При каком режиме кипения интенсивность теплообмена выше. Теплообмен при кипении однокомпонентных жидкостей

Этот вид теплоотдачи отличается высокой интенсивностью и встречается в химической технологии, например, при проведении таких процессов как выпаривание, перегонка жидкостей, в испа­рителях холодильных установок и др. Процесс теплоотдачи при кипении очень сложен и еще недостаточно изучен, несмотря на огромное количество проведенных исследований.

Для возникновения кипения необходимо прежде всего, чтобы температура жидкости была выше температуры насыщения, а также необходимо наличие центров парообразования. Различают кипение на поверхности нагрева и кипение в объеме жидкости. Первый вид кипения обусловлен подводом теплоты к жидкости от соприка­сающейся с ней поверхностью. Кипение в объеме жидкости обуслов­лено наличием внутренних источников теплоты или значительного перегрева жидкости, возникающего, например, при внезапном снижении давления (ниже равновесного). Наиболее важным в химической технологии видом кипения является кипение на по­верхности.

Для передачи теплоты от стенки к кипящей жидкости необходим перегрев стенки относительно температуры насыщения этой жид­кости. На рис. 11-9 показана типичная зависимость коэффициента теплоотдачи и удельной тепловой нагрузки от температурногою5

напора при кипении жидкости Δt= tст -tкіп (tст, tкіп - соответст­венно температура стенки со стороны кипящей жидкости и тем­пература кипения). В области АВ перегрев жидкости мал (Δt < 5 К), мало также число активных центров парообразования - микровпадин на поверхности стенки, в которых образуются зародыши паровых пузырьков, и интенсивность теплообмена определяется в основном закономерностями теплоотдачи свободной конвекции около нагретой стенки,При дальнейшем повыше­нии Δt =tст -t увеличивается число активных центров парообра­зования, и коэффициент теплоотдачи резко возрастает (отрезок ВС на рис). Эту область называют пузырчатым, или ядерным, кипением.

Высокая интенсивность теплообмена при пузырчатом режиме кипения объясняется тем, что турбулизация пограничного слоя у, поверхности стенки пропорциональна числу и объему паровых пузырей, образующихся в микровпадинах на поверхности нагрева. В областях, близких к центрам парообразования), часть жидкости испаряется, образуя паровые пузырьки, которые, поднимаясь и увеличиваясь в объеме, увлекают значительные массы жидкости. На место увлеченной и испарившейся жидкости посту­пают свежие потоки, создавая таким образом интенсивную цирку­ляцию жидкости у поверхности нагрева, что приводит к сущест­венному ускорению процесса теплоотдачи. В точке С коэффициент теплоотдачи достигает максимального значения, соответствующего максимальной удельной тепловой нагрузке (точка О). При дальнейшем увеличении Δt наблюдается резкое снижение коэффициента теплоотдачи. Оно объясняется тем, что при некотором - критическом - значении Δt= Δt кр происходит коалесценция (слияние) образующихся близко друг от друга пузырьков. При этом величина l на рис. становится меньше диаметра пузырьков пара, и у поверхности стенки возникает паровая пленка, создающая дополнительное термическое сопротивление процессу теплоотдачи. Коэффициент теплоотдачи резко снижается (в десятки раз). Конечно, образую­щаяся пленка пара нестабильна, она непрерывно разрушается и возникает вновь, но в итоге это серьезно ухудшает теплообмен. Такой режим кипения называют пленочным. Совершенно очевидно, что пленочный режим кипения крайне нежелателен.

Значения температурного напора, коэффициента теплоотдачи и удельной тепловой нагрузки, соответствующие переходу от пузырькового режима к пленочному, называют критическими

Паровой пузырек образуется в мик­ровпадинах поверхности нагрева. Достигнув определенного диаметра do пузырек отрывается от поверхности. На хорошо смачиваемых поверхностях пузырек отрывается от поверхности нагрева, имея форму шара. Поднимаясь, пузырек увеличивается в объеме вследст­вие испарения жидкости внутрь пузырька, сплющивается и приоб­ретает форму гриба со сложной траекторией подъема. При этом происходят непрерывное дробление и коалесценция пузырьков. Момент отрыва пузырьков соответствует состоянию равенства архимедовой силы, действующей на пузырек, и силы поверхност­ного натяжения жидкости, которая удерживает пузырек на стенке. Если принять, что пузырек при образовании на поверхности стенки имеет форму, близкую к сферической, то в момент отрыва величина do выражается зависимостью

где рж и рп - плотность соответственно жидкости и пара; σ поверхностное натяжение жидкости на границе раздела фаз; β-краевой угол смачивания

Таким образом, транспорт теплоты при пузырчатом кипении состоит из переноса теплоты от стенки к жидкости, а затем жидкостью теплота передается внутренней поверхности пузырьков в виде теплоты испарения. Передача теплоты от стенки непосредст­венно к пузырьку ничтожно мала, так как очень мала поверхность касания пузырьков со стенкой, к тому же низка теплопроводность пара. Для того чтобы теплота от жидкости передавалась пузырькам пара, жидкость должна иметь температуру несколько выше темпе­ратуры пара. Поэтому при кипении жидкость несколько перегрета относительно температуры насыщенного пара над поверхностью кипящей жидкости.

Скорость переноса теплоты при кипении зависит от многих разнообразных факторов (физических свойств жидкости, давления, температурного напора, свойств материала поверхности нагрева и многих других), учесть влияние которых на процесс и свести их в единую зависимость крайне сложно. комплекс многих величин, влияющих на интенсивность переноса теплоты при кипении


10. Лучистый теплообмен. Сложный теплообмен. Может осуществляться через любую среду за счет переноса энергии магнитными волнами инфрокрасной части диапазона. Лучистый теплообмен осуществляется при переносе в-ва через газовую среду, существующую между зоной более и менее нагретого газа. В 1-ую очередб ведут между тв.телами.

Это уравнение при коэф.охвата=1. Если излающая поверхность полностью окружает поглощаемую,

При переносе тепла через газовую среду лучеиспускания относят интенсивность этого переноса при умерен. Т-х осуществляется только в условиях естественной конвекции, т.е. наряду с лучистым теплообменом существует конвективный теплообмен. Суммарная интенсивность переноса тепла. Совместный перенос тепла за счет луч.теплообмена и конвекции наз.сложным теплообменом.


Конец работы -

Эта тема принадлежит разделу:

Тепловые процессы и аппараты. Виды теплообмена и теплообменных пр. Перенос тепла от одного тела к др

Тепло переносится за счет х явлений теплопроводности конвекции и лучеиспувкания теплопроводность перенос тепла за счет дв микрочастиц в газах.. теплообмен может сопровождаться охлаждением или нагреванием м б.. перенос тепла теплопроводность закон фурье произведение т по нормали к изотермам поверхности наз градиентом..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Перенос тепла через однослойную и многослойную стенку
Для плоской однослойной стенки принимают условия, то ее толщина во много раз меньше ширины, длины, высоты. В таком случае при стационарном теплообмене поле внутрен. Стенки можно принять одномерным,

Конвективный перенос теплоты. Уравнение Фурье-Киркгофа
Конвективный перенос теплоты происходит в текучих средах: газах, жидкостях, за счет перемещения макрочастиц, имеющих различные термодинамические потенциалы. С ростом скорости движе

Критерии теплового подобия. Общий вид критериальных уравнений
Nu= -критерий Нуссельта, выражает отношение общей интенсивности переноса тепла при конвективном теплообмене к интенсивности переноса тепла теплопроводностью в пограничном слое этого теплоносителя.

Общий вид критериальных уравнений
Nu=f(Pe,Pr,Re,Fo,Gr,…Г1,Г2..) A,n,m,s,p в данном примере коэф. Опред. Методом подбора при обработке опыт. Данных. -коэф. Теплообмена 7.Теплоотдача, не сопровождающаяся

Теплоотдача при конденсации пара
Этот вид теплоотдачи протекает при изменении агрегатного состояния теплоносителей. Особенность этого процесса состоит прежде всего в том, что тепло подводится или отводится при постоянной температу

Основное уравненение теплопередачи. Правило адитивности термических сопротивлений
При непосредственном соприкосновении теплоносителей теплопередача включает в себя теплоотдачу в одном теплоносителе и теплоотдачу во втором теплоносителе.общую интенсивность процесса хар-ют

Нагревающие агенты и методы их использования
Дымовые(топочные) газы давно используются в качестве нагревательных агентов. Технология сжигания топочных газов зав. От природа сжигаемого топлива. В кач-ве окислителя обычно используют кисл

Охлаждающие агенты и методы их использования
Охлаждение до обыкновенных температур (примерно до 10-30 ⁰С) наиболее широко используют доступные и дешевые охлаждающие агента- воздух и воду. По сравнению с воздухом вода отличается большой

Поверочный расчет теплообменника
Поверочный расчет теплообменника с известной поверхностью теплопередачи заключается, как правило, в определении количества передаваемой теплоты и конечных температур теплоносителей при их заданных

Определение коэф-та теплопередачи м-дом последовательных приближений при расчетах теплообменников
Определение коэф-та теплопередачи проводится в проверочном расчете,который проводится с целью пригодности теплообменника. 1-в соответсвии с выбранным теплообменником определяют реальную сх

Теплообменники смешения
В химических производствах обычно не требуется получать чистый конденсат водяного пара для его последующего использования. Поэтому широко распространены конденсаторы смешения, более простые по уст

Выпаривание
Выпариванием называется концентрирование растворов практически нелетучих или малолетучих веществ в жидких летучих растворителях. Выпариванию подвергают растворы твердых веществ (водные рас

Материальный баланс выпаривания
На выпаривание поступает Gн кг/cек исходного раствора концентрацией xн вес. % и удаляется Gk кг/сек упаренного раствора концентрацией xk

Температура кипения раствора и температурные потери
Обычно в однокорпусных выпарных установках известны давления первичного греющего и вторичного паров, а следовательно, опреде­лены и их температуры. Разность между температурами греющего и вторичног

Движущая сила процесса
Общая разность температур многокорпусной прямоточной установки представляет собой разность между температурой первичного пара, греющего первый корпус, и температурой вторичного пара, поступающего и

Тепловой баланс
D=расход греющего пара; I ,Iг, Iн, Iк – энтальпия вторичного и греющего пара, исходного и упаренного раствора соответственно; Iп.к = с

Расход пара на выпаривание.Опред. оптимального числа корпусов выпарной установки
Q=D(tD“-tD‘)=Drp(1-α),где D-расход греющего пара; α-влагосодержание пара. Q=GнCн(tкон-tн)+W(tw‘-Cвtкон)+Qпотер±Qконцентр.,где Cв-теплоемкость воды. Экономичность выпарной установ

Порядок расчета выпарного аппарата
1-задание должно содержать: прир. р-ра,состав исходного р-ра,его кол-во(расход исходного р-ра, концентрацию р-ренного в-ва(состав)). Исходя из этих данных можно произвести расчеты материального бал

Порядок расчета многокорпусной выпарной установки
Технологический расчет многокорпусной вакуум-выпарной установки проводят в следующей последовательности. 1. Вычислив по уравнению общее количество W воды, выпа­риваемой в установке,

Вертикальные трубчатые пленочные аппараты
Их относят к группе аппаратов, работающих без циркуляции; процесс выпаривания осуществляется за один проход жидкости но кипятильным трубам, причем раствор движется в них в виде восходящей или нисхо

Противоточная выпарная установка
40.Массообменные процессы и аппараты. В химической технологии широко распространены и имеют важ

Методы десорбции
Десорбцию, или отгонку, т. е. выделение растворенного газа из раствора, проводят одним из следующих способов: 1) в токе инертного газа, 2) выпариванием раствора, 3) в вакууме. Пр

Минимальный и оптимальный расход абсорбента
Изменение концентрации в абсорбционном аппарате происходит прямолинейно и следовательно, в координатах У - Х рабочая линия процесса абсорбции представляет собой прямую с углом наклона, тангенс кото

Скорость абсорбции. Интенсификация процесса при абсорбции трудно- и хорошорастворимых газов
M = Ky·F·∆Yср = Kx·F·∆Xср Увеличение средней движущей силы приводит к увеличению скорости всего процесса, к увеличению растворения и

Насадочные абсорберы
Широкие распространение в промышленности в качество абсорберов получили насадочные, заполненные насадкой - твердыми телами различной формы. В насадочной колонне (рис.) насадка укладывается на опорн

Провальные тарелки
В тарелках без сливных устройств газ и жидкость проходят через одни и те же отверстия или щели. При этом вместе с взаимодействием фаз на тарелке происходит сток жидкости на нижерасположенную тарелк

Барботажные тарелки со сливными устройствами(ситчатая, колпачковая, клапанная)
Ситчатые тарелки. Газ проходит сквозь отверстия тарелки и распределяется в жидкости ввиде мелких струек и пузырьков. При малых скоростях газа, жидкость может просачиваться через отврстия тар

Струйные тарелки
1-гидравлиеский затвор;2-переливная перегородка;3-тарелка;4-пластины;5-сливной карман. Из струйных тарелок наиболее распространенной является пластинчатая тарелка. Жидкость

Требования к абсорбентам. Выбор абсорбента
Поглощаемый газ называется абсорбатом (абсорбтив), а жидкость, в которой растворяется газ – абсорбентом. Газы, практически нерастворимые, называются инертными. Требования: 1.Селек

Порядок расчета ректификационной колонны(установки)
Дано: расход жидкой смеси, ее состав(доли веществ в дистилляте, в кубовом остатке. Давление греющего пара, начальная температура смеси. 1) Материальный баланс. Определяем: относит

Сушильные агенты. Выбор сушильного агента и режима сушки
В качестве сушильного агента могут использоватьсянагретый воздух, топочные газы и их смеси с воздухом, инертные газы, перегретый пар. Если не допускается соприкосновение высушиваем

Барабанная сушилка
Барабанная сушилка представляет собой цилиндрический наклонный барабан 4 с двумя бандажами З, которые при вращении барабана катятся по опорным роликам 6. Материал поступает с приподнятого конца бар

Камерная сушилка
В таких аппаратах сушка материала производится периодически при атмосферном давлении. Сушилки имеют одну или несколько прямоугольных камер, в которых материал, находящийся на вагонетках или полках,

Ленточные сушилки
Ленточные сушилки. Для непрерывного перемещения в сушилке высушиваемого материала часто применяют один или несколько ленточных транспортеров. В одноленточных аппаратах обыч

Распылительные сушилки
Для сушки многих жидких материалов находят применение сушилки, работающие по принципу распыления материала. В распылительных сушилках сушка протекает настолько быстро, что материал не успевает нагр

Порядок расчета сушилки
1.Задание:характеристика материала, его состав, начальная влажность, как высушить, конечная влажность, производительность(расход сырья), место проведения сушки. 2.Выбор природы(вида) суши

Конструкции адсорберов периодического и непрерывного действия
Процессы адсорбции могут проводиться периодически(в аппаратах с неподвижным слоем адсорбента) и непрерывно – в аппаратах с движущимся или кипящим слоем адсорбента, а также в аппаратах с неподвижным

При кипении, как и во всех других процессах теплоотдачи, используют уравнение теплоотдачи (закон Ньютона), устанавливающее связь между температурным напором "стенка - жидкость" и тепловым потоком через поверхность теплообмена:

где Q - тепловой поток, Вт; q=Q/F - поверхностная плотность теплового потока, Вт/м2; F - поверхность теплообмена (стенки), м2; - средний по поверхности F коэффициент теплоотдачи, Вт/ (м2К); - температура поверхности теплообмена (стенки), 0С; - температура насыщения жидкости при заданном давлении, 0С.

При этом в качестве температурного напора выступает перегрев стенки:

где T f, max - максимальный перегрев жидкости, 0С.

Таким образом, тепловой поток пропорционален площади F поверхности теплообмена и температурному напору между стенкой и жидкостью.

Коэффициент теплоотдачи

Коэффициент теплоотдачи, Вт/ (м2К), - это коэффициент пропорциональности в законе Ньютона, характеризующий интенсивность теплоотдачи. Величина коэффициента теплоотдачи при кипении зависит от большого числа различных факторов:

а) физических свойств жидкости;

б) чистоты жидкости;

в) ее температуры и давления;

г) геометрической формы, размеров и ориентации в пространстве поверхности теплообмена;

д) материала и шероховатости (чистоты обработки) поверхности;

е) величины перегрева жидкости и т.п.

Поэтому определение коэффициента теплоотдачи при кипении - весьма трудная задача. Различают локальное (в данной точке поверхности) и среднее по поверхности теплообмена значение коэффициента теплоотдачи:

то есть коэффициент теплоотдачи численно равен тепловому потоку, передаваемому через единицу поверхности теплообмена при температурном напоре в 10C (1 К).

Режимы кипения (теплоотдачи)

Механизм кипения и интенсивность теплоотдачи зависят от величины перегрева стенки. Выделяют три основных режима кипения: пузырьковый, переходный и пленочный.

На практике наиболее часто встречается кипение жидкости на твердой поверхности теплообмена, через которую подводится тепловая энергия.

Процесс кипения является частным случаем конвективного теплообмена, в котором происходит дополнительный перенос массы вещества и теплоты паровыми пузырями от поверхности нагрева в объем жидкости.

Пузырьковый режим

Радиус межфазной поверхности пузырька-зародыша пропорционален размеру образующей его микрошероховатости на поверхности стенки. Поэтому в начале пузырькового режима кипения, при незначительном перегреве жидкости, "работают" лишь крупные центры парообразования, поскольку пузырьки-зародыши малых центров имеют радиус меньше критического.

С увеличением перегрева жидкости активизируются более мелкие центры парообразования, поэтому количество образующихся пузырей и частота их отрыва возрастают.

В результате интенсивность теплоотдачи чрезвычайно быстро увеличивается (рис. 3, область 2). Коэффициент теплоотдачи достигает десятков и даже сотен тысяч Вт/ (м2К) (при высоких давлениях).

Это обусловлено большой удельной теплотой фазового перехода и интенсивным перемешиванием жидкости растущими и отрывающимися пузырьками пара. Режим пузырькового кипения обеспечивает наиболее эффективную теплоотдачу. Этот режим применяется в парогенераторах тепловых и атомных электростанций, при охлаждении двигателей, элементов конструкции энергетических, металлургических, химических агрегатов, работающих в условиях высоких температур. Теплоотдача при пузырьковом режиме пропорциональна количеству действующих центров парообразования и частоте отрыва пузырей, которые, в свою очередь, пропорциональны максимальному перегреву 8 ? жидкости и давлению. силу этого средний коэффициент теплоотдачи может быть рассчитан по формуле вида:

где C1, z, n - эмпирические постоянные; ?Tw - перегрев стенки, 0С; . - давление насыщения (внешнее давление жидкости), бар.

Формулу используют в расчетах пузырькового кипения при граничных условиях первого рода.


Рис. 3. Кривые теплоотдачи при кипении: 1 - конвективная область без кипения; 2 - область пузырькового кипения; 3 - переходная область; 4 - область пленочного кипения; 5 - участок пленочного кипения со значительной долей передачи тепла излучением; кр1, кр2 - соответственно точки первого и второго кризисов кипения.

Первый кризис кипения. Переходный режим

При дальнейшем увеличении перегрева (?Tw) интенсивность теплоотдачи, достигнув максимума в критической точке "кр1", начинает снижаться (см. рис.3 область 3) из-за слияния всевозрастающего количества пузырей в паровые пятна. Площадь паровых пятен возрастает по мере увеличения?Tw и охватывает в итоге всю стенку, превращаясь в сплошную паровую пленку, плохо проводящую теплоту.

Таким образом, происходит постепенный переход от пузырькового режима кипения к пленочному, сопровождающийся снижением интенсивности теплоотдачи. Начало такого перехода называют первым кризисом кипения . Под кризисом понимают коренное изменение механизма кипения и теплоотдачи.

Второй кризис кипения. Пленочный режим

При дальнейшем увеличении перегрева (?Tw) интенсивность теплоотдачи, достигнув минимума во второй критической точке "кр2", снова начинает возрастать в области пленочного режима кипения (см. рис.3, области 4 и 5). Такую перемену характера влияния перегрева на теплоотдачу называют вторым кризисом кипения .

В пленочном режиме кипения сплошная пленка пара оттесняет жидкость от поверхности и условия теплообмена стабилизируются, а коэффициент теплоотдачи перестает снижаться, оставаясь практически постоянным. Тепловой же поток, согласно закону Ньютона (3), снова начнет увеличиваться из-за возрастания температурного напора?Tw. Интенсивность теплоотдачи в пленочном режиме кипения весьма низка, и это приводит к сильному перегреву поверхности теплообмена.

Кипение в большом объёме

Тепловой поток, передаваемый от поверхности к кипящей воде можно однозначно связать с перепадом температур между стенкой и жидкостью:

где - тепловой поток;

Температура стенки;

средняя температура жидкости.

Эта зависимость характеризует теплоотдачу от обогревающей поверхности к жидкости и называется кривой кипения (рисунок 4).

Рис. 4.

Можно выделить пять характерных областей:

1. До точки. Область конвекции;

2. Между точками и. Область неразвитого пузырькового кипения. Характеризуется повышением интенсивности теплообмена за счет переноса образующихся пузырьков в ядро потока;

3. Между точками и. Область развитого пузырькового кипения. Характеризуется высокой интенсивностью теплообмена за счет переноса образующихся пузырьков в ядро потока. Интенсивность нарастает по мере увеличения плотности пузырьков;

4. Между точками и. Область неустойчивого пленочного кипения. Характеризуется "сливанием" отдельных пузырьков в пристенной области. Из-за уменьшения центров парообразования, а также нарастания паровой пленки у обогревающей поверхности, теплоотдача падает;

5. От точки. Область устойчивого пленочного кипения. Характеризуется покрытием обогревающей поверхности сплошной пленкой пара и, как следствие, низкой теплоотдачей.

Данную кривую можно получить, увеличивая и поддерживая температуру греющей стенки. В этом случае, по мере увеличения последовательно сменяются пять областей кипения.

В случае увеличения и поддержания теплового потока, порядок смены режимов кипения будет иным. Сначала последовательно сменят друг друга режимы конвекция не кипящей жидкости (до т.), поверхностного кипения (между точками и) и развитого пузырькового кипения (между точками и). При дальнейшем увеличении теплового потока обогревающая поверхность быстро покрывается паровой пленкой (от точки до точки), что сопровождается увеличением температур и через короткое время, после достижения стационарного состояния, кипение характеризуется высокой температурой стенки (от точки). Данное явление называется кризисом теплоотдачи, а тепловой поток, при котором начинается резкий рост температур (-) - первым критическим тепловым потоком, или, чаще, просто - критическим тепловым потоком.

Если после достижения точки тепловой поток начинает уменьшатся, то пленочный режим кипения сохраняется до достижения точки. В случае дальнейшего уменьшения теплового потока пленочный режим кипения сменяется на пузырьковый (от точки до точки), и температура греющей поверхности быстро снижается. Тепловой поток, при котором пленочный режим кипения сменяется на пузырьковый (-), называется вторым критическим тепловым потоком.

Теплообмен при кипении жидкости широко применяется в судовой энергетики - это и производство пара в основных и вспомогательных котлах, ядерных реакторах, испарителях морской воды, в испарителях и воздухоохладителях холодильных установок.

Различают кипение на твердой поверхности теплообмена, через которую идёт поток тепла и кипение в объеме, когда тепловой поток индуцируется непосредственно в объем жидкости.

На практике гораздо более распространен вид кипения жидкости, контактирующей с теплообменной поверхностью.

Кипение - это процесс интенсивного образования пара при условии постоянного подвода тепла. Кипение возникает при небольшом перегреве жидкости, когда температура жидкости выше температуры насыщения при данном давлении. Величина необходимого перегрева зависит от физических свойств жидкости, ее чистоты, давления, а также от состояния поверхности, через которую в жидкость идет поток тепла. Чем чище жидкость, тем больше ее необходимо перегреть до возникновения кипения. Это объясняется трудностью самопроизвольного образования начальных зародышевых пузырьков пара из-за необходимости преодоления энергии взаимного притяжения молекул в жидкости.

Если в жидкости присутствует растворенный газ (например, воздух) или мелкие взвешенные частицы, процесс кипения начинается практически сразу же после достижения жидкостью температуры насыщения. Газовые пузырьки, а также находящиеся в жидкости твёрдые частицы служат готовыми начальными зародышами паровой фазы.

Величина необходимого перегрева также снижается, если теплообменная поверхность (стенки и дно сосуда, стенки трубы), через которую в жидкость поступает тепловой поток, имеет микрошероховатости. При подводе потока тепла через такую поверхность наблюдается образование пузырьков в отдельных точках поверхности. Эти точки называются ЦЕНТРАМИ ПАРООБРАЗОВАНИЯ. Процесс кипения при этом начинается в слоях жидкости, контактирующих с поверхностью теплообмена и имеющих одинаковую с ней температуру. Образование пузырьков пара происходит в перегретом пограничном слое жидкости и только в центрах парообразования. Паровые пузырьки растут, отрываются от поверхности и всплывают.

Но не все пузырьки обладают способностью к дальнейшему росту, а только те, радиус которых превышает значение критического радиуса парового зародыша Rmin. Величина Rmin зависит от температуры поверхности и резко уменьшается при росте температуры стенки. Поэтому увеличение тепловой нагрузки, вызывающее возрастание температуры поверхности, приводит к росту числа действующих центров парообразования, и процесс кипения становится более интенсивным.

Всё тепло, поступающее в жидкость, расходуется на образование пара:

где r - теплота парообразования, Дж/кг.

G"" - количество пара, образовавшегося при кипении, кг/с.

Характер развития и отрыва пузырьков от теплообменной поверхности в большой мере зависит от того, смачивает жидкость поверхность или не смачивает. Если кипящая жидкость смачивает поверхность нагрева, то паровые пузырьки имеют тонкую ножку и от поверхности отрываются легко. Если жидкость не смачивает поверхность, то паровые пузырьки имеют широкую ножку и отрываются только верхняя часть пузырька

Рис. 14.1. Форма паровых пузырьков на смачиваемой (а)
и несмачиваемой (б) поверхностях

Рост пузырьков до отрыва и движение их после отрыва вызывают интенсивную циркуляцию и перемешивание жидкости в пограничном слое из-за чего резко возрастает теплоотдача от поверхности нагрева к жидкости. Такой режим кипения называется пузырьковым. При пузырьковом кипении площадь соприкосновения ножки пузырька с поверхностью теплообмена мала и поэтому тепловой поток практически без ограничений передаётся жидкости и расходуется на парообразование и на небольшое повышение температуры в объеме жидкости (например, для воды при атмосферном давлении перегрев в объеме обычно составляет 0,2…0,4 °C). Для практики пузырьковое кипение представляет наибольший интерес.

Отвод тепла в режиме пузырькового кипения является одним из наиболее совершенных методов охлаждения поверхности нагрева. Он находит широкое применение в атомных реакторах, при охлаждении реактивных двигателей, когда теплообменная поверхность работает с высокой плотностью теплового потока.

В режиме пузырькового кипения идет производство пара в парогенераторах и происходит эксплуатация основных и вспомогательных котлов.

Интенсивность пузырькового кипения зависит от величины удельной тепловой нагрузки q, Вт/м 2 , подводимой к поверхности теплообмена. Однако тепловой поток невозможно увеличивать беспредельно. С возрастанием величины теплового потока число действующих центров парообразования непрерывно увеличивается, и их становится так много, что отдельные пузырьки могут слиться в паровой слой, который периодически разрывается, а образовавшийся пар прорывается в объем кипящей жидкости. Такой режим кипения называется плёночным. Возникновение плёнки, вместо отдельных пузырьков называется первым кризисом кипения. Для воды при атмосферном давлении кризис кипения наступает при плотности теплового потока q = 1,2·10 6 Вт/м 2 , этому тепловому потоку соответствует критическое значение температурного напора Dtкр = 25…35° C.

Причина возникновения кризиса кипения заключается в следующем. Слияние пузырьков, не успевших оторваться от теплообменной поверхности, образование плёнки пара изменяют условия теплообмена между жидкостью и стенкой. Стенка, к которой подводится тепловой поток, перестаёт омываться жидкостью, так как отделена от жидкости плёнкой пара, и поэтому поступающий к стенке тепловой поток только малую часть свою передается пару из-за низкой теплопроводности пара, остальная часть теплового потока расходуется на разогрев стенки. Температура стенки за доли секунды возрастает на сотни градусов. И если стенка выполнена из тугоплавкого материала, кризис заканчивается новым стационарным состоянием - плёночным кипением при очень высокой температуре теплообменной поверхности, и соответственно при новом, очень высоком значении разности температур Dt между температурной стенки и температурой насыщения, остающейся постоянной, так как её значение зависит только от величины давления. Режим кипения пузырьковый (рис. 14.2,а ) и пленочный (рис. 14.2,б ) представлен на рис. 14.2.

Рис. 14.2. Режимы кипения: а – пузырьковый, б – переходный, в – пленочный

На рисунке запечатлен также (см. рис. 14.2,б ) момент перехода от пузырькового к плёночному кипению. При плёночном режиме кипения перенос тепла от поверхности нагрева к жидкости осуществляется путем теплопроводности и конвективного теплообмена в паровой плёнке, а также излучения сквозь плёнку пара. По мере увеличения температуры поверхности нагрева (и соответственно, роста Dt) все большая часть тепла в жидкость передаётся за счёт излучения. Интенсивность теплообмена при плёночном режиме кипения невелика. Пар, накапливающийся в паровой плёнке, периодически пульсациями отрывается в виде больших пузырей.

На графике 14.3 показаны пузырьковый и плёночный режимы кипения. Из графика видно, что плавного перехода от одного режима к другому нет. Если мы увеличиваем плотность теплового потока, это приводит к увеличению интенсивности теплообмена, но одновременно немного возрастает и температура поверхности (и соответственно Dt). Увеличение тепловой нагрузки свыше допустимого предела вызывает кризис кипения. Этот кризисный переход на рис. 14.3 показан стрелкой и происходит как перескок с кривой пузырькового кипения на линию плёночного кипения при том же значении тепловой нагрузки qкр1. Обычно кризис кипения заканчивается расправлением (пережогом) поверхности нагрева.

Рис. 14.3. Зависимость критической тепловой нагрузки от ∆t

Однако если разрушения поверхности не произошло, и установился плёночный режим кипения, то снижение плотности теплового потока не даст быстрого результата, и плёночный режим будет сохраняться. При снижении теплового потока процесс будет происходить по линии плёночного кипения. И только если мы снизим нагрузку до значения qкр2, возникнут предпосылки для смены режима. Эта смена режима также имеет кризисный характер и называется вторым кризисом кипения. При снижении тепловой нагрузки до значения qкр2 жидкость в отдельных точках начинает касаться теплообменной поверхности, из-за чего увеличивается отвод тепла от поверхности, что приводит к быстрому охлаждению поверхности нагрева. Происходит смена режимов и устанавливается пузырьковое кипение. Этот обратный переход также осуществляется "перескокам" по стрелке с кривой плёночного на линию пузырькового кипения при qкр2. Для воды при атмосферном давлении значение критической плотности теплового потока при этом равно qкр2 = 25000 Вт/м 2 .

Итак, оба перехода: от пузырькового к плёночному и обратно носит кризисный характер. Они происходят при тепловых потоках qкр1 и qкр2 соответственно. В этих условиях переходный режим кипения стационарно существовать не может, потому что переход осуществляется практически мгновенно, за доли секунды.

На практике широко применяется кипение жидкости движущейся внутри труб или каналов различной формы. Из-за движения жидкости в ограниченном объеме возникают новые особенности. На развитие процесса влияет скорость вынужденного движения жидкости или пароводяной смеси и структура двухфазового потока. Характер движения смеси воды и пара внутри труб представлен на (рис. 14.4)

Рис. 14.4. Характер движения пароводяной смеси в трубах

В зависимости от содержания пара, скорости смеси и расположения труб в пространстве характер движения может быть в виде однородной эмульсии (см. рис. 14.4а) или в виде самостоятельных потоков воды и пара (см. рис. 14.4б , 14.4д ).

Если труба расположена вертикально, то самостоятельный поток пара будет двигаться по оси трубы, в центре, а плёнка воды - по периферии, по стенке трубы. При горизонтальном расположении труб пар двигается в верхней части трубы, вода - в нижней.

Экспериментальные данные по кипению были обобщеныЛабунцовым Д.А. Им предложено критериальное уравнение для расчета теплоотдачи при пузырьковом кипении.

где - критерий Нуссельта, характеризующий теплообмен при кипении на границе стенка – жидкость;

Критерий Рейнольдса, характеризующий состояние сил инерции и сил вязкости при кипении;

Характерный линейный размер, пропорциональный отрывному диаметру пузыря, м;

Скорость кипения, м/с;

Cp - теплоемкость жидкости, кДж/(кг·К);

r - теплота парообразования, кДж/кг;

s - поверхностное натяжение, Н/м;

r", r"" - плотность жидкости и пара при данной температуре насыщения, кг/м 3 ;

Ts - абсолютное значение температуры насыщения, К.

Значения постоянных С и n принимаются равными:

Значения всех физических параметров, входящих в критерии подобия следует принимать при данной температуре насыщения. В связи со сложностью и громоздкостью расчётов по определению коэффициента теплоотдачи с помощью критериального уравнения (14.2), на практике для вычисления коэффициента теплоотдачи в режиме пузырькового кипения широко используют зависимость, полученную при кипении воды М.А. Михеевым:

где q - поверхностная плотность теплового потока, Вт/м 2 ;

p - абсолютное давление пара, Па.

Пузырьковое кипение характеризуется высокой интенсивностью теплоотдачи и соответственно возможностью отвода с единицы поверхности значительных потоков тепла, ограниченных только значением критического теплового потока qкр1. Величину qкр1 в условиях естественной конвенции на горизонтальных трубах и плитках можно определить из формулы:

При плёночном режиме кипения кипящая жидкость отделена от поверхности нагрева паровой пленкой. Поэтому температура поверхности tc значительно превышает температуру насыщения ts. Из-за высоких значений температуры теплообменной поверхности между ней и жидкостью возникает лучистый теплообмен. Интенсивность конвективного теплообмена при плёночном кипении определяется термическим сопротивлением паровой плёнки. Характер движения пара в плёнке и её толщина зависят от размеров и формы поверхности нагрева и ее расположения в пространстве. Расчет теплоотдачи при пленочном кипении на горизонтальных трубах можно вести по зависимости

Все физические параметры в этой формуле (за исключением плотности жидкости r") относятся к правой фазе. Их следует выбирать по средней температуре пара

При плёночном кипении на поверхности вертикальных труб опытные данные обобщены Лабунцовым Д.А:

Физические свойства пара здесь также следует выбирать по средней температуре пара.

Кипением называется процесс парообразования, происходящий при температуре кипения (насыщения) в толще жидкости. При этом поглощается теплота фазового перехода, вследствие чего для поддержания процесса необходимо непрерывно подводить тепло, т.е. кипение связано с теплообменом. При кипении паровая фаза образуется в виде пузырей. В нагретой не кипящей жидкости в отсутствие вынужденного течения теплота через пограничный слой передается свободной конвекцией и теплопроводностью. При кипении перенос массы вещества и теплоты из пограничного слоя в объем жидкости осуществляется еще и паровыми пузырьками, которые, всплывая, вызывают интенсивное перемешивание жидкости и турбулизацию пограничного слоя.Поскольку обычно подвод теплоты осуществляется через поверхность теплообмена, то и пузыри возникают на этой поверхности. Если поверхность погружена в большой объем жидкости, вынужденное движение которой отсутствует, то такой процесс называют кипением в большом объеме. В теплоэнергетике чаще всего встречаются процессы кипения на поверхности нагрева (поверхности труб, стенки котлов и т.п.).

Режимы кипения. Различают два режима кипения: пузырьковый режим, когда пар образуется на поверхности в виде отдельных периодически зарождающихся пузырьков, и пленочный режим кипения, когда количество пузырьков у поверхности становится настолько большое, что они сливаются в единую паровую пленку, через которую теплота от нагретой поверхности передается в объем жидкости теплопроводностью. Поскольку коэффициент теплопроводности пара примерно в 30 раз меньше такового для воды, то термическое сопротивление теплопроводности через паровую пленку резко возрастает, что может привести к пережогу поверхности теплообмена. Поэтому этот режим в теплоэнергетических установках не допускается.

Условия, необходимые для возникновения процесса кипения . Для возникновения кипения необходимо и достаточно два условия: наличие перегрева жидкости относительно температуры насыщения при давлении жидкости и наличие центров парообразования, в качестве которых могут выступать различные включения в жидкости (твердые частицы и пузырьки газов), а также углубления и впадины на поверхности теплообмена, что связано с шероховатостью.

Пусть жидкость находится в сосуде с обогреваемым дном. Если жидкость кипит, то температура пара над жидкостью равна . Температура в самой жидкости всегда несколько больше . По мере приближения к обогреваемому дну температура практически не изменяется. Лишь в непосредственной близости от дна происходит ее резкое увеличение до .

Из рисунка следует, что наибольший перегрев () наблюдается у поверхности теплообмена, но здесь же находятся центры парообразования в виде шероховатости. Этим и объясняется, почему пузыри образуются именно на поверхности теплообмена.


Для того чтобы пузырек развивался, т.е. увеличивался в объеме за счет испарения жидкости с поверхности пузырька во внутрь него, давление пара в нем должно быть больше давления, обусловленного окружающей жидкостью и силой поверхностного натяжения.

Давление и температура насыщения связаны жесткой зависимостью: чем больше давление, тем выше температура насыщения. Отсюда становится понятно, почему одним из условий возникновения кипения (образования пузырьков пара) является перегрев жидкости. Объем пузырька увеличивается до тех пор, пока подъемная сила, стремящаяся оторвать его, не будет больше сил, удерживающих его на поверхности. Размер пузырька в момент его отрыва характеризуется отрывным диаметром. Оторвавшийся пузырь перемещается кверху, продолжая увеличиваться в объеме. На поверхности раздела жидкость – пар пузырек лопается.

Поскольку пузыри возникают, растут и отрываются на поверхности теплообмена, то они тем самым разрушают пограничный слой, который является основным термическим сопротивлением. Поэтому теплоотдача при кипении является высокоинтенсивным процессом. Для воды, например, коэффициент достигает (10 … 40) 10 3 Вт/(м 2 ×К).

В процессе кипения поверхность теплообмена контактирует частично с паровой, частично с жидкой фазой. Но , поэтому теплота в основном передается жидкой среде, т.е. идет на ее перегрев, и лишь затем перегретая жидкость испаряется с поверхности пузырей во внутрь их.

На рисунке приведена зависимость коэффициента от (перегрева жидкости).

Можно выделить следующие области кипения. При небольших температурных напорах теплоотдача определяется в основном условиями свободной конвекции, так как количество образующих пузырей невелико и они не оказывают существенного воздействия на пограничный слой – это область конвективного кипения I. В этой области коэффициент теплоотдачи пропорционален . С ростом перегрева жидкости все меньшая шероховатость может служить центрами парообразования, а это приводит к увеличению их числа, и, кроме того, увеличивается частота отрыва пузырей в каждом центре парообразования. Это вызывает усиление циркуляции в пограничном слое, вследствие чего теплоотдача резко возрастает. Наступает развитый пузырьковый режим кипения (область II). пропорционален .

С дальнейшим ростом температурного напора () число пузырей становится настолько большим, что они начинают сливаться, в результате чего все большая часть поверхности будет соприкасаться с паровой фазой, теплопроводность которой ниже, чем жидкости. Поэтому теплоотдача, достигнув максимума, начнет снижаться (переходный режим III) до тех пор, пока не образуется сплошная паровая пленка, отделяющая жидкость от поверхности нагрева. Такой режим кипения называется пленочным (область IV). В последнем случае коэффициент практически не зависит от .

На рисунке представлена экспериментально полученная зависимость коэффициента теплоотдачи от плотности теплового потока

при кипении воды в большом объеме в условиях свободной конвекции.

Из рисунка следует, что с увеличением плотности теплового потока коэффициент теплоотдачи возрастает (участок О – А). Этот участок соответствует пузырьковому режиму кипения. При достижении

плотности теплового потока = Вт/м 2 коэффициент теплоотдачи резко уменьшается (линия А – Г) – пузырьковый режим сменяется пленочным. Участок Г–Д соответствует пленочному режиму. Явление перехода пузырькового режима кипения в пленочный называют

первым кризисом кипения (). При переходе от пузырькового режима к пленочному значительно возрастает перепад температур . Обратный переход от пленочного к пузырьковому кипению происходит при плотности теплового потока Вт/м 2 (линия Б – С), который примерно в 4 раза меньше . Явление перехода от пленочного кипения к пузырьковому называют вторым кризисом кипения (). Участок кривой А – Б характеризует переходный режим, здесь могут сосуществовать одновременно и пузырьковый и пленочный режимы на различных частях поверхности нагрева.

Различают кипение жидкости на твердой поверхности теплообмена, к которой извне подводится тепло, и кипение в объеме жидкости.

При кипении на твердой поверхности образование паровой фазы наблюдается в отдельных местах этой поверхности (по Х. Кухлингу коэффициент теплоотдачи á – кипящая вода – металлическая стенка находится в пределах от 3500 до 5800 Вт/(м 2 ⋅К).

При объемном кипении паровая фаза возникает самопроизвольно (спонтанно) непосредственно в объеме жидкости в виде отдельных пузырьков пара. Объемное кипение может происходить лишь при значительном перегреве жидкой фазы относительно температуры насыщения при данном давлении. Например, значительный перегрев может быть получен при быстром сбросе давления в системе.

От механизма теплоотдачи при конвекции однофазной жидкости механизм теплообмена при пузырьковом кипении отличается наличием дополнительного переноса массы вещества и тепла паровыми пузырями из пограничного слоя в объем кипящей жидкости.

Для возникновения процесса кипения необходимо выполнение двух условий:

Наличие перегрева жидкости относительно температуры насыщения;

Наличие центров парообразования.

Перегрев жидкости имеет максимальную величину непосредственно у обогреваемой поверхности теплообмена, так как на ней находятся центры парообразования в виде отдельных неровностей стенки, пузырьков воздуха, пылинок и пр.

Кипение, при котором пар образуется в виде периодически зарождающихся и растущих пузырей, называют пузырьковым кипением.

С увеличением теплового потока до некоторой величины отдельные паровые пузырьки сливаются, образуя у стенки сплошной паровой слой, периодически прорывающийся в объем жидкости. Такой реж им называют пленочным кипением.

Теплоотдача при пузырьковом кипении жидкости в условиях свободного движения

Коэффициент теплоотдачи по Д.А. Лабунцову:

α кип св. дв. = С ⋅ λ ⋅ Re n ⋅ Pr 1/3 /l , Вт/м 2 ⋅К,

где: l – характерный линейный размер пузырька пара в момент зарождения, в м.

Физические параметры, входящие в критерии подобия, определены при температуре насыщения.

Значения постоянных при кипении воды составляют:

при Re ≤ 0,01, C = 0,0625, n = 0,5;

при Re > 0,01, C = 0,125, n = 0,65.

Зависимость справедлива в области значений величин:

Re = 10 -5 ÷ 10 +4 ; Pr = 0,86 ÷ 7,6; W ≤ 7 м/с;

и при объемном паросодержании – â ≤ 70% для широкого диапазона давлений насыщения (до околокритических давлений).

Коэффициент теплоотдачи по М.А. Михееву:

α кип св. дв. = 33,4∆t 2,33 ⋅ Р 0,5 , Вт/м 2 ⋅К,

где Р – давление воды в барах.

Зависимость применима для воды в диапазоне давлений 1 ÷ 40 бар (0,1-4,0 МПа).

Теплоотдача при пузырьковом кипении в условиях вынужденной конвекции в трубах

В этом случае интенсивность теплообмена определяется взаимодействием пульсационного движения жидкости, вследствие парообразования и возмущений, проникающих из объема жидкости, обусловленных вынужденной конвекцией. Интерполяционная формула Д.А. Лабунцова для теплоотдачи из пузырьковом кипении в условиях вынужденной конвекции в трубах имеет вид:

α/α w = 4α w /4α w + α q q , где:

α g – коэффициент теплоотдачи, рассчитанный по формулам развитого кипения (когда скорость не влияет на теплообмен);

α w – коэффициент теплоотдачи, рассчитанный по формулам конвективного теплообмена однофазной жидкости (когда q не влияет на теплообмен).

Зависимость применима:

В интервале значений α q /α w от 0,5 до 2,0, (при величине этого отношения, меньшей 0,5 - α w = α, а при большей 2,0 - α q = α);

При средних объемных паросодержаниях, не превышающих 70% (при этом коэффициент теплоотдачи относится к разности температур t c – t н).

Теплоотдача при пленочном кипении жидкости

Пленочное кипение возникает при наличии большого количества центров парообразования, при котором паровые пузырьки сливаются, образуя у поверхности теплообмена сплошной слой пара, периодически прорывающийся в объем жидкости. В этом случае жидкость отделена от обогреваемой поверхности паровым слоем. Тепловой поток к поверхности раздела фаз проходит через малотеплопроводный слой пара. При пленочном кипении жидкости в условиях свободного движения величина коэффициента теплоотдачи мало изменяется с изменением величины теплового потока.

Через паровую пленку, кроме тепла за счет конвекции и теплопроводности, проходит и лучистое тепло. Поэтому на коэффициент теплоотдачи на пленочном кипении оказывают влияние излучение поверхности теплообмена, излучение поверхности жидкости и излучение паров. Доля лучистого переноса тепла резко увеличивается по мере увеличения перегрева жидкости. Обе формы переноса тепла – конвективным теплообменом и излучением – оказывают взаимное влияние друг на друга. Оно проявляется в том, что пар, образующийся благодаря излучению, приводит к утолщению паровой пленки и соответствующему уменьшению интенсивности переноса тепла за счет конвекции и теплопроводности.

При пленочном кипении насыщенной жидкости тепловой поток, отводимый от поверхности нагрева, расходуется не только на испарение слоев жидкости, расположенных на границе паровой пленки. Часть отводимого тепла идет также на перегрев пара в пленке, так как средняя температура пара внутри пленки выше температуры насыщения.

При пленочном кипении недогретой жидкости тепло, которое проходит через паровую пленку с поверхности кипения, частично передается в объем жидкости путем конвекции. Интенсивность конвективного переноса тепла в объем жидкости зависит от недогрева и скорости циркуляции жидкости.

В котлах прямоточного типа технологическая вода поступает в недогретом состоянии, а выходит в виде перегретого пара. В таком котле по мере течения пароводяной смеси коэффициент теплоотдачи изменяется: по законам конвекции однофазового потока на входном участке; по законам конвекции и кипения пузырькового режима на промежуточном участке; по законам кипения пленочного режима на выходном участке. При пленочном кипении теплоотдача значительно меньше, чем при пузырьковом. Однако при высоких давлениях абсолютная величина теплоотдачи становится значительной. Поэтому пережога кипятильных труб (прогара поверхности) не происходит, т.е. состояние поверхности нагрева и в этом случае остается управляемым.

Коэффициент теплоотдачи при ламинарном движении паровой пленки на вертикальной стенке по В.П. Исаченко:

α = С 4 √(λ 3 n ⋅ r ⋅ ρ n ж − ρ n ) ⋅ g /(µ n ⋅ ∆t ⋅ H)) , Вт/(м 2 ⋅К),

при t = t н (температура насыщения воды) и скорости на границе раздела фаз – W гр = 0, постоянный множитель С = 0,667;

при градиенте скорости dw = 0, постоянный множитель С = 0,943.

В первом случае жидкость неподвижна, во втором случае – скорость движения жидкости равна скорости движения пара на границе раздела фаз.

Коэффициент теплоотдачи при ламинарном движении паровой пленки при кипении на наружной поверхности горизонтального цилиндра по В.П. Исаченко:

α = С 4 √(λ 3 n ⋅ r ⋅ ρ n ж − ρ n ) ⋅ g /(µ n ⋅ ∆t ⋅ d)) , Вт/(м 2 ⋅К),

В этом случае С равно соответственно 0,53 (жидкость неподвижна) и 0,72 (скорость движения жидкости равна скорости движения пара на границе раздела фаз).

Приведенные зависимости теплоотдачи при ламинарном движении паровой пленки учитывают перенос тепла по сечению пленки путем теплопроводности. Лучистая (радиационная) составляющая коэффициента теплоотдачи (α р) должна определяться отдельно (см. раздел 7.3.4.)

Коэффициент теплоотдачи при турбулентном движении паровой пленки при кипении на вертикальной стенке по Д.А. Лабунцову:

α = С ⋅ (λ/H)(Gr ⋅ Pr) г 1 /3 Вт/(м 2 ⋅К),

где: применительно к пленочному кипению сила, определяющая движение пара в пленке, равна g*(ρ ж − ρ n ); постоянный множитель С = 0,25; физические свойства относятся к средней температуре паровой пленки (на что указывает индекс «Г»).

Критерий Грасгофа имеет вид Gr = (gl 3 /ν n 2)*(ρ ж − ρ n )/ρ ж

Зависимость применима при (Gr ⋅ Pr) г ≥ 2 ⋅ 10 7 .