Отрицательное вещество. Учёные продемонстрировали вещество с отрицательной эффективной массой

Очередная «научная» сенсация из-за рубежа заставила вздрогнуть – настолько глупой она оказалась. Некие учёные заявили, что смогли, мол, добиться эффекта «отрицательной массы», а сетевые журналисты разнесли эту апрельскую шутку по изданиям. Проанализируем статью Ильи Хель из hi-news.ru об этом событии.

В новости говорится, что физики Вашингтонского университета создали жидкость с отрицательной массой. Признаком такой массы физики считают вот что: «Толкните ее, и, в отличие от всех физических объектов в мире, которые мы знаем, она не ускорится по направлению толчка. Она ускорится в обратную сторону». Такое заявил Майкл Форбс, доцент, физик и астроном Вашингтонского университета, а само исследование появилось в Physical Review Letters.

Дальше поясняется, что гипотетически вещество, якобы, может иметь отрицательную массу, мол, в том же смысле, в котором электрический заряд может быть как отрицательным, так и положительным. А иллюстрацией этому физики приводят «Второй закон» Исаака Ньютона – сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение.

Дальше, видимо, сам Илья Хель разъясняет этот «закон»: «Если вы толкнете объект, он ускорится в направлении вашего толчка. Масса ускорит его в направлении силы». А Форбс утверждает, что «мы привыкли именно к такому положению дел» и добавляет: «С отрицательной массой, если вы что-то толкнете, оно ускорится по направлению к вам».

Так вот, уважаемые физики из США слабо знают физику. Давайте разберёмся в их заявлениях. Во-первых, нет ни одной работы в мире, в которой бы была раскрыта физическая сущность массы. Во-вторых, в мире нет ни одного определения этой физической величины. То есть никто в мире на сегодняшний момент не знает, что такое масса. Поиск определения и выявление сущности массы – это одна из самых актуальных задач современной физики.

Как выходят из этой ситуации физики? Они выводят массу из «Второго закона» Ньютона, того самого, который и упомянут в статье. Однако, видимо, эти физики не читали работы Ньютона. А он ввёл ТАКУЮ массу как коэффициент пропорциональности, а не как физическую величину. То есть с массой, взятой из «Второго закона» Ньютона, никакие операции производить нельзя.

Сегодня массой обозначают инерцию – а она как раз и препятствует ускорению, то есть, по версии авторов статьи, ведёт себя как отрицательная масса. И эта ошибка – следствие непонимания физиками из США физической сущности массы.

Теперь о самом «Втором законе» Ньютона. Это не закон. Это обычное выражение для новой физической величины, которая в этом выражении обозначена буквой «F» и названа словом «Сила». Таким образом записываются многие физические величины, например, l = vt (путь равен произведению скорости на время), или S = ab (площадь равна произведению длины на ширину) и т.д.

На самом деле это не так. Даже если придерживаться «законов» Ньютона, то из них видно, что масса порождает центральную силу гравитации, то есть масса обладает центрально-стремительными свойствами, где есть только 0 и бесконечность. Никаких плюсов и минусов. Поэтому физика давно пришла к выводу: масса может быть либо равна нулю, либо иметь положительное значение.

Теперь поясню, что такое масса. Работая над Единой теорией поля, мне удалось несколько продвинуться в этом направлении. Масса – это сложная физическая величина, в состав которой входит: 1) количество частиц в «теле», 2) их движение, 3) геометрия траектории движения, 4) вероятность нахождения частиц в том или ином месте этой траектории. И самое главное – у одного тела существует бесконечное количество масс. Это свойство открыл в XIX веке известный физик Мах, но тогда он не смог его объяснить.

Поэтому, воздействуя на массу силой, по направлению её движения нельзя судить о знаке этой массы. Приведу пример. Если взять вращающееся тело – волчок, – и приложить к нему силу, то тело двинется в направлении, перпендикулярном приложенной силе. И это свойство гироскопа проходят по физике в школе. Вот вам и отрицательная масса! Физики из США просто не ходили в 8 класс.

Более того, они сами описывают свой эксперимент, который они проводили с вращающимся телом. Вот как описывается работа «гениев»: «Вместе с коллегами он создал условия для отрицательной массы, охлаждая атомы рубидия до состояния практически абсолютного нуля и создавая тем самым конденсат Бозе – Эйнштейна. В этом состоянии, предсказанном Шатьендранатом Бозе и Альбертом Эйнштейном , частицы движутся очень медленно и, следуя принципам квантовой механики, ведут себя как волны. Они также синхронизируются и движутся в унисон в виде сверхтекучей жидкости, которая течет без потери энергии».

Не обращайте внимания на страшные слова типа «конденсат». Смотрите в суть. Здесь снова фатальная ошибка. Автор соотносит низкую температуру со скоростью движения частиц, мол, они движутся медленно.

Но температура – это не скорость движения частиц в потоке, а скорость движения части в перпендикулярном ему направлении! Например, если жидкость течёт параллельно стенке, то никакого давления на неё она не осуществляет. Давление – это результат перпендикулярного удара по стенке сосуда. Это нам прекрасно донесли преподаватели в институте на кафедре «Ракетные двигатели». В них скорость потока – главный показатель, с которым работают.

Поэтому низкотемпературным является ламинарный поток, а высокотемпературным – турбулентный. И ничего здесь нет, связанного с конденсатом.

Дальше: «Под руководством Питера Энгельса, профессора физики и астрономии Вашингтонского университета, ученые на шестом этаже Вебстер-Холла создали эти условия, используя лазеры для замедления частиц, сделав их более холодными и позволив горячим, высокоэнергетическим частицам ускользнуть подобно пару, еще больше охладив материал».

Здесь как раз и описывается то, что лазерами выбиты частицы, обладающие излишним поперечным градиентом.

Дальше: «Лазеры захватили атомы , как если бы они находились в чаше размером менее ста микрон. На этом этапе сверхтекучий рубидий имел обычную массу. Разрыв чаши позволил рубидию вырваться, расширяясь по мере того, как рубидий в центре проталкивался наружу».

В переводе на общепонятный язык, это означает, что атомы рубидия были помещены в интерференционную структуру, создаваемую лазерами. Эта структура имеет сложную геометрию скоростей внутри себя. Здесь нельзя говорить о каком-либо одном направлении.

Дальше: «Чтобы создать отрицательную массу, ученые применили второй набор лазеров, которые толкали атомы назад и вперед, меняя их спин. Теперь, когда рубидий выбегает достаточно быстро, он ведет себя так, будто имеет негативную массу. "Толкните его, и он ускорится в обратном направлении", – говорит Форбс. "Будто рубидий бьется о невидимую стену"».

Здесь выходит на сцену ещё одна физическая величина – спин. Работая над книгой «Вакуум: концепция, строение, свойства» , по поводу спина мне пришлось консультироваться на кафедре физики одного из ведущих физических институтов страны. Руководитель кафедры сказал мне примерно так: «Я занимаюсь спином больше двадцати лет, кандидатскую и докторскую писал о нём, лучше меня специалистов нет, но и я не могу объяснить, что такое спин».

И он прав. Не существует чёткого понятия, что такое спин. Поэтому невозможно целенаправленно поменять то, природу чего не понимаешь. Пример: никто не знает языка марсиан, поэтому никто не может поменять часть слов этого языка.

В моей интерпретации, спин – это показатель возвращения системы в исходное состояние: через какое количество дробных движений система перейдёт в состояние, не отличимое от предыдущего. Например, у обычного кругового движения 1 круг – это спин, равный 1. В ленте Мёбиуса спин равен 2 – нужно последовательно переместиться по обеим сторонам ленты. У синуса и косинуса спин равен ½.

Есть много разных вариантов, но толчками взад и вперёд спин изменить невозможно. Спин меняется только посредством изменения геометрии пространства, по которому осуществляется движение (лента Мёбиуса), или посредством применения иного алгоритма для описания движения (синус, косинус).

В очередной раз физики из США сморозили глупость. Причина в том, что они взялись решать задачи, не понимая сути исходных положений. А журналисты разнесли эту «сенсацию», как спорынью.

6.4k 0 5 0

В современной физике под массой понимают различные свойства физического объекта:

  • Инертная масса характеризует меру инертности тел и фигурирует во втором законе Ньютона. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, то этим телам приписывают одинаковую инертную массу.
  • Гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями - фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии, и какое гравитационное поле создаёт само это тело (активная гравитационная масса) - эта масса фигурирует в законе всемирного тяготения.
  • Масса покоя задает полную энергию тела по закону Эйнштейна.

Принцип эквивалентности Эйнштейна гласит, что инертная масса должна быть равна пассивной гравитационной массе, а закон сохранения импульса требует, чтобы были равны активная и пассивная гравитационная масса. Все экспериментальные доказательства на настоящий момент свидетельствуют, что все они на самом деле всегда одинаковы. При рассмотрении гипотетических частиц с отрицательной массой важно предположить, какая из этих теорий массы неверна. Однако в большинстве случаев при анализе отрицательной массы предполагается, что принцип эквивалентности и закон сохранения импульса по-прежнему применимы.

В 1957 году Герман Бонди предположил в работе в журнале «Reviews of Modern Physics», что масса может быть как положительной, так и отрицательной. Он показал, что это не ведёт к логическому противоречию, если все три вида массы тоже будут отрицательными, но само принятие существования отрицательной массы вызывает не интуитивно-понятные виды движения.

Из второго закона Ньютона видно, что объект с отрицательной инертной массой будет ускоряться в направлении, противоположном тому, в котором его толкнули, что, возможно, покажется странным.

... электроны в полупроводниковом кристалле приобретают при ускорении сильным электрическим полем отрицательную массу...

В 2010 году физики из Института Макса Борна (Берлин) сообщили, что электроны в полупроводниковом кристалле приобретают при ускорении сильным электрическим полем отрицательную массу. Если электрическое поле мало, то движение электрона в зоне проводимости в кристалле подчиняется законам Ньютона. В этом режиме масса кристаллического электрона составляет малую часть массы свободного электрона.

Исследователи показали, что кристаллические электроны при крайне высоких скоростях ведут себя полностью отличным образом. Их масса даже становится отрицательной. В одном из номеров журнала Physical Review Letters они сообщили, что ускорили электрон на очень малом отрезке времени - 100 фемтосекунд до скорости 4 млн км в час. После этого электрон останавливался и даже начинал двигаться назад, в направлении, противоположном действующей силе. Это можно объяснить только отрицательной инертной массой электрона.

Таким образом, внутри кристалла электрон, в зависимости от электрического поля, проявляет свойства:

  • квазичастицы с положительной массой, но меньшей массы покоя
  • квазичастицы с отрицательной инертной массой.

В экспериментах электроны в полупроводниковом кристалле арсенида галлия ускорялись экстремально коротким электрическим импульсом с напряженностью поля 30 МВ/м и длительностью 300 фемтосекунд. Скорость электрона как функция от времени измерялась с высокой точностью. Результаты находятся в согласии с вычислениями нобелевского лауреата Феликса Блоха, выполненными им более 80 лет назад. Немецкие учёные исследовали движение электронов в полупроводнике арсениде галлия при комнатной температуре. Они прикладывали к образцу импульс электрического поля длительностью 300 фемтосекунд и напряжённостью 30 миллионов вольт на метр. Измеряя отклик электронов с высокой точностью, физики обнаружили, что первые 100 фемтосекунд частицы, как и положено, ускорялись в «правильном» направлении, причём успевали набрать скорость 1111 километров в секунду. Но затем они резко тормозились за аналогичный период времени и даже начинали двигаться в обратном направлении, что можно интерпретировать только как отрицательное значение инерционной массы у электронов в данный момент.

Авторы эксперимента утверждают: полученные результаты согласуются с теоретическими расчётами, которые выполнил швейцарский физик, нобелевский лауреат Феликс Блох (Felix Bloch) более 80 лет назад. Учёные объясняют эффект как проявление частичной осцилляции Блоха и возникновение в кристалле нового режима переноса зарядов – когерентного их транспорта на ультракоротких временных отрезках. Исследователи считают, что данное явление можно будет использовать в электронике нового поколения, работающей в диапазоне единиц-десятков терагерц.

Если же говорить о больших телах с отрицательной массой, то само их существование представляется невозможным, с точки зрения обычной науки. Отрицательная материя может только разлетаться, в то время как, свойство гравитационного отталкивания у частиц вещества, какова бы ни была их природа, неизбежно приводит к тому, что эти частицы не могут собраться вместе под влиянием сил тяготения. К тому же, поскольку частица отрицательной массы под действием любой силы движется в направлении, противоположном вектору этой силы, то и обычные межатомные взаимодействия не могут связать такие частицы в «нормальные» тела.

Cтраница 1


Отрицательная масса готовится из 90 % окиси кадмия, 7 5 % гидрата закиси никеля, 2 5 % солярового масла.  


Отрицательная масса аккумуляторов фирм Alclum и DEAC состоит из кадмия и железа в соотношении Cd: Fe 4: 1; отрицательная масса фирмы Tudor - из гидрата окиси кадмия с добавкой 4 5 % никеля и 3 5 % графита.  

Понятие отрицательной массы возникает, если хотят представлять дело так, что электрон движется все время в одном и том же внешнем поле; в этом случае не остается ничего другого, как считать, что торможение до нулевой скорости происходит за счет отрицательной массы. Разумеется, силы в решетках, которые вызывают это торможение, являются совершенно реальными, однако не в представлениях классической механики, а в представлениях волновой механики кристаллических электронов.  

Частицы отрицательной массы вообще вели бы себя очень странно с точки зрения наших привычных макроскопических представлений. Если такая частица, взаимодействуя с окружающей средой, испытывала бы сопротивление трения, то она должна была бы непрерывно ускоряться, а не замедляться, как обычная частица. И все это благодаря тому, что отрицательные массы вообще противоречат привычной классической термодинамике.  

Допуская частицы отрицательной массы, мы полагаем, что физические системы могут иметь как сколь угодно большие положительные энергии, так и сколь угодно малые, ничем не ограниченные снизу отрицательные энергии. Это свойство систем, содержащих минус-частицы, находится, однако, в противоречии с одной из исходных аксиом термодинамики - постулатом существования состояния термодинамического равновесия. Однако такое состояние равновесия возможно не у всех физических систем. Такие системы имеют состояние термодинамического равновесия.  

Модифицированная неустойчивость отрицательной массы была независимо обнаружена в экспериментах на установке DCX-II , где, как оказалось, она приводит к совершенно неожиданным, любопытным последствиям.  

Для иллюстрации метода отрицательных масс определим центр тяжести круглой однородной пластинки радиуса R с вырезом в форме круга радиуса - R (фиг. Так как пластинка с вырезом имеет ось симметрии, то ее центр тяжести лежит на этой оси.  

Свойства частицы с отрицательной массой покоя совершенно необычны. Так, например, при т0г0 вектор скорости частицы и вектор ее импульса направлены всегда в противоположные стороны.  

Допустим, что частицы отрицательной массы могут испускаться или поглощаться системами обычных частиц, так же как, например, фотоны или л; - мезоны. Однако испускание минус-частицы означает увеличение энергии и импульса системы А, точно такое же, какое было бы вызвано поглощением плюс-частицы той же (по абсолютному значению) массы. И, аналогично, поглощение минус-частицы системой В эквивалентно испусканию этой системой плюс-частицы.  

Однако на примере частиц отрицательной массы мы уже видели, что существуют объекты, которые не могут быть зарегистрированы обычными приборами, однако могут быть обнаружены при помощи принципиально новых измерительных устройств. Следует поэтому рассмотреть возможность существования особых измеряющих систем, способных регистрировать частицы мнимой массы.  

При работах по приготовлению щелочной отрицательной массы и щелочной пасты, в которые входит щелочной электролит, следует соблюдать все требования безопасности работы со щелочами (см. гл.  

Гипотетическая червоточина в пространстве-времени

В лаборатории Университета штата Вашингтон были созданы условия для образования конденсата Бозе - Эйнштейна в объёме менее 0,001 мм³. Частицы замедлили лазером и дождались, когда наиболее энергичные из них покинули объём, что ещё больше охладило материал. На этом этапе сверхкритическая жидкость ещё имела положительную массу. При нарушении герметичности сосуда атомы рубидия разлетелись бы в разные стороны, поскольку центральные атомы выталкивали бы крайние атомы наружу, а те ускорялись бы в направлении приложения силы.

Для создания отрицательной эффективной массы физики применили другой набор лазеров, который изменял спин части атомов. Как предсказывает симуляция, в отдельных районах сосуда частицы должны приобрести отрицательную массу. Это хорошо видно по резкому увеличению плотности вещества как функции от времени в симуляциях (на нижней диаграмме).


Рисунок 1. Анизотропное расширение конденсата Бозе - Эйнштейна с разными коэффициентами силы сцепления. Реальные результаты эксперимента обозначены красным, результаты предсказания в симуляции - чёрным

Нижняя диаграмма - это увеличенный фрагмент среднего кадра в нижнем ряду рисунка 1.

На нижней диаграмме показана одномерная симуляция общей плотности как функции от времени в регионе, где впервые проявилась динамическая нестабильность. Пунктирами разделены три группы атомов со скоростями в квазимомент , где эффективная масса начинает становиться отрицательной (верхняя линия). Показана точка минимальной отрицательной эффективной массы (посередине) и точка, где масса возвращается к положительным значениям (нижняя линия). Красные точки обозначают места, где локальный квазимомент лежит в районе отрицательной эффективной массы.

На самом первом ряду графиков видно, что во время физического эксперимента вещество вело себя в точном соответствии с результатами симуляции, которая предсказывает появление частиц с отрицательной эффективной массой.

В конденсате Бозе - Эйнштейна частицы ведут себя как волны и поэтому распространяются не в том направлении, в каком должны распространяться нормальные частицы положительной эффективной массы.

Справедливости ради нужно сказать, что неоднократно физики регистрировали во время экспериментов результаты, когда проявлялись свойства вещества отрицательной массы , но те эксперименты можно было интерпретировать по-разному. Сейчас же неопределённость в большей мере устранена.

Научная статья опубликована 10 апреля 2017 года в журнале Physical Review Letters (doi:10.1103/PhysRevLett.118.155301, доступно по подписке). Копия статьи перед отправкой в журнал размещена 13 декабря 2016 года в свободном доступе на сайте arXiv.org (arXiv:1612.04055).

Гипотетическая червоточина в пространстве-времени

В лаборатории Университета штата Вашингтон были созданы условия для образования конденсата Бозе - Эйнштейна в объёме менее 0,001 мм³. Частицы замедлили лазером и дождались, когда наиболее энергичные из них покинули объём, что ещё больше охладило материал. На этом этапе сверхкритическая жидкость ещё имела положительную массу. При нарушении герметичности сосуда атомы рубидия разлетелись бы в разные стороны, поскольку центральные атомы выталкивали бы крайние атомы наружу, а те ускорялись бы в направлении приложения силы.

Для создания отрицательной эффективной массы физики применили другой набор лазеров, который изменял спин части атомов. Как предсказывает симуляция, в отдельных районах сосуда частицы должны приобрести отрицательную массу. Это хорошо видно по резкому увеличению плотности вещества как функции от времени в симуляциях (на нижней диаграмме).


Рисунок 1. Анизотропное расширение конденсата Бозе - Эйнштейна с разными коэффициентами силы сцепления. Реальные результаты эксперимента обозначены красным, результаты предсказания в симуляции - чёрным

Нижняя диаграмма - это увеличенный фрагмент среднего кадра в нижнем ряду рисунка 1.

На нижней диаграмме показана одномерная симуляция общей плотности как функции от времени в регионе, где впервые проявилась динамическая нестабильность. Пунктирами разделены три группы атомов со скоростями в квазимомент , где эффективная масса начинает становиться отрицательной (верхняя линия). Показана точка минимальной отрицательной эффективной массы (посередине) и точка, где масса возвращается к положительным значениям (нижняя линия). Красные точки обозначают места, где локальный квазимомент лежит в районе отрицательной эффективной массы.

На самом первом ряду графиков видно, что во время физического эксперимента вещество вело себя в точном соответствии с результатами симуляции, которая предсказывает появление частиц с отрицательной эффективной массой.

В конденсате Бозе - Эйнштейна частицы ведут себя как волны и поэтому распространяются не в том направлении, в каком должны распространяться нормальные частицы положительной эффективной массы.

Справедливости ради нужно сказать, что неоднократно физики регистрировали во время экспериментов результаты, когда проявлялись свойства вещества отрицательной массы , но те эксперименты можно было интерпретировать по-разному. Сейчас же неопределённость в большей мере устранена.

Научная статья опубликована 10 апреля 2017 года в журнале Physical Review Letters (doi:10.1103/PhysRevLett.118.155301, доступно по подписке). Копия статьи перед отправкой в журнал размещена 13 декабря 2016 года в свободном доступе на сайте arXiv.org (arXiv:1612.04055).