Нахождения приближенного значения квадратного корня. Этот метод был известен ещё в Древней Греции и приписывается Герону Александрийскому


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

8 класс

Дата:

Урок № 9.

Тема: Приближенные вычисления квадратного корня.

Цели: 1. Научить учащихся находить приближенные значения квадратных корней.

2. Развивать наблюдательность, умение анализировать, сравнивать, делать выводы.

    Воспитывать позитивное отношение к учебному труду

Тип урока: комбинированный.

Формы организации урока: индивидуальная, коллективная

Оборудование: проектная доска, карточки для рефлексии настроений, микрокалькулятор

Три пути ведут к знанию: путь размышления

Это путь самый благородный,

путь подражания – это путь самый легкий

и путь опыта – это путь самый горький.

Конфуций

Ход урока.

    Организационный момент

    Этап проверки домашнего задания

№ 60 – у доски выполняет 1 учащийся, на месте проверяет правильность выполнения задания другой ученик

    Устная работа: проектируется на доску

а) Найди значение корня:

б) Имеет ли смысл выражение:

в) Найди число, арифметический квадратный корень которого равен 0; 1; 3; 10; 0,6

    Этап объяснения нового материала

Для того, чтобы вычислить приближенное значение квадратного корня, необходимо использовать микрокалькулятор. Для этого нужно ввести в калькулятор подкоренное выражение и нажать на клавишу со знаком радикала. Но не всегда под рукой имеется калькулятор, поэтому находить приближенное значение квадратного корня можно следующим образом:

Пусть надо найти значение .

Так как , то . Теперь среди чисел, расположенных на отрезке от 1 до 2 возьмем соседние числа 1,4 и 1,5, получим: , далее возьмем числа 1,41 и 1,42,эти числа удовлетворяют неравенству . Если продолжить данный процесс возведения в квадрат соседних чисел, то получим следующую систему неравенств:

Проецируется на доску.

Из этой системы, сравнивая цифры после запятой, получаем:

Приближенные значения квадратных корней можно брать по избытку и по недостатку, т.е. по недостатку с точностью до 0,0001 и по избытку.

    Закрепление изученного материала.

Уровень «А»

0,2664 0,2 – по недостатку

№93 (используется калькулятор)

5. Валеологическая пауза: упражнения для глаз.

Уровень «В»

6. Историческая справка о необходимости нахождения значения квадратных корней

(Заранее предлагается желающему ученику подготовить сообщение на эту тему, используя интернет)

Предлагается формула для нахождения приближенного значения квадратного корня из иррационального числа:

Уровень «С» № 105

7. Рефлексия.

    Итог урока.

    Домашнее задание: № 102,

Тема: «Нахождение
приближенных значений квадратного корня»

Тип урока : ОНЗ, Р

Основные цели:

  • научиться находить приближенные значения квадратного корня,
  • познакомиться с методами для вычисления корней.

Ход урока

1. Самоопределение к учебной деятельности

Цель этапа: 1) включить учащихся в учебную деятельность;

2) определить содержательные рамки урока: продолжаем работать над квадратными корнями

Организация учебного процесса на этапе 1:

Что сейчас изучаем на уроках алгебры? (Квадратные корни)

А что такое квадратные корни?

– Молодцы! Для успешной работы выполним следующие задания.

2. Актуализация знаний и фиксация затруднения в деятельности

Цель этапа: 1) актуализировать учебное содержание, необходимое и достаточное для восприятия нового материала: нахождение значений квадратного корня;

2) актуализировать мыслительные операции, необходимые и достаточные для восприятия нового материала: сравнение, анализ, обобщение;

3) зафиксировать все повторяемые понятия и алгоритмы в виде схем и символов;

4) зафиксировать индивидуальное затруднение в деятельности, демонстрирующее на личностно значимом уровне недостаточность имеющихся знаний: найти значение выражения .

Организация учебного процесса на этапе 2:

1. Вычислите: , , , ,

4. Индивидуальное задание .

Найдите значение выражения ..

3. Выявление причины затруднения и постановка цели деятельности

Цель этапа: 1) организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности: возможность найти значение квадратного корня;

2) согласовать цель и тему урока.

Организация учебного процесса на этапе 3:

что вам необходимо было сделать?

– Что у вас получилось? (Учащиеся показывают свои варианты:)

– В чём возникло затруднение?

Извлекается √2 нацело?

Нет.

Как будем находить?

Какие знаем способы нахождения корней?

Ребята, видите, не всегда мы имеем дело с числами, легко представимыми в виде квадрата числа, которые извлекаются из- под корня нацело.

– Какую цель мы поставим перед собой?

– Сформулируйте тему урока.

– Запишите тему в тетрадь.

4. Построение проекта выхода из затруднения

Цель этапа: 1) организовать коммуникативное взаимодействие для построения нового способа действия, устраняющего причину выявленного затруднения;

2) зафиксировать новый способ действия в знаковой, вербальной форме.

Организация учебного процесса на этапе 4:

1 МЕТОД в ычислить √2 с точностью до двух знаков после запятой Будем рассуждать следующим образом.

Число √2 больше 1, так как 1 2 2 больше 2. Следовательно, десятичная запись числа будет начинаться следующим образом: 1,… То есть корень из двух, это единица с чем-то.

Теперь попытаемся отыскать цифру десятых.

Для этого будем дроби от единицы до двойки возводить в квадрат, пока не получим число большее двух.

Шаг деления возьмем 0,1, так как мы ищем число десятых.

Другими словами будем возводить в квадрат числа: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

1,1 2 =1,21; 1,2 2 =1,44; 1,3 2 =1,69; 1,4 2 =1,96; 1,5 2 =2,25.

Получили число превышающее двойку, остальные числа уже не надо возводить в квадрат. Число 1,4 2 меньше 2, а 1,5 2 уже больше двух, то число √2 должно принадлежать промежутку от 1,4 до 1,5 . Следовательно, десятичная запись числа √2 в разряде десятых должна содержать 4. √2=1,4… .

Иначе говоря, 1,4

1,41 2 =1,9881, 1,42 2 =2,0164.

Уже при 1.42 получаем, что его квадрат больше двух, далее возводить в квадрат числа не имеет смысла.

Из этого получаем, что число √2 будет принадлежать промежутку от 1,41 до 1,42 (1,41

Так как нам необходимо записать √2 с точностью до двух знаков после запятой, то мы уже можем остановиться и не продолжать вычисления.

√2 ≈ 1,41. Это и будет ответом. Если бы необходимо было вычислить еще более точное значение, нужно было бы продолжать вычисления, повторяя снова и снова цепочку рассуждений.

Задание

Вычислите с точностью до двух знаков после запятой

√3 = , √5 = , √6 = , √7 =, √8 =

Вывод Данный прием позволяет извлекать корень с любой заданной наперед точностью.

2 МЕТОД Чтобы узнать целую часть квадратного корня числа, можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, посчитать количество выполненных действий.

Например, найдем √16 так:

  1. 16 - 1 = 15
  2. 15 - 3 = 12
  3. 12 - 5 = 7
  4. 7 - 7 =0
  • Выполнено 4 действия, значит, √16 = 4

Задание Вычислите

√1 = √6 =

√2 = √7 =

√3 = √8 =

√4 = √9 =

√5 = √10 =

Вывод Данный прием удобен тогда, когда корень извлекается нацело

3 МЕТОД Древние вавилоняне пользовались следующим способом нахождения приближенного значения квадратного корня их числа х. Число х они представляли в виде суммы а 2 +b,

где а 2 - ближайший к числу х точный квадрат натурального числа а, и пользовались формулой.

Извлечем с помощью формулы квадратный корень,

Например из числа 28:

Вывод Способ вавилонян дает хорошее приближение к точному значению корня.

5. Первичное закрепление во внешней речи

Цель этапа: зафиксировать изученное учебное содержание во внешней речи.

Организация учебного процесса на этапе 5:

из учебника: №№ 336, 337, 338,339, 343,345

6. Самостоятельная работа с самопроверкой по эталону.

Цель этапа: проверить своё умение применять алгоритм сложения и вычитания в типовых условиях на основе сопоставления своего решения с эталоном для самопроверки.

Организация учебного процесса на этапе 6:

№№ 338 (а), 339 (в, г)

После проверки по эталону анализируются и исправляются ошибки.

7. Включение в систему знаний и повторение

Цель этапа: 1) тренировать навыки использования нового содержания совместно с ранее изученным;

Организация учебного процесса на этапе 7:

1 группа (средн) "№№ ______________

2 группа (высок) №№ _________________

8. Рефлексия деятельности на уроке

1) зафиксировать новое содержание, изученное на уроке;

2) оценить собственную деятельность на уроке;

3) поблагодарить одноклассников, которые помогли получить результат урока;

4) зафиксировать неразрешённые затруднения как направления будущей учебной деятельности;

5) обсудить и записать домашнее задание.

Организация учебного процесса на этапе 8:

С чем мы познакомились сегодня на уроке?

Что мы научились сегодня выполнять?

Проанализируйте свою деятельность на уроке и дайте своей работе оценку.

Домашнее задание №№ 344 , 346, 351


Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10 √2 Ответ в принципе очень прост. Возьмем вместо √2 его приближение в виде конечной десятичной дрдби - это- рациональное число. Возводить в рациональную степень мы умеем; дело сводится к возведению в целую степень и извлечению корня. Мы получим приближенное значение числа. Можно взять десятичную дробь подлиннее (это снова рациональное число). Тогда придется извлечь корень большей степени; ведь знаменатель рациональной дроби увеличится, но зато мы получим более точное приближение. Конечно, если взять приближенное значение √2 в виде очень длинной дроби, то возведение в степень будет делом очень трудным. Как справиться с этой задачей?

Вычисление квадратных корней, кубичных корней и других корней невысокой степени - вполне доступный нам арифметический процесс; вычисляя, мы последовательно, один за другим, пишем знаки десятичной дроби. Но для того, чтобы возвести в иррациональную степень или взять логарифм (решить обратную задачу), нужен такой труд, что применить прежнюю процедуру уже не просто. На помощь приходят таблицы. Их называют таблицами логарифмов или таблицами степеней, смотря по тому, для чего, они предназначены. Они экономят время: чтобы возвести число в иррациональную степень, мы не вычисляем, а только перелистываем страницы.

Хотя вычисление собранных в таблицы значений - процедура чисто техническая, а все же дело это интересное и имеет большую историю. Поэтому посмотрим, как это делается. Мы вычислим не только х = 10 √2 , но решим и другую задачу: 10 х = 2, или x = log 10 2. При решении этих задач мы не откроем новых чисел; это просто вычислительные задачи. Решением будут иррациональные числа, бесконечные десятичные дроби, а их как-то неудобно объявлять новым видом чисел.

Подумаем, как решить наши уравнения. Общая идея очень проста. Если вычислить 10 1 и 10 1/10 , и 10 1/100 , и 10 1/1000 , и т. д., а затем перемножить результаты, то мы получим 10 1,414… или l0 √2 Поступая так, мы решим любую задачу такого рода. Однако вместо 10 1/10 и т. д. мы будем вычислять 10 1/2 , и 10 1/4 и т. д. Прежде чем начинать вычисления, объясним еще, почему мы обращаемся к числу 10 чаще, чем к другим числам. Мы знаем, что значение таблиц логарифмов выходит далеко за рамки математической задачи вычисления корней, потому что

Это хорошо известно всем, кто пользовался таблицей логарифмов, чтобы перемножить числа. По какому же основанию b брать логарифмы? Это безразлично; ведь в основу таких вычислений положен только принцип, общее свойство логарифмической функции. Вычислив логарифмы один раз по какому-нибудь произвольному основанию, можно перейти к логарифмам по другому основанию при помощи умножения. Если умножить уравнение (22.3) на 61, то оно останется верным, поэтому если перемножить все числа в таблице логарифмов по основанию b на 61, то можно будет пользоваться и такой таблицей. Предположим, что нам известны логарифмы всех чисел по основанию b. Иначе говоря, можно решить уравнение b а = с для любого с; для этого существует таблица. Задача состоит в том, как найти логарифм этого же числа с по другому основанию, например x. Нам нужно решить уравнение х а’ = с. Это легко сделать, потому что х всегда можно представить так: х = b t . Найти t, зная х и b, просто: t = log b x. Подставим теперь х = b t в уравнение х а’ = с; оно перейдет в такое уравнение: (b t) а’ = b ta’ = c. Иными словами, произведение ta’ есть логарифм с по основанию b. Значит, а’ = a/t. Таким образом, логарифмы по основанию х равны произведениям логарифмов по основа нию b на постоянное число l/t. Следовательно, все таблицы логарифмов эквивалентны с точностью до умножения на число l/log b x. Это позволяет нам выбрать для составления таблиц любое основание, но мы решили, что удобнее всего взять за основание число 10. (Может возникнуть вопрос: не существует ли все-таки какого-нибудь естественного основания, при котором все выглядит как-то проще? Мы попытаемся ответить на этот вопрос позднее. Пока все логарифмы будут вычисляться по основанию 10.)

Теперь посмотрим, как составляют таблицу логарифмов. Работа начинается с последовательных извлечений квадратного корня из 10. Результат можно увидеть в табл. 22.1. Показатели степеней записаны в ее первом столбце, а числа 10 s - в третьем. Ясно, что 10 1 = 10. Возвести 10 в половинную степень легко -это квадратный корень из 10, а как извлекать квадратный корень из любого числа, знает каждый. (Квадратный корень лучше всего извлекать не тем способом, которому обычно учат в школе, а немного иначе. Чтобы извлечь квадратный корень из числа N, выберем достаточно близкое к ответу число а, вычислим N/a и среднее а’ =1/2; это среднее будет новым числом а, новым приближением корня из N. Этот процесс очень быстро приводит к цели: число значащих цифр удваивается после каждого шага.) Итак, мы нашли первый квадратный корень; он равен 3,16228. Что это дает? Кое-что дает. Мы уже можем сказать, чему равно 10 0,5 , и знаем по крайней мере один логарифм.

Логарифм числа 3,16228 очень близок к 0,50000. Однако нужно еще приложить небольшие усилия: нам нужна более подробная таблица. Извлечем еще один квадратный корень и найдем 10 1/4 , что равно 1,77828. Теперь мы знаем еще один логарифм: 1,250 -это логарифм числа 17,78; кроме того, мы можем сказать, чему равно 10 0,75: ведь это 10 (0,5+0,25) , т. е. произведение второго и третьего чисел из третьего столбца табл. 22.1. Если сделать первый столбец таблицы достаточно длинным, то таблица будет содержать почти все числа; перемножая числа из третьего столбца, мы получаем 10 почти в любой степени. Такова основная идея таблиц. В нашей таблице содержится десять последовательных корней из 10; основной труд по составлению таблицы вложен в вычисления этих корней.

Почему же мы не продолжаем повышать точность таблиц дальше? Потому что мы кое-что уже подметили. Возведя 10 в очень малую степень, мы получаем единицу с малой добавкой. Это, конечно, происходит потому, что если возвести, например, 10 1/1000 в 1000-ю степень, то мы снова получим 10; ясно, что 10 1/1000 не может быть большим числом: оно очень близко к единице. Более того, малые добавки к единице ведут себя так, будто их каждый раз делят на 2; поглядите-ка на таблицу повнимательнее: 1815 переходит в 903, потом в 450, 225 и т. д. Таким бразом, если вычислить еще один, одиннадцатый, квадратный корень, он с большой точностью будет равен 1,00112, и этот результат мы угадали еще до вычисления. Можно ли сказать, какова будет добавка к единице, если возвести 10 в степень ∆/1024, когда ∆ стремится к нулю? Можно. Добавка будет приблизительно равна 0,0022511∆. Конечно, не в точности 0,0022511∆; чтобы вычислить эту добавку поточнее, делают такой трюк: вычитают из 10 s единицу и делят разность на показатель степени s. Отклонения полученного таким образом частного от его точного значения одинаковы для любой степени s. Видно, что эти отношения (табл. 22.1) примерно равны. Сначала они сильно различаются, но потом все ближе подходят друг к другу, явно стремясь к какому-то числу. Что это за число? Проследим, как меняются числа четвертого столбца, если опускаться вниз по столбцу. Сначала разность двух соседних чисел равна 0,0211, потом 0,0104, потом 0,0053 и, наконец, 0,0026. Разность каждый раз убывает наполовину. Сделав еще один шаг, мы доведем ее до 0,0013, потом до 0,0007, 0,0003, 0,0002 и, наконец, примерно до 0,0001; надо последовательно делить 26 на 2. Таким образом, мы спустимся еще на 26 единиц и найдем для предела 2,3025. (Позднее мы увидим, что правильнее было бы взять 2,3026, но давайте возьмем то, что у нас получилось.) Пользуясь этой таблицей, можно возвести 10 в любую степень, если ее показатель каким угодно способом выражается через I/I024.

Теперь легко составить таблицу логарифмов, потому что все необходимое для этого мы уже припасли. Процедура этого изображена в табл. 22.2, а нужные числа берутся из второго и третьего столбцов табл. 22.1.

Предположим, что мы хотим знать логарифм 2. Это значит, что мы хотим знать, в какую степень надо возвести 10, чтобы получить 2. Может быть, возвести 10 в степень 1/2? Нет, получится слишком большое число. Глядя на табл.. 22.1, можно сказать, что нужное нам число лежит между 1/4 и 1/2. Поиск его начнем с 1/4; разделим 2 на 1,778…, получится 1,124…; при делении мы отняли от логарифма двух 0,250000, и теперь нас интересует логарифм 1,124…. Отыскав его, мы прибавим к результату 1/4 = 256/1024. Найдем в табл.22.1 число, которое бы при движении по третьему столбцу сверху вниз стояло сразу за 1,124… . Это 1,074607. Отношение 1,124… к 1,074607 равно 1,046598. В конце концов мы представим 2 в виде произведения чисел из табл. 22.1:
2 = (1,77828) (1,074607) (1,036633). (1,0090350) (1,000573).
Для последнего множителя (1,000573) в нашей таблице места не нашлось; чтобы найти, его логарифм, надо представить это число в виде 10∆/1024 ≈ 1 + 2,3025∆/1024. Отсюда легко найти, что ∆ = 0,254. Таким образом, наше произведение можно представить в виде десятки, возведенной в степень 1/1024 (266 + 32+16 + 4 + 0,254). Складывая и деля, мы получаем нужный логарифм: log 10 2 = 0,30103; этот результат верен до пятого десятичного знака!

Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с ∆. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем
10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Составить таблицы логарифмов с точностью до четырнадцатого десятичного знака таким методом- дело очень трудное. Зато целых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных машин оказалось возможным составить таблицы логарифмов независимо от Мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт; если показатель степени ε очень мал, то очень легко вычислить 10 ε ; это просто 1+2,3025ε. Это значит, что 10 n/2,3025 = 1 + n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из логарифмов по основанию 10 простым умножением. Теперь настало время выяснить, не существует ли математически выделенного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой естественной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025…. Это соответствует переходу к новому основанию - натуральному, или основанию е. Заметим, что log e (l + n) ≈ n или е n ≈ 1 + n, когда n → 0.

Легко найти само число е; оно равно 101/ 2,3025 или 10 0,4342294… Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294… сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73 = 256 + 128 + 32 + 16 + 8 + 4 + 0,73. Число е поэтому равно произведению чисел
(1,77828) (1,33352) (1,074607) (1,036633) (1,018152) (1,009035) (1,001643) = 2,7184.
(Числа 0,73 нет в нашей таблице, но соответствующий ему результат можно представить в виде 1 + 2,3025∆/1024 и вы—числить при ∆ = 0,73.) Перемножив все 7 сомножителей, мы получим 2,7184 (на самом деле должно быть 2,7183, но и этот результат хорош). Используя такие таблицы, можно возводить число в иррациональную степень и вычислять логарифмы иррациональных чисел. Вот как надо обращаться с иррациональностями!

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

Шаги

Разложение на простые множители

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  1. Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  2. Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  3. Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 - мы были правы.
  4. Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Вычисление квадратного корня вручную

    При помощи деления в столбик

    1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как "7 95 20 78 91 82, 47 89 70".

      • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде "7 80, 14". Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
    2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

      • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 2 2 < 7 и n = 2. Напишите 2 сверху справа - это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
    3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

      • В нашем примере вычтите 4 из 7 и получите 3.
    4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере второй парой чисел является "80". Запишите "80" после 3. Затем, удвоенное число сверху справа дает 4. Запишите "4_×_=" снизу справа.
    5. Заполните прочерки справа.

      • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 - слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа - это вторая цифра в искомом квадратном корне числа 780,14.
    6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

      • В нашем примере, вычтите 329 из 380, что равно 51.
    7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите "54_×_=" снизу справа.
    8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

      • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 - 4941 = 173.
    9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

      Понимание процесса

      1. Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

        Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C - третьей и так далее.

        Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b - вторую пару цифр и так далее.

        Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

      2. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

        • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
      3. Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C - цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.

        • Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B² . Запомните, что 10A+B - это такое число, у которого цифра B означает единицы, а цифра A - десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² - это площадь всего квадрата, 100A² - площадь большого внутреннего квадрата, - площадь малого внутреннего квадрата, 10A×B - площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.