское соглашение, экологические стандарты различных стран мира. Требования к автомобильному топливу, сертификация ДВС в России. Пути снижения выбросов и токсичности.

    курсовая работа , добавлен 09.04.2012

    Основные экологические проблемы: разрушение природной среды, загрязнение атмосферы, почвы и воды. Проблема озонового слоя, кислотных осадков, парникового эффекта и перенаселения планеты. Пути решения недостатка энергетических и сырьевых ресурсов.

    презентация , добавлен 06.03.2015

    Основные экологические проблемы современности. Влияние хозяйственной деятельности людей на природную среду. Пути решения экологических проблем в рамках регионов государств. Pазрушение озонового слоя, парниковый эффект, загрязнение окружающей среды.

    реферат , добавлен 26.08.2014

    Атомные электростанции и экологические проблемы, возникающие при эксплуатации. Оценка риска от АЭС. Население и здоровье в зоне АЭС. Обеспечения радиационной безопасности. Судьба отработанного ядерного топлива. Последствия аварии на Чернобыльской АЭС.

    реферат , добавлен 18.01.2009

    Экологические проблемы Каспийского моря и их причины, пути решения экологических проблем. Каспийское море - уникальный водоём, его углеводородные ресурсы и биологические богатства не имеют аналогов в мире. Разработка нефтегазовых ресурсов региона.