Как рассчитываются Гкал теплосчетчиком. Погрешность расчетов

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Определением этой величины служит тождество: H=U+PV

Размерность энтальпии-Дж/моль.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса :

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Энтропия

а для самопроизвольных

Зависимость изменения энтропии от температуры выражается законом Кирхгофа:

Для изолированной системы изменение энтропии – критерий возможности самопроизвольного протекания процесса. Если , то процесс возможен; если, то в прямом направлении процесс невозможен; если, то в системе равновесие.

Термодинамические потенциалы. Свободная энергия Гиббса и Гельмгольца.

Дл я характеристики процессов, протекающих в закрытых системах, введем новые термодинамические функции состояния: изобарно-изотермический потенциал (свободная энергия Гиббса G) и изохорно-изотермический потенциал (свободная энергия Гельмгольца F).

Для закрытой системы, в которой осуществляется равновесный процесс при постоянных температуре и объеме, выразим работу данного процесса. Которую обозначим А max (посколько работа процесса, проводимого равновесно, максимальна):

A max =T∆S-∆U

Введем функцию F=U-TS-изохорно-изотермический потенциал, определяющий направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях и получим:

Изменение энергии Гельмгольца определяется только начальным и конечным состоянием системы и не зависит от характера процесса, поскольку оно определяется двумя функциями состояния: U и S. Напомним, что от способа проведения процесса при переходе системы из начального в конечное состояние может зависеть величина полученной или затраченной работы, но не изменение функции.

Закрытую систему, находящуюся в изобарно- изотермических условиях, характеризует изобарно-изотермический потенциал G:

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Анализ уравнения ∆G=∆H-T∆S позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH) или энтропийный (ΔS · T).

Если ΔH < 0 и ΔS > 0, то всегда ΔG < 0 и реакция возможна при любой температуре.

Если ΔH > 0 и ΔS < 0, то всегда ΔG > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.

В остальных случаях (ΔH < 0, ΔS < 0 и ΔH > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и TΔS. Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение TΔS также невелико, и обычно изменение энтальпии больше TΔS. Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше TΔS, и даже эндотермические реакции становятся осуществляемыми.

Под стандартной энергией Гиббса образования ΔG°, понимают изменение энергии Гиббса при реакции образования 1 моль вещества, находящегося в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю.

Изменение энергии Гиббса не зависит от пути процесса, следовательно можно получать разные неизвестные значения энергий Гиббса образования из уравнений, в которых с одной стороны записанны суммы энергий продуктов реакции, а с другой - суммы энергий исходных веществ.

При пользовании значениями стандартной энергии Гиббса критерием принципиальной возможности процесса в нестандартных условиях принимается условие ΔG° < 0, а критерием принципиальной невозможности - условие ΔG° > 0. В то же время, если стандартная энергия Гиббса равна нулю, это не означает, что в реальных условиях (отличных от стандартных) система будет в равновесии.

Условия самопроизвольного протекания процессов в закрытый системах:

При работе с какими-либо расчётами, вычислениями и выполнении прогноза разнообразных явлений, связанных с теплотехникой, каждый сталкивается с понятием энтальпия. Но для людей, специальность которых не касается теплоэнергетики или которые лишь поверхностно сталкиваются с подобными терминами, слово «энтальпия» будет наводить страх и ужас. Итак, давайте разберёмся, действительно ли всё так страшно и непонятно?

Если попытаться сказать совсем просто, под термином энтальпия понимается энергия, которая доступна для преобразования в теплоту при некотором постоянном давлении. Понятие энтальпия в переводе с греческого значит «нагреваю». То есть формулу, содержащую элементарную сумму внутренней энергии и произведенную работу, называют энтальпией. Эта величина обозначается буквой i.

Если записать вышесказанное физическими величинами, преобразовать и вывести формулу, то получится i = u + pv (где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии). Энтальпия - аддитивная функция, т. е. энтальпия всей системы равна сумме всех составляющих её частей.

Термин «энтальпия» сложен и многогранен.

Но если постараться в нём разобраться, то всё пойдёт очень просто и понятно.

  • Во-первых, чтобы понять, что же такое энтальпия, стоит узнать общее определение, что мы и сделали.
  • Во-вторых, стоит найти мпеханизм появления этой физической единицы, понять, откуда она взялась.
  • В-третьих, нужно найти связь с другими физическими единицами, которые неразрывно с ними взаимосвязаны.
  • И, наконец, в-четвёртых, нужно посмотреть примеры и формулу.

Ну, что же, механизм работы понятен. Вам лишь нужно внимательно читать и вникать. С термином «Энтальпии» мы уже разобрались, также привели и его формулу. Но тут же возникает ещё один вопрос: откуда взялась эта формула и почему энтропия связана, к примеру, с внутренней энергией и давлением?

Суть и смысл

Для того, чтобы попытаться выяснить физический смысл понятия «энтальпия» нужно знать первый закон термодинамики:

энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в одинаковых количествах. Таким примером может служить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Уравнение первого закона термодинамики нам нужно преобразить в вид dq = du + pdv = du + pdv + vdp – vdp = d(u + pv) – vdp. Отсюда мы видим выражение (u + pv). Именно это выражение и называется энтальпией (полная формула приводилась выше).

Энтальпия также является величиной состояния, потому что составляющие u (напряжение) и p (давление), v (удельный объём) имеют для каждой величины определенные значения. Зная это, первый закон термодинамики возможно переписать в виде: dq = di – vdp.

В технической термодинамике используются значения энтальпии, которые высчитываются от условно принятого нуля. Все абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от О к К.

Формулу и значения энтальпии привёл в 1909 г. учёный Г.Камерлинг-Оннесом.

В выражении i — удельная энтальпия, для всей массы тела полная энтальпия обозначается буквой I, по всемирной системе единиц энтальпия измеряется в Джоулях на килограмм и рассчитывается как:

Функции

Энтальпия («Э») является одной из вспомогательных функций, благодаря использованию которой можно значительно упростить термодинамический расчёт. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах или камере сгорания газовых турбин и реактивных двигателей, а также в теплообменных аппаратах) осуществляют при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводят значения энтальпии.

Условие сохранения энтальпии лежит, в частности, в основе теории Джоуля - Томсона. Или эффекта, нашедшего важное практическое применение при сжижении газов. Таким образом, энтальпия есть полная энергия расширенной системы, представляющая сумму внутренней энергии и внешней – потенциальной энергии давления. Как любой параметр состояния, энтальпия может быть определена любой парой независимых параметров состояния.

Также, исходя из приведённых выше формул, можно сказать: «Э» химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
В общем случае изменение энергии термодинамической системы не является необходимым условием для изменения энтропии этой системы.

Итак, вот мы и разобрали понятие «энтальпии». Стоит отметить, что «Э» неразрывно связана с энтропией, о которой вы также можете прочесть позже.

См. также «Физический портал »

Энтальпи́я , также тепловая функция и теплосодержание - термодинамический потенциал , характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления , энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня площадью S с грузом весом Р = pS , уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной .

Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом E пот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния

Примеры

Неорганические соединения (при 25 °C)
стандартная энтальпия реакции
Хим соединение Фаза (вещества) Химическая формула Δ H f 0 кДж/моль
Аммиак сольватированный NH 3 (NH 4 OH) −80.8
Аммиак газообразный NH 3 −46.1
Карбонат натрия твёрдый Na 2 CO 3 −1131
Хлорид натрия (соль) сольватированный NaCl −407
Хлорид натрия (соль) твёрдый NaCl −411.12
Хлорид натрия (соль) жидкий NaCl −385.92
Хлорид натрия (соль) газообразный NaCl −181.42
Гидроксид натрия сольватированный NaOH −469.6
Гидроксид натрия твёрдый NaOH −426.7
Нитрат натрия сольватированный NaNO 3 −446.2
Нитрат натрия твёрдый NaNO 3 −424.8
Диоксид серы газообразный SO 2 −297
Серная кислота жидкий H 2 SO 4 −814
Диоксид кремния твёрдый SiO 2 −911
Диоксид азота газообразый NO 2 +33
Монооксид азота газообразный NO +90
Вода жидкий H 2 O −286
Вода газообразный H 2 O −241.8
Диоксид углерода газообразный CO 2 −393.5
Водород газообразный H 2 0
Фтор газообразный F 2 0
Хлор газообразный Cl 2 0
Бром жидкий Br 2 0
Бром газоообразный Br 2 0

Инвариантная энтальпия в релятивистской термодинамике

При построении релятивистской термодинамики (с учетом специальной теории относительности) обычно наиболее удобным подходом является использование так называемой инвариантной энтальпии - для системы, находящейся в некотором сосуде.

При этом подходе температура определяется как лоренц-инвариант . Энтропия - также инвариант. Поскольку стенки влияют на систему, наиболее естественной независимой переменной является давление , в связи с чем в качестве термодинамического потенциала удобно брать именно энтальпию .

Для такой системы «обычная» энтальпия и импульс системы образуют 4-вектор , и за определение инвариантной энтальпии, одинаковой во всех системах отсчёта, берётся инвариантная функция этого 4-вектора:

Основное уравнение релятивистской термодинамики записывается через дифференциал инвариантной энтальпии следующим образом:

Пользуясь этим уравнением, можно решить любой вопрос термодинамики движущихся систем, если известна функция .

См. также

Источники

  1. Болгарский А. В., Мухачев Г. А., Щукин В. К., «Термодинамика и теплопередача» Изд. 2-е, перераб. и доп. М.: «Высшая школа», 1975, 495 с.
  2. Харин А. Н., Катаева Н. А., Харина Л. Т., под ред. проф. Харина А. Н. «Курс химии», М.: «Высшая школа», 1975, 416 с.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Энтальпия" в других словарях:

    Энтальпия - (от греческого enthalpo нагреваю), функция состояния термодинамической системы, изменение которой при постоянном давлении равно количеству теплоты, подведенной к системе, поэтому энтальпия называется часто тепловой функцией или теплосодержанием.… … Иллюстрированный энциклопедический словарь

    - (от греч. enthalpo нагреваю) однозначная функция Н состояния термодинамической системы при независимых параметрах энтропии S и давлении p, связана с внутренней энергией U соотношением Н = U + pV, где V объем системы. При постоянном p изменение… … Большой Энциклопедический словарь

    - (обозначение Н), количество термодинамической (тепловой) энергии, содержащееся в веществе. В любой системе энтальпия равна сумме внутренней энергии и произведения давления на объем. Измеряют в терминах изменения (обычно увеличения) количества… … Научно-технический энциклопедический словарь

    Теплосодержание Словарь русских синонимов. энтальпия сущ., кол во синонимов: 1 теплосодержание (1) Словарь синонимов ASIS … Словарь синонимов

    - (от греч. enthalpo нагреваю) экосистемы, функциональное состояние экосистемы, определяющее ее теплосодержание. Энтальпия экстенсивное свойство экосистемы. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

    энтальпия - Функция состояния термодинамической системы, равная сумме внутренней энергии и произведения объема на давление. Примечание Энтальпия является характеристической функцией, если энтропия и давление являются независимыми параметрами. [Сборник… … Справочник технического переводчика

    - (от греч. enthalpo нагреваю) (теплосодержание, тепловая функция Гиббса), потенциал термодинамический, характеризующий состояние макроскопич. системы в термодинамич. равновесии при выборе в кач ве основных независимых переменных энтропии S и… … Физическая энциклопедия

    - [ενυαλπω (энтальпо) нагреваю] термодинамическая функция состояния Н, равная сумме внутренней энергии U и произведения объема на давление Vp(H + U + Vp). В процессах, протекающих при постоянном давлении,… … Геологическая энциклопедия

    энтальпия - энтальпия; отрасл. теплосодержание; тепловая функция Гиббса Функция состояния системы (Н), равная величине внутренней энергии (U), сложенной с произведением объема на давление; H = U + pV … Политехнический терминологический толковый словарь

    энтальпия - – это функция состояния системы, приращение которой равно теплоте, полученной системой в изобарном процессе. Общая химия: учебник / А. В. Жолнин … Химические термины

На сегодняшний день, основным документом, определяющим требования к учету тепловой энергии, являются "Правила учета тепловой энергии и теплоносителя ".

В Правилах приведены подробные формулы. Здесь я немного упрощу для лучшего понимания.

Я опишу только водяные системы, так как их большинство, и не буду рассматривать паровые системы. Если поймете суть на примере водяных систем, пар посчитаете сами без проблем.

Для расчета тепловой энергии нужно определиться с целями. Будем считать калории в теплоносителе для целей отопления или для целей горячего водоснабжения.

Расчет Гкал в системе ГВС

Если у вас стоит механический счетчик горячей воды (вертушка) или вы собираетесь его установить, то здесь все просто. Сколько накрутил, столько и придется заплатить, по утвержденному тарифу за горячую воду. Тариф, в данном случае, уже будет учитывать количество Гкал в ней.

Если у вас смонтирован узел учета тепловой энергии в горячей воде, или вы только собираетесь его установить, то платить придется отдельно за тепловую энергию (Гкал) и отдельно за сетевую воду. Также по утвержденным тарифам (руб./Гкал + руб./тонну)

Для вычисления количества калорий, получаемых с горячей водой (а также паром или конденсатом), минимум, что нам нужно знать это расход горячей воды (пара, конденсата) и ее температуру.

Расход измеряется расходомерами, температура - термопарами, термодатчиками, а Гкал вычисляет теплосчетчик (или теплорегистратор).

Qгв= Gгв *(tгв - tхв)/1000 = ... Гкал

Qгв - количество тепловой энергии, в этой формуле в Гкал.*

Gгв - расход горячей воды (или пара, или конденсата) в м. куб. или в тоннах

tгв - температура (энтальпия) горячей воды в °С **

tхв - температура (энтальпия) холодной воды в °С ***

* делим на 1000 для того, чтобы получить не калории, а гигакалории

** правильнее умножать надо не на разность температур (t гв-t хв), а на разностьэнтальпий (h гв-h хв). Величины hгв, hхв определяются по соответствующим измеренным на узле учета средним за рассматриваемый период значениям температур и давлений. Значения энтальпий близко к значениям температур. На узле учета тепловой энергии тепловычислитель сам рассчитывает и энтальпию, и Гкал.

*** температура холодной воды, она же температура подпитки, измеряется на трубопроводе холодной воды на источнике теплоты. У потребителя, как правило, нет возможности использовать этот параметр. Поэтому берется постоянная расчетная утвержденная величина: в отопительный период tхв=+5 °С (или +8 °С), в неотопительный tхв=+15 °С

Если у Вас стоит вертушка и нет возможности измерить температуру горячей воды, то для выделения Гкал, как правило, теплоснабжающая организация устанавливает постоянную расчетную величину в соответствии с нормативными документами и технической возможностью источника теплоты (котельной, или теплового пункта, например). В каждой организации своя, у нас 64,1°С.

Тогда расчет будет следующий:

Qгв = Gгв * 64,1 / 1000 = ... Гкал

Помните, что заплатить нужно будет не только за Гкал, но и за сетевую воду. По формуле и мы считаем только Гкал.

Расчет Гкал в системах водяного отопления.

Рассмотрим отличия расчета количества теплоты при открытой и при закрытой системе отопления.

Закрытая система отопления - это когда запрещено брать теплоноситель из системы, ни для целей горячего водоснабжения ни для мытья личного авто. На практике сами знаете как. Горячая вода для целей ГВС в этом случае заходит по отдельной третьей трубе или ее вообще нет, если ГВС не предусмотрено.

Открытая система отопления - это когда разрешено брать теплоноситель из системы для целей горячего водоснабжения.

При открытой системе теплоноситель можно брать из системы только в пределах договорных отношений!

Если при горячем водоснабжении мы забираем весь теплоноситель, т.е. всю сетевую воду и все Гкал в ней, то при отоплении мы возвращаем какую-то часть теплоносителя и, соответственно, какую-то часть Гкал обратно в систему. Соответственно, нужно посчитать сколько пришло Гкал и сколько ушло.

Следующая формула подходт как для открытой системы теплоснабжения, так и для закрытой.

Q = [ (G1 * (t1 - tхв)) - (G2 * (t2 - tхв)) ] / 1000 = ... Гкал

Есть еще пара формул, которые используются в учете тепловой энергии, но я беру вышестоящую, т.к. думаю, что на ней проще понять, как работают теплосчетчики, и которые дают такой же результат при расчетах, что и формула .

Q = [ (G1 * (t1 - t2)) + (G1 - G2) * (t2-tхв) ] / 1000 = ... Гкал

Q = [ (G2 * (t1 - t2)) + (G1 - G2) * (t1-tхв) ] / 1000 = ... Гкал

Q - количество потребленной тепловой энергии, Гкал.

t1 - температура (энтальпия) теплоносителя в подающем трубопроводе, °С

tхв - температура (энтальпия) холодной воды, °С

G2 - расход теплоносителя в обратном трубопроводе, т (м.куб.)

t2 - температура (энтальпия) теплоносителя в обратном трубопроводе, °С

Первая часть формулы (G1 * (t1 - tхв)) считает сколько пришло Гкал, вторая часть формулы (G2 * (t2 - tхв)) считает сколько вышло Гкал.

По формуле [ 3] теплосчетчик посчитает все Гкал одной цифрой: на отопление, на водоразбор горячей воды при открытой системе, погрешность приборов, аварийные утечки.

Если при открытой системе теплоснабжения необходимо выделить количество Гкал, пошедших на ГВС, то могут понадобиться дополнительные расчеты. Все зависит от того, как организован учет. Есть ли на трубе ГВС приборы, подключенные к теплосчетчику, или там стоит вертушка.

Если приборы есть, то теплосчетчик должен сам все посчитать и выдать отчет, при условии, что все настроено правильно. Если стоит вертушка, то рассчитать количество Гкал пошедших на ГВС можно по формуле. . Не забудьте вычесть Гкал пошедшие на ГВС из общей суммы Гкал по счетчику.

Закрытая система подразумевает, что теплоноситель не берется из системы. Иногда проектанты и монтажники узлов учета забивают в проект и программируют теплосчетчик на другую формулу:

Q = G1 * (t1 - t2) / 1000 = ... ГКал

Qи - количество потребленной тепловой энергии, Гкал.

G1 - расход теплоносителя в подающем трубопроводе, т (м.куб.)

t1 - температура теплоносителя в подающем трубопроводе, °С

t2 - температура теплоносителя в обратном трубопроводе, °С

Если произойдет утечка (аварийная или умышленная), то по формуле теплосчетчик не зафиксирует количество потерянных Гкал. Такая формула не устраивает теплоснабжающие компании, нашу по крайней мере.

Тем не менее есть узлы учета, которые работают по такой формуле расчета. Я сам несколько раз выдавал Потребителям предписания, чтобы перепрограммировали теплосчетчик. При том, что когда Потребитель приносит отчет в теплоснабжающую компанию, то НЕ видно по какой формуле ведется расчет, можно просчитать конечно, но просчитывать вручную всех Потребителей крайне затруднительно.

Кстати, из тех теплосчетчиков для поквартирного учета теплоты, которые я видел, ни один не предусматривает измерение расхода теплоносителя в прямом и обратном трубопроводе одновременно. Соответственно, посчитать количество потерянных, например при аварии, Гкал невозможно, а также количество потерянного теплоносителя.

Условный пример:

Исходные данные:

Закрытая система отопления. Зима.
теплоэнергия - 885,52 руб. / Гкал
сетевая вода - 12,39 руб. / м.куб.

теплосчетчик выдал следующий отчет за сутки:

Допустим, что на следующий день произошла утечка, авария например, утекло 32 м.куб.

теплосчетчик выдал следующий суточный отчет:

Погрешность расчетов.

При закрытой системе теплоснабжения и при отсутствии утечек, как правило, расход в подающем трубопроводе больше, чем расход в обратном. Т. е. приборы показывают, что заходит одно количество теплоносителя, а выходит немного меньше. Это считается нормой. В системе теплопотребления могут быть нормативные потери, маленький процентик, небольшие подтеки, протечки и т.п.

Кроме этого, приборы учета несовершенны, у каждого прибора есть допустимая погрешность, установленная заводом изготовителем. Поэтому бывает, что при закрытой системе заходит одно количество теплоносителя, а выходит больше. Это тоже нормально, если разница в пределах допустимой погрешности.

(см. Правила учета тепловой энергии и теплоносителя п.5.2. Требования к метрологическим характеристикам приборов учета)

Погрешность(%) = (G1-G2)/(G1+G2)*100

Пример, если погрешность одного расходомера, установленная заводом изготовителем ±1%, то суммарная допустимая погрешность составляет ±2%.