Образование земной коры и атмосферы. История и эволюция гидросферы

Проблема происхождения воды и формирования гидросферы, несмотря на довольно высокий современный уровень развития наук о Земле, до сих пор является наименее разработанной. Существует множество гипотез происхождения воды и развития гидросферы, но ни одна из них не вышла из стадии рабочей гипотезы, накопления, предварительной систематизации и обобщения материалов.

Все гипотезы условно можно объединить в две большие группы:

1) теллурического происхождения;

2) космического происхождения воды.

Наиболее убедительными представляются гипотезы первой группы , согласно которым литосфера, атмосфера и гидросфера образовались в едином процессе, в результате выплавления и дегазации вещества мантии. По мнению А. П. Виноградова, в момент формирования Земли из протопланетного облака все элементы ее будущей атмосферы и гидросферы находились в связанном виде в составе твердых веществ: вода – в гидроокислах, азот – в нитритах и нитратах, кислород – в окислах металлов, углерод – в графитах, карбидах и карбонатах. Достигнув примерно современной массы, Земля стала разогреваться в результате гравитационного сжатия ее недр и за счет распада радиоактивных изотопов, и в мантии началось плавление и дифференциация вещества на летучие, легкоплавкие и тугоплавкие. Тугоплавкие вещества остались в недрах Земли, легкоплавкие в виде базальта образовали земную кору. Летучие вещества – водяной пар вулканических газов, соединения углерода, серы, аммиак, галоидные кислоты, водород, аргон и некоторые другие газы – поднялись на поверхность и образовали атмосферу и гидросферу. Причем, почти весь водяной пар конденсировался (температура над поверхностью Земли не превышала +15 °С), превратился в жидкую воду и тем самым сформировал «праокеаны». В первичный океан переходили, растворяясь в воде, также и другие составные части вулканических газов – большая доля углекислого газа, кислоты, соединения серы и часть аммиака. Кислоты, особенно в воде, реагировали с силикатами горных пород, извлекая из них щелочные, щелочноземельные и другие элементы. В результате вода переставала быть кислой, а растворимые соли извлеченных из силикатов элементов переходили в океан, поэтому вода в нем сразу же становилась соленой. Первичный океан, вероятно, был неглубоким, но покрывал почти всю Землю. С ростом массы гидросферы увеличивался и объем океана, изменялись его очертания, что было связано с формированием континентальной и океанической коры. С поверхности океана испарялась вода (пресная), которая, возвращаясь в виде дождей на земную поверхность, сформировала воды суши. Воды океана, суши и атмосферы составили единую земную оболочку – гидросферу. Это и определило одну из специфических особенностей Земли, отличающую ее от других планет Солнечной системы, – постоянное наличие на ней гидросферы.

2.2 Водные ресурсы планеты

Понятие «гидросфера» постоянно трансформировалось. В настоящее время гидросферой принято называть водную оболочку Земли, включающую всю несвязанную воду независимо от ее состояния: жидкую, твердую, газообразную.

Нижняя граница гидросферы принимается на уровне поверхности мантии (поверхности Мохоровичича), а верхняя проходит в верхних слоях атмосферы. Гидросфера включает в себя Мировой океан, воды суши (реки, озера, болота, ледники), атмосферную влагу, а также подземные воды, залегающие всюду на материках, на дне озерных и морских впадин и под толщей вечных льдов.

Таким образом, являясь частью географической оболочки, гидросфера охватывает весь комплекс земных оболочек. Гидросфера непрерывна, как непрерывны лито- и атмосфера, и едина. Ее единство заключается в общности происхождения всех природных вод из мантии Земли, в единстве их эволюции, взаимосвязи всех видов вод и способности перехода одного вида вод в другой, в единстве их функций в природе (обмен веществами и энергией).

Мировые запасы воды на Земле колоссальны. Общий объем гидросферы по последним данным (таблица 2.1) составляет около 1390 млн. км 3 . Если все воды гидросферы равномерно распределить по поверхности Земли, слой ее будет иметь толщину около 2,5 км.

Предполагается, что это количество воды в течение геологического времени практически остается неизменным, несмотря на продолжающее


Таблица 2.1 – Мировые запасы воды

Части гидросферы Площадь распространения, млн. км 2 Объем воды, тыс. км 3 Слой воды, м Доля в мировых запасах, %
От общих запасов воды От запасов пресной воды
Мировой океан 361,26 1340,74 96,49
Подземные воды (гравитационные и капиллярные) 134,73 23,40 1,68
Преимущественно пресные подземные воды 134,73 10,53 0,76 29,39
Почвенная влага 82,00 0,02 0,24 0,001 0,06
Ледники и постоянно залегающий снежный покров В том числе: 16,23 24,87 1,79 69,41
В Антарктиде 13,98 22,41 1,61 62,55
В Гренландии 1,80 2,34 0,17 6,53
На Арктических островах (Канадский Арктический архипелаг, Новая земля, Северная земля, Земля Франца-Иосифа, Шпицберген, малые острова) 0,23 0,08 0,006 0,22
В горный районах за пределами Арктики и Антарктики 0,22 0,04 0,003 0,11
Подземные льды зоны многолетнемерзлых пород 21,00 0,30 0,022 0,84
Запасы воды в озерах В том числе: 2,06 0,18 0,013
В пресных 1,24 0,09 0,0065 0,25
В соленых 0,82 0,09 0,0065
Воды болот 2,68 0,01 3,73 0,0007 0,03
Воды в руслах рек 148,84 0,002 0,013 0,0001 0,006
Биологическая вода (вода, содержащаяся в живых организмах и растениях) 510,10 0,001 0,002 0,0001 0,003
Вода в атмосфере 510,10 0,01 0,02 0,0007 0,03
Общие запасы воды 510,10 1389,53
Пресные воды 148,84 35,83 2,58

Примечание. Расчет запасов подземных вод выполнен по отдельным континентам без учета запасов подземных вод в Антарктиде, ориентировочно оцениваемых в 2 млн. км 3 , в том числе преимущественно пресных – около 1млн. км 3 .


Рисунок 2.1 – Водные ресурсы Земли (·10 6 км 3), по

поступление воды из мантии и из Космоса (ледяные ядра комет, метеорное вещество, пыль...) и потери ее за счет разложения воды фотосинтезом и диссипации легких газов в Космосе. Однако соотношение отдельных ее видов, перечисленных в таблице 2.1, нельзя считать постоянным и абсолютно точным. Оно менялось в разные периоды жизни Земли. Имеющиеся в литературе данные о соотношении частей гидросферы несколько различаются (рисунок 2.1).

В современную эпоху основные запасы воды сосредоточены в Мировом океане (96,5 %). Пресных вод в гидросфере всего 2,58 % от общих запасов воды. Больше всего пресных вод содержится в ледниках и снежном покрове Антарктиды, Арктики и горных стран (1,78 % объема гидросферы или 69,3% от запасов пресных вод на Земле). Если весь лед равномерно распределить по поверхности земного шара, он покроет ее слоем в 53 м, а если растопить эти массы льда, то уровеньлед равномерно распределить по поверхности земного шара, он покроет ее слоем в 53 м, а если растопить эти массы льда, то уровень океана повысится на 64 м. Ледники занимают особое место в круговороте воды на Земле, т.к. они сохраняют влагу в твердом состоянии на много лет. В среднем, снежинка, выпавшая на ледник, покоится там более 8000 лет, прежде чем вновь превратится в воду и попадет в активный круговорот воды.

Громадные запасы воды аккумулированы в литосфере. Доля пресных подземных вод от общего запаса пресных вод на Земле составляет 29,4 %. На долю рек приходится 0,006 %, пресных озер – 0,25 %, на воду, содержащуюся в атмосфере, – 0,03 % общего количества пресных вод. На долю пресных вод, пригодных для водоснабжения, приходится 4,2 млн. км 3 , или всего лишь 0,3 % объема гидросферы.

Интересен тот факт, что самым большим хранилищем поверхностных пресных вод является озеро Байкал, где содержится 1/5 всех мировых запасов поверхностных пресных вод мира. Сказанное можно подкрепить и другим примером. Если допустить, что запасы воды будут изъяты из озера, то заполнение освободившегося объема озера всеми впадающими реками произошло бы только за 250-300 лет при условии, что вода из озера не расходовалась бы на сток и испарение.

Важнейшие свойства воды

Вода – одно из самых удивительных соединений на Земле – давно уже поражает исследователей необычностью многих своих физических свойств:

1) Неисчерпаемость как вещества и природного ресурса; если все другие ресурсы земли уничтожаемы или рассеиваемы, то вода как бы ускользает от этого, принимая различные формы или состояния: кроме жидкой – твердую и газообразную. Это единственное вещество и ресурс такого типа. Это свойство обеспечивает вездесущность воды, она пронизывает всю географическую оболочку Земли и производит в ней разнообразную работу.

2) Присущее только ей расширение при затвердевании (замерзании) и уменьшение объема при плавлении (переходе в жидкое состояние).

3) Максимальная плотность при температуре +4 °С и связанные с этим весьма важные свойства для природных и биологических процессов, например исключение глубокого промерзания водоемов. Как правило, максимальная плотность физических тел наблюдается при температуре затвердевания. Максимальная плотность дистиллированной воды наблюдается в аномальных условиях – при температуре 3,98-4 °С (или округленно +4 °С), т. е. при температуре выше точки затвердевания (замерзания). При отклонении температуры воды от 4 °С в обе стороны плотность воды убывает.

4) При плавлении (таянии) лед плавает на поверхности воды (в отличие от других жидкостей).

5) Аномальное изменение плотности воды влечет за собой такое же аномальное изменение объема воды при нагревании: с возрастанием температуры от 0 до 4 °С объем нагреваемой воды уменьшается и только при дальнейшем возрастании начинает увеличиваться. Если бы при понижении температуры и при переходе из жидкого состояния в твердое плотность и объем воды изменялись так же, как это происходит у подавляющего большинства веществ, то при приближении зимы поверхностные слои природных вод охлаждались бы до 0 °С и опускались на дно, освобождая место более теплым слоям, и так продолжалось бы до тех пор, пока вся масса водоема не приобрела бы температуру 0 °С. Далее вода начинала бы замерзать, образующиеся льдины погружались бы на дно, и водоем промерзал бы на всю его глубину. При этом многие формы жизни в воде были бы невозможны. Но так как наибольшей плотности вода достигает при 4 °С, то перемещение ее слоев, вызываемое охлаждением, заканчивается при достижении этой температуры. При дальнейшем понижении температуры охлажденный слой, обладающий меньшей плотностью, остается на поверхности, замерзает и тем самым защищает лежащие ниже слои от дальнейшего охлаждения и замерзания.

6) Переход воды из одного состояния в другое сопровождается затратами (испарение, таяние) или выделением (конденсация, замерзание) соответствующего количества тепла. На таяние 1 г льда необходимо затратить 677 кал, на испарение 1 г воды – на 80 кал меньше. Высокая скрытая теплота плавления льда обеспечивает медленное таяние снега и льда.

7) Способность относительно легко переходить в газообразное состояние (испаряться) не только при положительных, но и при отрицательных температурах. В последнем случае испарение происходит минуя жидкую фазу – из твердой (льда, снега) сразу в парообразную. Такое явление носит название – сублимация.

8) Если сравнить температуру кипения и замерзания гидридов, образованных элементами шестой группы таблицы Менделеева (селена H 2 Se, теллура Н 2 Те) и воды (Н 2 О), то по аналогии с ними температура кипения воды должна быть порядка 60 °С, а температура замерзания – ниже 100° С. Но и здесь проявляются аномальные свойства воды – при нормальном давлении в 1 атм. вода кипит при +100 °С, а замерзает при 0 °С.

9) Громадное значение в жизни природы имеет и тот факт, что вода обладает аномально высокой теплоемкостью, в 3000 раз большей, чем воздух. Это значит, что при охлаждении 1 м 3 воды на 1 0 С на столько же нагревается 3000 м 3 воздуха. Поэтому, аккумулируя тепло, Океан оказывает смягчающее влияние на климат прибрежных территорий.

10) Вода поглощает тепло при испарении и таянии, выделяя его при конденсации из пара и замерзании.

11) Способность воды в дисперсных средах, например в мелкопористых почвах или биологических структурах, переходить в связанное или рассредоточенное состояние. В этих случаях очень сильно меняются свойства воды (ее подвижность, плотность, температура замерзания, поверхностное натяжение и другие параметры), крайне важные для протекания процессов в природных и биологических системах.

12) Вода – универсальный растворитель, поэтому не только в природе, но и в лабораторных условиях идеально чистой воды нет уже по той причине, что она способна к растворению любого сосуда, в который заключена. Есть предположение, что поверхностное натяжение идеально чистой воды было бы таковым, что по ней можно было бы кататься на коньках. Способность воды к растворению обеспечивает перенос веществ в географической оболочке, лежит в основе обмена веществами между организмами и средой, в основе питания.

13) Из всех жидкостей (кроме ртути) у воды самое высокое поверхностное давление и поверхностное натяжение: = 75·10 -7 Дж/см 2 (глицерин – 65, аммиак – 42, а все остальные – ниже 30 ·10 -7 Дж/см 2). В силу этого капля воды стремится принять форму шара, а при соприкосновении с твердыми телами смачивает поверхность большинства из них. Именно поэтому она может подниматься вверх по капиллярам горных пород и растений, обеспечивая почвообразование и питание растений.

14) Вода обладает высокой термической устойчивостью. Водяной пар начинает разлагаться на водород и кислород только при температуре выше 1000 °С.

15) Химически чистая вода является очень плохим проводником электричества. Вследствие малой сжимаемости в воде хорошо распространяются звуковые и ультразвуковые волны.

16) Свойства воды сильно изменяются под влиянием давления и температуры. Так, при росте давления температура кипения воды повышается, а температура замерзания, наоборот, понижается. С повышением температуры уменьшаются поверхностное натяжение, плотность и вязкость воды и возрастают электропроводность и скорость звука в воде.

Аномальные свойства воды вместе взятые, свидетельствующие о чрезвычайно высокой ее устойчивости к воздействию внешних факторов, вызваны наличием дополнительных сил между молекулами, получивших название водородных связей. Суть водородной связи сводится к тому, что ион водорода, связанный с каким-то ионом другого элемента, способен электростатически притягивать к себе ион того же элемента из другой молекулы. Молекула воды имеет угловое строение: входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находится два протона, а в вершине – ядро атома кислорода (рисунок 2.2).

Рисунок 2.2 – Строение молекулы воды

Из имеющихся в молекуле 10 электронов (5 пар) одна пара (внутренние электроны) расположена вблизи ядра кислорода, а из остальных 4 пар электронов (внешних) по одной паре обобществлено между каждым из протонов и ядром кислорода, тогда как 2 пары остаются неопределенными и направлены к противоположным от протонов вершинам тетраэдра. Таким образом, в молекуле воды имеется 4 полюса зарядов, расположенных в вершинах тетраэдра: 2 отрицательных, созданных избытком электронной плотности в местах расположения неподеленных пар электронов, и 2 положительных, созданных ее недостатком в местах расположения протонов.

Вследствие этого молекула воды оказывается электрическим диполем. При этом положительный полюс одной молекулы воды притягивает отрицательный полюс другой молекулы воды. В результате получаются агрегаты (или ассоциации молекул) из двух, трех и более молекул (рисунок 2.3).

Рисунок 2.3 – Образование диполями воды ассоциированных молекул:

1 – моногидроль Н 2 О; 2 – дигидроль (Н 2 О) 2 ; 3 – тригидроль (Н 2 О) 3

Следовательно, в воде одновременно присутствуют одиночные, двойные и тройные молекулы. Содержание их меняется в зависимости от температуры. Во льду содержатся, в основном, тригидроли, объем которых больше моногидролей и дигидролей . При повышении температуры скорость движения молекул возрастает, силы притяжения между молекулами ослабевают, и в жидком состоянии вода – это смесь три-, ди- и моногидролей. С дальнейшим увеличением температуры тригидрольные и дигидрольные молекулы распадаются, при температуре 100 °С вода состоит из моногидролей (пар).

Существование неподеленных электронных пар определяет возможность образования двух водородных связей. Еще две связи возникают за счет двух водородных атомов. Вследствие этого каждая молекула воды в состоянии образовать четыре водородные связи (рисунок 2.4).

Рисунок 2.4 – Водородные связи в молекулах воды:

– обозначение водородной связи

Благодаря наличию в воде водородных связей в расположении ее молекул отмечается высокая степень упорядоченности, что сближает ее с твердым телом, а в структуре возникают многочисленные пустоты, делающие ее очень рыхлой. К наименее плотным структурам принадлежит структура льда. В ней существуют пустоты, размеры которых несколько превышают размеры молекулы Н 2 О. При плавлении льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: возникают ассоциаты – зародыши кристаллических образований. В этом смысле вода находится как бы в промежуточном положении между кристаллическим и жидким состояниями и более сходна с твердым телом, чем с идеальной жидкостью. Однако в отличие от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких «ледяных» агрегатов могут размещаться одинокие молекулы воды, при этом упаковка молекул воды становятся более плотной. Именно поэтому при плавлении льда объем, занимаемый водой, уменьшается, ее плотность возрастает. При + 4 °С вода имеет самую плотную упаковку.

При нагревании воды часть теплоты затрачивается на разрыв водородных связей. Этим объясняется высокая теплоемкость воды. Водородные связи между молекулами воды полностью разрушаются при переходе воды в пар.

Сложность структуры воды обусловлена не только свойствами ее молекулы, но и тем, что вследствие существования изотопов кислорода и водорода в воде имеются молекулы с различным молекулярным весом (от 18 до 22). Наиболее распространенной является «обычная» молекула с молекулярным весом 18. Содержание молекул с большим молекулярным весом невелико. Так, «тяжелая вода» (молекулярный вес 20) составляет менее 0,02% всех запасов воды. В атмосфере она не обнаружена, в тонне речной воды ее не более 150 г, морской –160-170 г. Однако, ее присутствие придает «обычной» воде большую плотность, влияет на другие ее свойства.

Удивительные свойства воды позволили возникнуть и развиться жизни на Земле. Благодаря им вода может играть незаменимую роль во всех процессах, совершающихся в географической оболочке.


Введение

В данной работе рассматривается тема «Гидросфера и атмосфера Земли».

Жидкая оболочка Земли, которая покрывает 70,8% ее поверхности, называется гидросферой. Главными резервуарами воды являются океаны. Они содержат 97% мировых запасов воды. Существующие в океанах течения переносят тепло от экваториальных областей к полярным и тем самым в определенной степени регулируют климат Земли. Так, течение Гольфстрим, начинающееся от берегов Мексики и несущее теплые воды до берегов Шпицбергена, приводит к тому, что средняя температура северо-западной Европы значительно выше температуры северо-восточной Канады.

По современным представлениям, наличие больших водоемов на Земле сыграло решающую роль в возникновении жизни на нашей планете. Часть воды на Земле, общим объемом около 24 млн. км 3 , находится в твердом состоянии, в виде льда и снега. Льды покрывают примерно 3% земной поверхности. Если бы эту воду превратить в жидкое состояние, то уровень мирового океана поднялся бы на 62 метра. Ежегодно снегом покрывается около 14% земной поверхности. Снег и лед отражают от 45 до 95% энергии солнечных лучей, что, в конечном итоге, приводит к существенному охлаждению больших участков поверхности Земли. Подсчитано, что если бы снегом укрылась вся Земля, то средняя температура на ее поверхности понизилась от существующей сейчас +15 С до 88 С.

Средняя температура поверхности Земли на 40 С выше той температуры, которую должна иметь Земля, освещенная солнечными лучами. Это опять-таки связано с водой, точнее, с водяным паром. Дело в том, что солнечные лучи, отражаясь от поверхности Земли, поглощаются водяным паром и снова отражаются на Землю. Это называется парниковым эффектом.

Воздушная оболочка Земли, атмосфера, уже изучена достаточно подробно. Плотность атмосферы у поверхности Земли составляет 1,22 10 -3 г/см 3 . Если говорить о химическом составе атмосферы, то главный компонент здесь является азот; его процентное содержание по весу равно 75,53%. Кислорода в атмосфере Земли 23,14%, из других газов наиболее представительным является аргон - 1,28%, углекислого газа в атмосфере всего 0,045%. Этот состав атмосферы сохраняется до высоты 100-150 км. На больших высотах азот и кислород находятся в атомарном состоянии. С высоты 800 км преобладает гелий, а с 1600 км - водород, который образует водородную геокорону, простирающуюся на расстояние до нескольких радиусов Земли.

Атмосфера предохраняет все живущее на Земле от губительного воздействия ультрафиолетового излучения Солнца и космических лучей - частиц высокой энергий, движущихся к ней со всех сторон с почти световыми скоростями.

Рассмотрим подробнее гидросферу и атмосферу Земли.

1. Гидросфера

Гидросфера (от гидро… и сфера) - прерывистая водная оболочка Земли, располагающаяся между атмосферой и твердой земной корой (литосферой) и представляющая собой совокупность океанов, морей и поверхностных вод суши. В более широком смысле в состав гидросферы включают также подземные воды, лед и снег Арктики и Антарктики, а также атмосферную воду и воду, содержащуюся в живых организмах. Основная масса воды гидросферы сосредоточена в морях и океанах, второе место по объему водных масс занимают подземные воды, третье - лед и снег арктических и антарктических областей. Поверхностные воды суши, атмосферные и биологически связанные воды составляют доли процента от общего объема воды гидросферы (рис. 1). Химический состав гидросферы приближается к среднему составу морской воды.

Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни нашей планеты, являясь основным источником водоснабжения, орошения и обводнения. Воды гидросферы находятся в постоянном взаимодействии с атмосферой, земной корой и биосферой. Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на земном шаре. В гидросфере впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу.

Виды вод

Название

Объем, млн. км 3

Количество по отношению к общему объему гидросферы, %

Морские воды

Подземные (за исключением почвенной) воды

Грунтовая

Лед и снег (Арктика, Антарктика, Гренландия, горные ледниковые области)

Поверхностные воды суши: озера, водохранилища, реки, болота, почвенные воды

Атмосферные воды

Атмосферная

Биологическая

Рис. 1. Виды вод гидросферы

2. Атмосфера

Атмосфера Земли (от греч. atmos - пар и sphaira - шар) - газовая оболочка, окружающая Землю. Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землей как единое целое. Масса атмосферы составляет около 5,15-10 15 т. Атмосфера обеспечивает возможность жизни на Земле и оказывает большое влияние на разные стороны жизни человечества.

Происхождение и роль атмосферы

Современная земная атмосфера имеет, по-видимому, вторичное происхождение и образовалась из газов, выделенных твердой оболочкой Земли (литосферой) после сформирования планеты. В течение геологической истории Земли атмосфера претерпела значительную эволюцию под влиянием ряда факторов: диссипации (улетучивания) атмосферных газов в космическое пространство; выделения газов из литосферы в результате вулканической деятельности; диссоциации (расщепления) молекул под влиянием солнечного ультрафиолетового излучения; химических реакций между компонентами атмосферы и породами, слагающими земную кору; аккреции (захвата) межпланетной среды (например, метеорного вещества). Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, а также с деятельностью живых организмов. Атмосферные газы, в свою очередь, оказывали большое влияние на эволюцию литосферы. Например, громадное количество углекислоты, поступившей в атмосферу из литосферы, было затем аккумулировано в карбонатных породах. Атмосферный кислород и поступающая из атмосферы вода явились важнейшими факторами, которые воздействовали на горные породы. На протяжении всей истории Земли атмосфера играла большую роль в процессе выветривания. В этом процессе участвовали атмосферные осадки, которые образовывали реки, изменявшие земную поверхность. Не меньшее значение имела деятельность ветра, переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим атмосфера защищает поверхность Земли от разрушительного действия падающих метеоритов, большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие атмосферы сама в очень большой степени зависит от атмосферных условий. Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями, атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека. Особенно сильно зависит от климатических условий сельское хозяйство. В свою очередь, деятельность человека оказывает все возрастающее влияние на состав атмосферы и на климатический режим.

Строение атмосферы

Многочисленные наблюдения показывают, что атмосфера имеет четко выраженное слоистое строение (рис. 2). Основные черты слоистой структуры атмосферы определяются в первую очередь особенностями вертикального распределения температуры. В самой нижней части атмосферы - тропосфере, где наблюдается интенсивное турбулентное перемешивание, температура убывает с увеличением высоты, причем уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы атмосферы. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 K, выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остается приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы, расположенной на высоте около 55 км. Слой атмосферы, находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы. Над ней находится переходный слой - мезопауза, выше которой располагается термосфера, где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Еще выше (на высотах ~ 1000 км и более) находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счет диссипации и где происходит постепенный переход от атмосферы к межпланетному пространству. Обычно все слои атмосферы, находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям атмосферы относят также стратосферу или ее нижняя часть.

Все структурные параметры атмосферы (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. 2 отражают лишь среднее состояние атмосферы.

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав атмосферы. Если на высотах до 90 км, где существует интенсивное перемешивание атмосферы, относительный состав постоянных компонент атмосферы остается практически неизменным (вся эта толща атмосферы получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава атмосферы с высотой. Типичные черты этой части атмосферы - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в атмосфере твердых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в атмосфере, что выражается в существовании D-, Е- и F-cлоев ионосферы.

Состав атмосферы

В отличие от атмосферы Юпитера, Сатурна, состоящих главным образом из водорода и гелия, и атмосферы Марса и Венеры, основного компонента которых - углекислый газ, земная атмосфера состоит преимущественно из азота и кислорода. Атмосфера Земли содержит также аргон, углекислый газ, неон и другие постоянные в переменные компоненты. Относительная объемная концентрация постоянных газов, а также сведения о средних концентрациях ряда переменных компонентов (углекислый газ, метан, закись азота и некоторые другие), относящихся только к нижним слоям атмосферы, приведены в таблице 1.

Наиболее важная переменная составная часть атмосферы - водяной пар. Пространственно-временная изменчивость его концентрации колеблется в широких пределах - у земной поверхности от 3% в тропиках до 2 10 -5 % в Антарктиде. Основная масса водяного пара сосредоточена в тропосфере, поскольку его концентрация быстро убывает с высотой. Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах - около 1,6-1,7 см «слоя осажденной воды» (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно содержания водяного пара в стратосфере противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают осадки атмосферные в виде дождя, града и снега. Процессы фазовых переходов воды протекают преимущественно в тропосфере. Именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака обычно закрывают около 50% всей земной поверхности.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает озон. Он в основном сосредоточен в стратосфере, где вызывает поглощение ультрафиолетовой солнечной радиации, являющееся главным фактором нагревания воздуха в стратосфере. Средние месячные значения общего содержания озона изменяются в зависимости от широты и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсу и годовой ход с минимумом осенью и максимумом весной.

Существенная переменная компонента атмосферы - углекислый газ, изменчивость содержания которого связана с жизнедеятельностью растений (процессами фотосинтеза), индустриальными загрязнениями и растворимостью в морской воде (газообменом между океаном и атмосферой). Обычно изменения содержания углекислого газа невелики, но иногда могут достигать заметных значений. Последние десятилетия наблюдается рост содержания углекислого газа, обусловленный индустриальным загрязнением, что может иметь влияние на климат вследствие создаваемого углекислым газом парникового эффекта. Предполагается, что в среднем концентрация углекислого газа остается неизменной во всей толще гомосферы. Выше 100 км начинается его диссоциация под влиянием ультрафиолетовой солнечной радиации с длинами волн короче 1690 А.

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в атмосферу с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса. Аэрозоль наблюдается как в тропосфере, так и в верхних слоях атмосферы. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Заключение

гидросфера атмосфера земля оболочка

Каждый из нас из курса природоведения и географии знает, что мы живем на дне воздушного океана - атмосферы.

Самые верхние оболочки Земли - гидросфера и атмосфера - заметно отличаются от других оболочек, образующих твердое тело планеты. По массе это совсем незначительная часть земного шара, не более 0,025% всей его массы. Но значение этих оболочек в жизни планеты огромно. Гидросфера и атмосфера возникли на ранней стадии формирования планеты. Гидросфера и атмосфера - это основные оболочки биосферы.

Биосфера занимает особое место среди сообщества оболочек Земли. Она захватывает верхний слой литосферы, почти всю гидросферу и нижние слои атмосферы. Под биосферой понималась совокупность заселяющей поверхность планеты живой материи вместе со средой обитания. Значимость этой системы выходит за пределы чисто земного мира, она представляет собой звено космического масштаба.

Атмосфера Земли кардинально отличается от атмосфер других планет: в ней низкое содержание углекислого газа, высоко содержание молекулярного кислорода и относительно велико содержание паров воды. Две причины создают выделенность атмосферы Земли: вода океанов и морей хорошо поглощает углекислый газ, а биосфера насыщает атмосферу молекулярным кислородом, образующимся в процессе растительного фотосинтеза. Расчеты показывают, что если освободить всю поглощенную и связанную в океанах углекислоту, убрав одновременно из атмосферы весь накопленный в результате жизнедеятельности растений кислород, то состав земной атмосферы в своих основных чертах стал бы подобен составу атмосфер Венеры и Марса.

Атмосфера состоит из нескольких слоев. Нижний слой - тропосфера. Над разными широтами земли толщина ее разная. Выше тропосферы - тропопауза с постоянной низкой температурой. Выше нее стратосфера до высоты 50 километров. Мезосфера 55-80 километров. Термосфера 80-1000 километров. Экзосфера 1000-2000 километров. Следы газов обнаружены на высоте 20000 километров. Выше 600 километров преобладает гелий, а выше 1600 километров - водород.

В атмосфере Земли насыщенные водяные пары создают облачный слой, охватывающий значительную часть планеты. Облака Земли входят важнейшим элементом в круговорот воды, происходящий на нашей планете в системе гидросфера - атмосфера - суша.

Список используемой литературы

1. Бондарев В.П. Концепции современного естествознания: Учебное пособие для студентов вузов. - М.: Альфа-М, 2003. - 464 с.

2. Горохов В.Г. Концепции современного естествознания: Учебное пособие. - М.: ИНФРА-М, 2003. - 412 с.

3. Игнатова В.А. Естествознание: Учебное пособие. - М.: ИКЦ «Академкнига», 2002. - 254 с.

4. Карпенков С.Х. Концепции современного естествознания: Учебник для вузов. - М.: Академический проект, 2000. Изд. 2-е, испр. и доп. - 639 с.

5. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. - М.: ЮНИТИ-ДАНА, 2003. - 303 с.

6. Стрельников О.Н. Концепции современного естествознания: Краткий курс лекций. - М.: Юрайт-Издат, 2003. - 221 с.

7. Тимофеева С.С., Медведева С.А., Ларионова Е.Ю. Основы современного естествознания и экологии. - Ростов-на-Дону: «Феникс», 2004. - 384 с. - (Серия «Учебники, учебные пособия»).

8. Хорошавина С.Г. Концепции современного естествознания. Курс лекций. - Ростов н/Д.: «Феникс», 2003. - 480 с.

Подобные документы

    Гидросфера – водная оболочка Земли. Распределение водных масс в гидросфере. Ее роль в поддержании относительно неизменного климата планеты. Экологическая угроза. Использование, загрязнение и охрана водных ресурсов. Водопользователи и водопотребители.

    реферат , добавлен 24.06.2008

    Гипотезы происхождения Земли, их сущность, обоснование и развитие. Особенности процесса формирования внутренних оболочек Земли в процессе ее геологической эволюции, их структура. Возникновение атмосферы и гидросферы Земли и их роль в появлении жизни.

    реферат , добавлен 16.03.2011

    Ознакомление с идеями Вернадского о биосфере и ее связи с концепцией пространства. Характеристика газовой (атмосфера), водной (гидросфера) и верхней твердой (литосфера) оболочек Земли. Рассмотрение принципов круговорота воды, углерода, кислорода, азота.

    презентация , добавлен 01.03.2010

    Понятие о гидросфере и литосфере. Атмосфера как воздушная оболочка планеты, её состав. Внутреннее строение Земли. Распределение воды в гидросфере. Роль озонового слоя в атмосфере. Грунтовые и подземные воды. Биосфера как область распространения жизни.

    презентация , добавлен 18.10.2015

    Понятие круговорота воды в природе и его роль в природе. Сферы Земли и состав гидросферы. Что из себя представляет водная оболочка Земли. Из чего складывается круговорот веществ. Понятие испарения и конденсации. Составляющие годового поступления воды.

    презентация , добавлен 09.02.2012

    Гидросфера и атмосфера, их функции и особенности взаимодействия. Осуществление круговорота химических элементов как главная задача биосферы. Сущность глобального биотического круговорота, его осуществление при участии всех населяющих планету организмов.

    реферат , добавлен 19.09.2014

    Становление Земли как планеты, происходящие процессы и их обоснование. Биогеохимическая эволюция состава атмосферы и жизнедеятельности организмов в массообмене газов. Значение атмосферного массопереноса водорастворимых форм химических элементов.

    курсовая работа , добавлен 23.08.2009

    Общие сведения о Земле. Вопрос ранней эволюции Земли. Атмосфера и гидросфера. Геологическая временная шкала истории Земли, применяемая в геологии и палеонтологии. Химический состав литосферы. Будущее нашей планеты. Биологические и геологические изменения.

    реферат , добавлен 21.12.2013

    Характеристика основных теорий происхождения Земли: гипотеза Канта-Лапласа и теория Большого Взрыва. Сущность современных теорий эволюции Земли. Образование Солнечной системы, возникновение условий для жизни. Возникновение гидросферы и атмосферы.

    контрольная работа , добавлен 26.01.2011

    Характеристика понятия гидросферы как совокупности всех водных запасов планеты Земля. Определение границ гидросферы и характеристика физических и химических свойств вод. Циркуляция вод в разных климатических условиях. Структура атмосферы и её циркуляция.

Гидросфера

Вода на Земле имеет практически повсеместное распространение. Она образует самостоятельную оболочку. Которая называется гидросферой. Эта оболочка проникает во все остальные сферы Земли, поскольку она, как и вода, является «всюдной». Здесь дается широкое толкование гидросферы, в состав которой включаются все виды природных вод. Гидросфера охватывает воды Мирового океана, поверхностные воды, атмосферные воды, наземные и подземные льды, все виды воды земных недр и биогенные воды, то есть можно выделить надземную, наземную и подземную гидросферу.

Предметом изучения гидрогеологии является подземная гидросфера – это наиболее сложная водная земная оболочка. Ее сложность объясняется несколькими обстоятельствами: 1) весьма тонким слоем подземной гидросферы, доступной для изучения (до 5-12 км); 2) наличием в подземной гидросфере кроме жидкой, твердой и парообразной фаз нескольких специфических видов воды (физически связанных, химических связанных и др.); 3) специфическими и разнообразными условиями и процессами взаимодействия воды с водовмещающей средой (породами, газами, живыми организмами). При всем этом следует помнить, что подземная гидросфера является первичной по отношению к наземной и надземной водной оболочками. Сначала образовались подземные воды, которые в процессе эволюции Земли перешли в наземное и надземное состояние. Постепенно характер водообмена между оболочками приобрел современный вид.

Обособление оболочек Земли произошло около 4 млрд. лет назад. По гипотезе американских ученых 4,25 млрд. лет назад Земля столкнулась с космическим объектом величиной с Марс. От столкновения поверхностный слой Земли толщиной 1000 км расплавился, Земля получила импульс и закрутилась вокруг своей оси с эклиптикой 23 0 , что стабилизировало земные сутки (24 часа). 90% вещества космического тела было поглощено Землёй, а 10% образовало “кольцо” подобное Сатурну, которое потом собралось и образовало Луну. Вначале она была в 15 раз ближе к Земле. Всё это и привело к обособлению оболочек Земли. За счет разогревания вещества мантии, по мнению академика А.П. Виноградова, произошло его разделение на две фазы: тугоплавкую (дуниты) и легкоплавкую (базальты).

В ходе этого процесса к поверхности Земли устремились наиболее летучие компоненты базальтовой магмы – пары воды и газы. Механизм этого грандиозного процесса выплавления и дегазации мантии А.П. Виноградовым был воспроизведен экспериментально (зонное плавление). В мантии содержится примерно 20·10 8 т. воды, причем 7,5 – 24% этого количества мигрировало в земную кору и Мировой океан, т.е. участвовало в создании гидросферы. Из космоса с метеоритами могло поступить 1·10 4 т., т.е. на 4 порядка меньше. Верхние слои атмосферы могли дать воды еще меньше (серебристые облака, открытые Вернадским).



Таким образом, мантия – единственный источник воды на Земле.

1. Эволюция гидросферы началась на рубеже архея – протерозоя, когда установилось динамическое равновесие между водой и газами. В это же время образовался гранитный слой, обособились геосинклинали и платформы, возникли континентальные моря. Все это положило начало атмосфере и регулярному гидрологическому круговороту воды.

По А.П. Виноградову летучие вещества стали источником анионов солевой массы океанической воды, а все главные катионы образовались при разрушении горных пород.

На раннем этапе в атмосфере почти не было кислорода, а были CO 2 , NH 3 , NH 4 , H 2 S, НСl и др.

2. Примерно 2,0 – 2,7 млрд. лет назад произошла смена восстановительных условий в атмосфере и на поверхности на окислительные, причем источником О 2 , явились фотохимические реакции с Н 2 О и СО 2 в верхних слоях атмосферы.

3. Возникновение жизни. В связи с интенсивными космической и ультрафиолетовой радиацией образовались сложные органические соединения из CH 4 , NH 3 , H 2 , H 2 S, CO 2 , H 2 O и др., и на их базе на определенной глубине в океане (под экраном слоя воды) развивались простейшие организмы, а на суше их не было (так как еще не существовал озонный экран. Образование его вызвало первый глубокий биологический переворот, так как восстановление Н 2 О в процессе жизнедеятельности привело к освобождению свободного кислорода, что явилось началом формирования современной кислородно-азотной атмосферы и озонного экрана, и жизнь смогла развиваться на суше. В результате образования атмосферы прекратился радиогенный и фотогенный синтез сложных органических молекул.

4. В раннем палеозое сформировалось НСО 3 – СОˉ 3 равновесие, которое обеспечило стабильность состава вод океана. С появлением жизни на Земле изменились процессы выветривания в сторону усиления под влиянием СО 2 . В результате фотосинтеза кислород в атмосфере в настоящее время возобновляется за 2 – 3 тыс. лет, а углекислота за 350 – 500 лет (без учета современного парникового эффекта), а вся вода Мирового океана проходит через фотосинтезирующие растения за несколько миллионов лет.

5. Образование пресной воды на Земле .

Основными факторами появления пресной воды на Земле являются возникновение жизни, образование современной атмосферы, расчленение земной коры на платформы и геосинклинали. Все это имеет возраст 2,5 – 3,0 млрд. лет. Именно возникновение большого гидрологического круговорота воды привело к образованию пресных подземных вод, образовавшихся из атмосферных осадков.

Относительно состава вод Мирового океана существуют неоднозначные мнения. Одни считают, что он сформировался в раннем палеозое. Другие являются сторонниками значительных изменений состава даже за последние 0,5 -0,6 млрд. лет. Например, Ю.П. Казанский установил 5 гидрогеологических типов океанических вод в процессе эволюции гидросферы от архея до кайнозоя, а современный сульфатно-хлоридный натриево-кальциевый состав появился по его данным, в Перми. Наряду с водообменом между мировым океаном и подземной гидросферой происходил и происходит солеобмен. Состав Мирового океана отражает условия предыдущих эпох, а за счет огромных водных масс он слабо реагирует на воздействие извне. Не меняется изотопное отношение Н 2 /Н 1 и О 18 /О 16 за 300 – 500 млн. лет. Это постоянство используется в качестве стандарта среднеокеанической воды SMOW (Standart middle ocean water).

Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного тяготения : каждое тело во Вселенной притягивает остальные с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Теоретически закон всемирного тяготения позволяет рассчитать движения любого тела во Вселенной под влиянием тяготения других тел. Но - увы! - только теоретически: уравнения, необходимые для описания движения всего трех изолированных тел под влиянием притяжения друг друга, столь сложны, что их решение не удавалось получить почти три столетия, до 60-х годов XX века. Понятно, что о полном решении для такой системы тел, как Солнечная система, и говорить не приходится. Что же до приближенных расчетов, которыми занимались многие выдающиеся математики и астрономы (Ж. Лагранж, П. Лаплас и другие), то они показывают, что возмущения в орбитах планет носят периодический характер: параметры орбиты меняются в одном направлении, затем в противоположном, и так до бесконечности. В самой по себе определяемой тяготением структуре Солнечной системы вроде бы нет ничего, что мешало бы ей существовать вечно; недаром сам Ньютон вопрос о происхождении Солнечной системы вообще не ставил.

Давайте, однако, задумаемся: если бы причиной движения планет было одно лишь тяготение, то что с ними произошло бы? Правильно, они «упали» бы на Солнце. Но планеты благополучно двигаются по своим орбитам перпендикулярно действующей на них силе тяжести и при этом еще вращаются вокруг собственной оси. Это движение не могло возникнуть - и не возникло! - под влиянием тяготения Солнца. Откуда же оно взялось? Дело в том, что всякое вращающееся тело обладает определенным качеством, которое называется моментом количества движения (МКД). Величина МКД зависит от трех параметров: массы тела, его круговой скорости и расстояния до центра вращения. К XVIII веку было установлено, что МКД не возникает из ничего и не исчезает бесследно, а может лишь передаваться от тела к телу. Это закон сохранения момента количества движения , принадлежащий к ряду законов сохранения (таких, как законы сохранения вещества, энергии и пр.). А коли так, то любая теория возникновения Вселенной (или Солнечной системы) как минимум не должна ему противоречить.

Итак, все тела, составляющие Солнечную систему, обладают собственным МКД. Создать МКД невозможно - откуда же он взялся? Рассмотрим следующий выход из этого тупика. МКД могут различаться в зависимости от направления вращения: по и против часовой стрелки - положительный и отрицательный МКД. Если телу (или системе тел) сообщить два МКД (равной величины, но разного знака), то оба момента взаимно уничтожатся, и возникнет система, лишенная МКД. Но в таком случае верно и обратное: система, изначально не обладавшая МКД, может разделиться на две: одну с положительным, другую - с равным ему отрицательным МКД. Таким образом, МКД как бы появляется и исчезает без нарушения закона сохранения. Исходя из этого, можно предположить, что Вселенная вначале не обладала МКД, но затем одни ее части получили положительный момент, а другие - одновременно - отрицательный.

Так вот, если посмотреть на Солнечную систему «с высоты» - из некой точки над Северным полюсом Земли (и, соответственно, над плоскостью ее орбиты), то окажется, что Земля, Солнце и большинство иных тел вращаются вокруг своей оси против часовой стрелки; планеты вокруг Солнца и спутники вокруг планет - тоже. Значит, положительные и отрицательные МКД всех тел, составляющих Солнечную систему, отнюдь не уравновешиваются между собой; суммарный МКД этой системы очень велик, и необходимо выяснить его происхождение.

В 1796 году П. Лаплас сформулировал небулярную теорию , согласно которой последовательность событий при образовании Солнечной системы такова. Имеется первичное газопылевое облако (туманность - по латыни «небула»), возникшее в результате концентрации рассеянного межзвездного вещества под действием взаимного притяжения его частиц (в соответствии с законом всемирного тяготения). Небула не является идеальным шаром, и ее края - просто по теории вероятности - находятся на неодинаковом расстоянии от ближайшей небулы (или звезды), а потому притягиваются той с неодинаковой силой (которая, как мы помним, обратно пропорциональна квадрату расстояния). Этой неравновесности достаточно для того, чтобы наша небула получила первичный толчок, который и придаст ей вращательное движение, пусть и чрезвычайно слабое.

Как только небула начинает поворачиваться вокруг своей оси, в ней возникает сила тяжести (как в космическом корабле, который специально «раскручивают» для противодействия невесомости). Под действием силы тяжести небула должна начать сжиматься, т.е. ее радиус уменьшается. А мы с вами помним, что МКД (который есть величина постоянная) зависит от трех параметров: массы тела, радиуса и скорости его вращения; масса - тоже величина неизменная, поэтому уменьшение радиуса может быть компенсировано только увеличением скорости вращения. В результате огромный газовый шар будет вращаться все быстрее и быстрее, работая как центрифуга: под действием центробежной силы его экватор вспухает, придавая шару форму все более сплющенного эллипсоида. Наступает момент, когда все возрастающая центробежная сила на экваторе уравновешивает силу притяжения и от него (экватора) начинает отслаиваться кольцо, а затем, по мере дальнейшего сжатия небулы, еще и еще. Вещество этих вращающихся колец начинает под действием взаимного притяжения его частиц конденсироваться в планеты, от которых, в свою очередь, отрываются их спутники.

Теория Лапласа, согласно которой Земля была изначально холодной , сохраняла популярность на протяжении почти столетия, хотя ей и противоречили некоторые астрономические данные (например, вращение Венеры и Урана в сторону, обратную всем остальным планетам и Солнцу). Однако ближе к концу XIX века, когда было твердо установлено, что температура в недрах нашей планеты чрезвычайно высока (по современным данным, свыше 1000°С), большинство ученых стало разделять мнение об изначально горячей Земле - огненном шаре, постепенно остывающем с поверхности. Поиски источника этого раскаленного вещества вполне естественно было начать с Солнца. В начале ХХ века астрономы Т. Чемберлен и Ф. Мультон выдвинули, а Дж. Джинс математически обосновал планетезимальную теорию происхождения планет Солнечной системы. Суть ее состоит в том, что некогда поблизости от Солнца («поблизости» - это по космическим масштабам) прошла другая звезда. При этом взаимное притяжение вырвало из каждой из них по гигантскому протуберанцу звездного вещества, которые, соединившись, составили «межзвездный мост», распавшийся затем на отдельные «капли» - планетезимали . Остывающие планетезимали и дали начало планетам и их спутникам.

Однако вторая половина ХХ века стала временем возвращения к концепции изначально холодной Земли. Во-первых, нашлись серьезные, чисто астрономические, возражения против планетезимальной теории. Г. Рессел, например, обратил внимание на то простое обстоятельство, что если между Солнцем и проходящей звездой протянется лента из звездного вещества, то ее средняя часть (где притяжение двух светил взаимно уравновешивается) должна будет пребывать в полной неподвижности. И напротив, выяснилось, что некоторые оказавшиеся ошибочными положения Лапласа вполне могут быть откорректированы в рамках дальнейшего развития небулярной теории. В качестве примера можно привести гипотезу О. Ю. Шмидта (в ней газо-пылевое облако захватывается уже существующим на тот момент Солнцем) или более популярную ныне модель К. фон Вайцзеккера (в ней вращающаяся небула представляет собой уже не гомогенный шар, как у Лапласа, а систему разноскоростных вихрей, несколько напоминающую шарикоподшипник). Полагают также, что газ и пыль во вращающейся газо-пылевой туманности ведут себя по-разному: пыль собирается в плоский экваториальный диск, а газ образует почти шарообразное облако, густеющее по направлению к центру туманности. Впоследствии пыль экваториального диска слипается в планеты, а газ под собственной тяжестью разогревается так, что «вспыхивает» в виде Солнца.

Более существенным для победы «холодной» концепции оказалось другое: был найден убедительный и при этом достаточно простой ответ на вопрос - откуда же берется тепло, разогревшее недра изначально холодной Земли до столь высоких температур? Этих источников тепла, как сейчас полагают, два: энергия распада радиоактивных элементов и гравитационная дифференциация недр . С радиоактивностью все достаточно ясно, да и источник это второстепенный - на него приходится, согласно современным оценкам, не более 15% энергии разогрева. Идея же гравитационной дифференциации недр (ее детальную разработку связывают с именем О. Г. Сорохтина) заключается в следующем.

Зная массу и объем Земли (они были рассчитаны еще в XVIII веке), легко определить усредненную плотность земного вещества - 5,5 г/см 3 . Между тем плотность доступных нам для прямого изучения горных пород вдвое меньше : средняя плотность вещества земной коры составляет 2,8 г/см 3 . Отсюда ясно, что вещество в глубоких недрах Земли должно иметь плотность много выше средней.

Известно, что почти 9/10 массы Земли приходится на долю всего четырех химических элементов - кислорода (входящего в состав окислов), кремния, алюминия и железа. Поэтому можно с достаточной уверенностью утверждать, что более «легкие» наружные слои планеты состоят преимущественно из соединений кремния (алюмосиликатов), а «тяжелые» внутренние - железа.

В момент образования Земли («горячим» или «холодным» способом - для нас сейчас неважно) «тяжелые» и «легкие» элементы и их соединения не могли не быть полностью перемешаны. Однако дальше начинается их гравитационная дифференциация: под действием силы тяжести «тяжелые» соединения (железо) «тонут» - опускаются к центру планеты, а «легкие» (кремний) - «всплывают» к ее поверхности. Давайте теперь рассмотрим этот процесс в мысленно вырезанном вертикальном столбе земного вещества, основание которого - центр планеты, а вершина - ее поверхность. «Тонущее» железо постоянно смещает центр тяжести этого столба к его основанию. При этом потенциальная энергия столба (пропорциональная произведению массы тела на высоту его подъема, что в нашем случае составляет расстояние между центром Земли и центром тяжести столба) постоянно уменьшается. Суммарная же энергия Земли, в соответствии с законами сохранения, неизменна; следовательно, теряющаяся в процессе гравитационной дифференциации потенциальная энергия может преобразовываться лишь в кинетическую энергию молекул, т.е. выделяться в виде тепла.

Расчеты геофизиков показывают, что эта энергия составляет чудовищную величину 4·10 30 кал (что эквивалентно триллиону суммарных ядерных боезапасов всех стран мира). Этого вполне достаточно для того, чтобы - даже не прибегая к помощи энергии радиоактивного распада - разогреть недра изначально холодной Земли до расплавленного состояния. Однако, рассчитывая тепловой баланс Земли за всю ее историю, геофизики пришли к выводу, что температура ее недр лишь местами могла доходить до 1600°C, в основном составляя около 1200°C; а это означает, что наша планета, вопреки бытовавшим ранее представлениям, никогда не была полностью расплавленной . Разумеется, планета постоянно теряет тепловую энергию, остывая с поверхности, но этот расход в значительной степени (если не полностью) компенсируется излучением Солнца.

Итак, Земля на протяжении всей своей истории представляет собой твердое тело (более того, в глубинах, при высоких давлениях - очень твердое тело), которое, однако, парадоксальным образом ведет себя при очень больших постоянных нагрузках как чрезвычайно вязкая жидкость . Сама форма планеты - эллипсоид с чуть выпяченным Северным полюсом и чуть вдавленным Южным - идеально соответствует той, что должна принимать жидкость в состоянии равновесия. В толще этой «жидкости» постоянно происходят чрезвычайно медленные, но немыслимо мощные движения колоссальных масс вещества, с которыми связаны вулканизм, горообразование, горизонтальные перемещения континентов и т.д. - их закономерности мы будем обсуждать в следующей главе. Здесь важно запомнить, что источником энергии для всех этих процессов является в конечном счете все та же гравитационная дифференциация вещества в недрах планеты. Соответственно, когда этот процесс завершится полностью, наша планета станет геологически неактивной, «мертвой» - подобно Луне. Согласно расчетам геофизиков, к настоящему моменту уже 85% имеющегося на Земле железа опустилось в ее ядро, а на «оседание» оставшихся 15% потребуется еще около 1,5 млрд лет.

В результате гравитационной дифференциации недра планеты оказываются разделенными (как молоко в сепараторе) на три основных слоя: «тяжелый», «промежуточный» и «легкий». Внутренний «тяжелый» слой (с плотностью вещества около 8 г/см 3) - центральное ядро , состоящее из соединений железа и иных металлов; из 6400 км, составляющих радиус планеты, на ядро приходится 2900 км. Поверхностный «легкий» слой (плотность его вещества около 2,5 г/см 3) называется корой . Средняя толщина коры всего-навсего 33 км; она отделена от нижележащих слоев поверхностью Мохоровичича , при переходе через которую скачкообразно увеличивается скорость распространения упругих волн. Между корой и ядром располагается «промежуточный» слой - мантия ; ее породы имеют плотность около 3,5 г/см 3 и находятся в частично расплавленном состоянии. Верхняя мантия отделена от нижней мантии лежащим в 60–250 км от поверхности расплавленным слоем базальтов - астеносферой ; верхняя мантия вместе с корой образует твердую оболочку планеты - литосферу (рис. 4). В астеносфере находятся магматические очаги, питающие вулканы, деятельности которых Земля обязана своей подвижной оболочкой - гидросферой и атмосферой .

Рис. 4. Структура недр планеты (со схематическим вулканом)

Согласно современным представлениям, атмосфера и гидросфера возникли в результате дегазации магмы, выплавляющейся при вулканических процессах из верхней мантии и создающей земную кору. Атмосфера и гидросфера состоят из легких летучих веществ (соединений водорода, углерода и азота), содержание которых на Земле в целом очень мало - примерно в миллион раз меньше, чем в космосе. Причина такого дефицита состоит в том, что эти летучие вещества были «вымыты» еще из протопланетного облака солнечным ветром (т.е. потоками солнечной плазмы) и давлением света. В момент образования Земли из протопланетного облака все элементы ее будущей атмосферы и гидросферы находились в связанном виде, в составе твердых веществ: вода - в гидроокислах, азот - в нитридах (и, возможно, в нитратах), кислород - в окислах металлов, углерод - в графите, карбидах и карбонатах.

Современные вулканические газы примерно на 75% состоят из паров воды и на 15% - из углекислого газа, а остаток приходится на метан, аммиак, соединения серы (H 2 S и SO 2) и «кислые дымы» (HCl, HF, HBr, HI), а также инертные газы; свободный кислород полностью отсутствует. Изучение содержимого газовых пузырьков в древнейших (катархейских) кварцитах Алданского щита показало, что качественный состав этих газов полностью соответствует тому, что перечислено выше. Поскольку эта первичная атмосфера была еще очень тонкой, температура на поверхности Земли равнялась температуре лучистого равновесия , получающейся при выравнивании потока солнечного тепла, поглощаемого поверхностью, с потоком тепла, излучаемым ею; для планеты с параметрами Земли температура лучистого равновесия равна примерно 15°C.

В итоге почти весь водяной пар из состава вулканических газов должен был конденсироваться, формируя гидросферу. В этот первичный океан переходили, растворяясь в воде, и другие компоненты вулканических газов - бoльшая часть углекислого газа, «кислые дымы», окиси серы и часть аммиака. В результате первичная атмосфера (содержащая - в равновесии с океаном - водяные пары, CO 2 , CO, CH 4 , NH 3 , H 2 S, инертные газы и являющаяся восстановительной ) оставалась тонкой и температура на поверхности планеты не отклонялась сколь-нибудь заметно от точки лучистого равновесия, оставаясь в пределах существования жидкой воды. Это и предопределило одно из главных отличий Земли от других планет Солнечной системы - постоянное наличие на ней гидросферы.

Как же изменялся объем гидросферы на протяжении ее истории? В расплавленном базальте (в астеносфере) при температуре 1000°С и давлении 5–10 тыс. атмосфер растворено до 7–8% H 2 O: именно столько воды, как установлено вулканологами, дегазируется при излиянии лав. Бoльшая часть этой воды (имеющей, таким образом, мантийное происхождение) пополняла собою гидросферу, но часть ее поглощалась обратно породами океанической коры (этот процесс называется серпентинизацией ). Расчеты геофизиков показывают, что в катархее и архее воды в океанских впадинах было мало и она еще не прикрывала срединно-океанические хребты . В океаническую кору вода поступала не из океанов, а снизу - непосредственно из мантии. В начале протерозоя уровень океанов достиг вершин срединно-океанических хребтов, но на протяжении всего раннего протерозоя практически весь объем поступавшей в океаны воды поглощался породами океанической коры. К началу среднего протерозоя процессы серпентинизации закончились и океаническая кора обрела современный состав. С этого времени объем океанов вновь начал нарастать. Это будет продолжаться (с постепенным замедлением), пока на Земле не прекратятся вулканические процессы.

Если спросить человека: «Отчего море соленое?», он почти наверняка ответит: «Оттого же, отчего солоны бессточные озера (вроде озера Эльтон, снабжающего нас поваренной солью): впадающие в море реки несут некоторое количество солей, потом вода испаряется, а соль остается». Ответ этот неверен: соленость океана имеет совершенно иную природу, чем соленость внутриконтинентальных конечных водоемов стока. Дело в том, что вода первичного океана имела различные примеси. Одним источником этих примесей были водорастворимые атмосферные газы, другим - горные породы, из которых в результате эрозии (как на суше, так и на морском дне) вымываются различные вещества. «Кислые дымы», растворяясь в воде, давали галогеновые кислоты, которые тут же реагировали с силикатами (основным компонентом горных пород) и извлекали из них эквивалентное количество металлов (прежде всего щелочных и щелочноземельных - Na, Mg, Ca, Sr, K, Li). При этом, во-первых, вода из кислой становилась практически нейтральной, а во-вторых, соли извлеченных из силикатов элементов переходили в раствор; таким образом, вода океана с самого начала была соленой . Концентрация катионов в морской воде совпадает с распространенностью этих металлов в породах земной коры, а вот содержание основных анионов (Cl–, Br–, SO 4 –, HCO 3 –) в морской воде намного выше того их количества, которое может быть извлечено из горных пород. Поэтому геохимики полагают, что все анионы морской воды возникли из продуктов дегазации мантии, а все катионы - из разрушенных горных пород.

Главным фактором, определяющим кислотность морской воды, является содержание в ней углекислого газа (CO 2 - водорастворим, сейчас в океанах его растворено 140 трлн. т - против 2,6 трлн. т, содержащихся в атмосфере). В океанах существует динамическое равновесие между нерастворимым карбонатом кальция CaCO 3 и растворимым бикарбонатом Ca(HCO 3) 2: при недостатке CO 2 «лишний» бикарбонат превращается в карбонат и выпадает в осадок, а при избытке CO 2 карбонат превращается в бикарбонат и переходит в раствор. Карбонатно-бикарбонатный буфер возник в океане на самом начальном этапе его существования, и с тех пор он поддерживает кислотность океанской воды на стабильном уровне.

Что касается атмосферы, то ее состав стал меняться в протерозое, когда фотосинтезирующие организмы начали вырабатывать (в качестве побочного продукта своей жизнедеятельности) свободный кислород; сейчас считается твердо установленным, что весь свободный кислород планеты имеет биогенное происхождение . Кислород, в отличие от углекислого газа, плохо растворим в воде (соотношение между атмосферным и растворенным в воде CO 2 составляет, как мы видели, 1:60, а для O 2 оно составляет 130:1), и потому почти весь прирост кислорода идет в атмосферу. Там он окисляет CO и CH 4 до CO 2 , H 2 S - до S и SO 2 , а NH 3 - до N 2 ; самородная сера, естественно, выпадает на поверхность, углекислый газ и сернистый ангидрид растворяются в океане, и в итоге в атмосфере остаются только химически инертный азот (78%) и кислород (21%). Атмосфера из восстановительной становится современной, окислительной; впрочем, подробнее историю кислорода на Земле мы обсудим позднее, там, где речь пойдет о ранней эволюции живых существ (глава 5).

Помимо кислорода и азота, в атмосфере содержится небольшое количество так называемых парниковых газов - углекислый газ, водяной пар и метан. Составляя ничтожную долю атмосферы (менее 1%), они, тем не менее, оказывают важное влияние на глобальный климат. Все дело в особых свойствах этих газов: будучи сравнительно прозрачными для коротковолнового излучения, поступающего от Солнца, они в то же время непрозрачны для длинноволнового - излучаемого Землею в космос. По этой причине вариации в количестве атмосферного CO 2 могут вызывать существенные изменения теплового баланса планеты: с ростом концентрации этого газа атмосфера по своим свойствам все более приближается к стеклянной крыше парника, которая обеспечивает нагрев оранжерейного воздуха путем «улавливания» лучистой энергии, - парниковый эффект .

Земная кора, гидросфера и атмосфера образовались в основном в результате высвобождения веществ из верхней мантии молодой Земли. В настоящее время формирование океанической коры происходит в срединных хребтах океанов и сопровождается выходом газов и небольших количеств воды. Образование коры на молодой Земле, обуславливалось теми же процессами – за счет них сформировалась оболочка из породы толщиной менее 0,0001% объема всей планеты. Состав этой оболочки, образующей континентальную и океаническую кору, эволюционировал во времени, прежде всего, за счет возгонки элементов из мантии в результате частичного плавления на глубине примерно 100 км. Средний химический состав современной коры показывает, что кислород содержится в ней в наибольшем количестве, сочетаясь в разных видах с кремнием, алюминием и другими элементами с образованием силикатов.

На основании многих данных можно предположить, что летучие элементы выделились из мантии в результате извержений вулканов, сопровождавших образование коры. Скорее всего, первоначально, атмосфера состояла из диоксида углерода и азота с некоторым количеством водорода и паров воды. Эволюция в сторону современной кислородной атмосферы не происходила до тех пор, пока не начала развиваться жизнь.

Образование гидросферы

Вода в своих трех состояниях - жидкость, лед и водяные пары - широко распространена на поверхности Земли и занимает объем 1,4 млрд. км 3 . Почти вся эта вода (> 97 %) находится в океанах, а большая часть из оставшейся образует ледяные полярные шапки и ледники (около 2 %). Континентальные пресные воды представляют менее 1 % общего объема. Атмосфера содержит сравнительно мало воды (в виде паров - 0,001 %). В целом эти резервуары воды называют гидросферой.

Источники воды при образовании гидросферы спорны. Во всяком случае, когда поверхность Земли остыла до Т < 100°С, водяные пары, дегазирующиеся из мантии, сконденсировались.

Океаны образовались около 3,8 · 10 9 лет назад, о чем говорит возраст погруженных в океан осадочных пород.

Из атмосферы в космос проникает очень малое количество водяных паров, поскольку на высоте около 15 км низкие температуры вызывают их конденсацию и выпадение на более низкие уровни. Очень небольшое количество воды дегазируется в настоящее время из мантии. Таким образом, после основной фазы дегазации общий объем воды на земной поверхности мало изменялся в течение геологического времени.

Круговорот между резервуарами воды в гидросфере называется гидрологическим циклом.

Хотя объем водяных паров, содержащихся в атмосфере, мал (около 0,013 10 6 км 3), вода постоянно движется через этот резервуар. Она испаряется с поверхности океанов (0,423 10 6 км 3 /год) и суши (0,073 10 6 км 3 год) и переносится с воздушными массами (0,037 10 6 км 3 /год). Несмотря на короткое время пребывания в атмосфере (обычно 10 дней), среднее расстояние водопереноса составляет около 1000 км. Водяные пары затем возвращаются либо в океаны (0,386 10 6 км 3 /год), либо на континенты (0,110 10 6 км 3 /год) в виде снега или дождя. Большая часть дождевых осадков, попадающих на континенты, просачивается через отложения и пористые или раздробленные породы, образуя подземные воды (9,5 10 6 км 3); остальная вода течет по поверхности в виде рек (0,13 10 6 км 3) или вновь испаряется в атмосферу.

Быстрый перенос воды в атмосфере обусловливается поступающим солнечным излучением. Почти все излучение, достигающее коры, идет на испарение жидкой воды и образование атмосферных водяных паров. Большая часть из оставшегося излучения поглощается корой, причем эффективность этого процесса уменьшается с увеличением широты, в основном из-за сферической формы Земли.