Заряд атома всегда. Строение и заряд ядра атома

Заряд ядра () определяет местоположение химического элемента в таблице Д.И. Менделеева. Число Z - это количество протонов в ядре. Кл — заряд протона, который равен по величине заряду электрона.

Еще раз подчеркнем, что заряд ядра определяет количество положительных элементарных зарядов, носителями которых являются протоны. А так как атом является в целом нейтральной системой, то заряд ядра определяет и количество электронов в атоме. А мы помним, что электрон имеет отрицательный элементарный заряд. Электроны в атоме распределяются по энергетическим оболочкам и подоболочкам в зависимости от их количества, следовательно, заряд ядра оказывает существенное влияние на распределение электронов по их состояниям. От количества электронов на последнем энергоуровне зависят химические свойства атома. Получается, заряд ядра определяет химические свойства вещества.

В настоящее время принято обозначать различные химические элементы следующим образом: , где X - символ химического элемента в периодической таблице, который соответствует заряду .

Элементы, у которых равны Z, но разные атомные массы (A) (это означает, что в ядре одинаковое число протонов, но разное количество нейтронов) называют изотопами. Так, водород имеет два изотопа: 1 1 H-водород; 2 1 H-дейтерий; 3 1 H-тритий

Существуют устойчивые и неустойчивые изотопы.

Ядра, обладающие одинаковыми массами, но разными зарядами называются изобарами. Изобары в основном, встречаются среди тяжелых ядер, причем парами или триадами. Например, и .

Первым косвенное измерение заряда ядра сделал Мозли в 1913 г. Он установил связь между частотой характеристического рентгеновского излучения () и зарядом ядра (Z):

где C и B постоянные не зависящие от элемента для рассматриваемой серии излучения.

Напрямую заряд ядра был определен Чедвиком в 1920 г. при исследовании рассеяния ядер атома гелия на металлических пленках.

Состав ядра

Ядро атома водорода ) называется протоном. Масса протона равна:

Ядро состоит из протонов и нейтронов (вместе их называют нуклонами). Нейтрон был открыт в 1932 г. Масса нейтрона очень близка к массе протона. Нейтрон электрического заряда не имеет.

Сумму количества протонов (Z) и числа нейтронов (N) в ядре называют массовым числом A:

Поскольку массы нейтрона и протона очень близкие, каждая из них равна почти атомной единице массы. Масса электронов в атоме много меньше, массы ядра, поэтому считают, что массовое число ядра приблизительно равно относительной атомной массе элемента, если округлить его до целого.

Примеры решения задач

ПРИМЕР 1

Задание Ядра являются очень устойчивыми системами, следовательно, протоны и нейтроны должны удерживаться внутри ядра какими-то силами. Что Вы можете сказать об этих силах?
Решение Сразу можно отметить, что силы, которые связывают нуклоны не относятся к гравитационным, которые являются слишком слабыми. Устойчивость ядра нельзя объяснить наличием электромагнитных сил, так как между протонами, как частицами несущими заряды одного знака может быть только электрическое отталкивание. Нейтроны же являются электрически нейтральными частицами.

Между нуклонами действуют особый вид сил, которые называют ядерными силами. Эти силы почти в 100 раз сильнее электрических сил. Ядерные силы самые мощные из всех известных сил в природе. Взаимодействие частиц в ядре называют сильным.

Следующая особенность ядерных сил - это то, что они являются короткодействующими. Ядерные силы становятся заметными только на расстоянии порядка см, то есть на расстоянии размера ядра.

ПРИМЕР 2

Задание На какое минимальное расстояние может приблизиться ядро атома гелия, имеющее кинетическую энергию равную при лобовом столкновении, к неподвижному ядру атома свинца?
Решение Сделаем рисунок.

Рассмотрим движение ядра атома гелия ( - частицы) в электростатическом поле, которое создает неподвижное ядро атома свинца. - частица движется к ядру атома свинца с уменьшающейся до нуля скоростью, так как между одноименно заряженными частицами действуют силы отталкивания. Кинетическая энергия, которой обладала - частица, перейдет в потенциальную энергию взаимодействия - частицы и поля (), которое создает ядро атома свинца:

Потенциальную энергию частицы в электростатическом поле выразим как:

где - заряд ядра атома гелия; - напряженность электростатического поля, которое создает ядро атома свинца.

Из (2.1) - (2.3) получаем:

То, что все предметы состоят из элементарных частиц, предполагали еще ученые Древней Греции. Но ни доказать этот факт, ни опровергнуть в те времена не было никакой возможности. Да и о свойствах атомов в древности могли лишь догадываться, основываясь на собственных наблюдениях за различными веществами.

Доказать, что все вещества состоят из элементарных частиц, удалось лишь в 19-м веке и то косвенно. В это же время физики и химики по всему миру пытались создать единую теорию элементарных частиц, описывающую их строение и объясняющую различные свойства, такие, например, как заряд ядра.

Изучению молекул, атомов и их строения были посвящены труды многих ученых. Физика постепенно перешла в изучение микромира - элементарных частиц, их взаимодействия и свойств. Ученые стали интересоваться, из чего состоит выдвигать гипотезы и пытаться их доказать, хотя бы косвенно.

В результате в качестве базовой теории была принята планетарная предложенная Эрнестом Резерфордом и Нильсом Бором. Согласно этой теории, заряд ядра любого атома положительный, в то время как по его орбитам вращаются отрицательно заряженные электроны, в итоге делая атом электрически нейтральным. Со временем данная теория была многократно подтверждена разного рода экспериментами, начиная с опытов одного из ее соавторов.

Современная ядерная физика считает теорию Резерфорда-Бора фундаментальной, все исследования атомов и их элементов основываются на ней. С другой стороны большинство гипотез, появившихся за последние 150 лет, практически так и не были подтверждены. Получается, что ядерная физика в своем большинстве является теоретической ввиду сверхмалых размеров изучаемых объектов.

Конечно же, в современном мире определить заряд ядра алюминия, например (или любого другого элемента) намного проще, чем в 19-м веке и тем более — в Древней Греции. Но делая новые открытия в данной области, ученые порой приходят к удивительным заключениям. Пытаясь найти решение одной задачи, физика сталкивается с новыми проблемами и парадоксами.

Изначально теория Резерфорда говорит о том, что химические свойства вещества зависят от того, каков заряд ядра его атома и, как следствие, от числа электронов, вращающихся по его орбитам. Современная химия и физика в полной мере подтверждают данную версию. Несмотря на то, что изучение структуры молекул изначально отталкивалось от простейшей модели — атома водорода, заряд ядра которого равен 1, теория в полной мере распространяется на все элементы таблицы Менделеева, включая и полученные искусственным путем в конце прошлого тысячелетия.

Любопытно, что еще задолго до исследований Резерфорда английский химик, врач по образованию Вильям Проут заметил, что удельный вес различных веществ кратен данному показателю водорода. Он тогда предположил, что все иные элементы попросту состоят из водорода на каком-то простейшем уровне. Что, например, частица азота — это 14 таких минимальных частиц, кислорода - 16 и т. д. Если рассматривать данную теорию глобально в современной интерпретации, то в целом она верна.

Атомы любых веществ являются электрически нейтральными частицами. Атом состоит из ядра и совокупности электронов. Ядро несет положительный заряд, суммарный заряд которого равен сумме зарядов всех электронов атома.

Общие сведения о заряде ядра атома

Заряд ядра атома определяет местоположение элемента в периодической системе Д.И. Менделеева и соответственно химические свойства вещества, состоящего их этих атомов и соединений этих веществ. Величина заряда ядра равна:

где Z - номер элемента в таблице Менделеева, e - величина заряда электрона или .

Элементы с одинаковыми числами Z, но разными атомными массами называют изотопами. Если элементы имеют одинаковые Z, то у них ядро имеет равное число протонов, а если атомные массы различны, то число нейтронов в ядрах этих атомов разное. Так, у водорода имеется два изотопа: дейтерий и тритий.

Ядра атомов имеют положительный заряд, так как состоят из протонов и нейтронов. Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода. Протон - это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как , тогда можно записать, что:

Масса покоя протона () примерно равна:

Подробнее о протоне можно узнать, прочитав раздел «Заряд протона».

Эксперименты по измерению заряда ядра

Первым заряды ядер измерил Мозли в 1913 г. Измерения были косвенными. Ученый определил связь между частотой рентгеновского излучения () и зарядом ядра Z.

где C и B - постоянные не зависящие от элемента для рассматриваемой серии излучения.

Напрямую заряд ядра измерил Чедвик в 1920 г. Он проводил рассеивание - частиц на металлических пленках, по сути, повторяя опыты Резерфорда, которые привели Резерфорда к построению ядерной модели атома.

В этих экспериментах - частицы пропускались через тонкую металлическую фольгу. Резерфорд выяснил, что в большинстве случаев частицы проходили сквозь фольгу, отклоняясь на малые углы от первоначального направления движения. Это объясняется тем, что - частицы отклоняются под воздействием электрических сил электронов, которые имеют значительно меньшую массу, чем - частицы. Иногда, довольно редко - частицы отклонялись на углы превышающие 90 o . Этот факт Резерфорд объяснил наличием в атоме заряда, который локализован в малом объеме, и этот заряд связан с массой, которая много больше, чем у - частицы.

Для математического описания результатов своих экспериментов Резерфорд вывел формулу, которая определяет угловое распределение - частиц после их рассеяния атомами. При выводе этой формулы ученый использовал закон Кулона для точечных зарядов и при этом считал, что масса ядра атома много больше, чем масса - частицы. Формулу Резерфорда можно записать как:

где n - количество рассеивающих ядер на единицу площади фольги; N - число - частиц, которые проходят за 1 секунду через единичную площадку, перпендикулярно к направлению потока - частиц; - количество частиц, которые рассеиваются внутри телесного угла - заряд центра рассеяния; - масса - частицы; - угол отклонения - частиц; v - скорость - частицы.

Формулу Резерфорда (3) можно использовать для того, чтобы найти заряд ядра атома (Z), если провести сравнение числа падающих - частиц (N) с числом (dN) частиц рассеянных под углом , то функция будет зависеть только от заряда рассеивающего ядра. Проводя опыты и применяя формулу Резерфорда Чедвик нашел заряды ядер платины, серебра и меди.

Примеры решения задач

ПРИМЕР 1

Задание Пластину из металла облучают - частицами, имеющими большую скорость. Некоторая часть этих частиц при упругом взаимодействии с ядрами атомов металла изменяет направление своего движения на противоположное. Каков заряд ядра атомов металла (q), если минимальное расстояние сближения частицы и ядра равно r. Масса - частицы равна ее скорость v. При решении задачи релятивистскими эффектами можно пренебречь. Частицы считать точечными, ядро неподвижным и точечным.
Решение Сделаем рисунок.

Двигаясь в направлении ядра атома - частица преодолевает силу Кулона, отталкивающую ее от ядра, так как частица и ядро имеют положительные заряды. Кинетическая энергия движущейся - частицы переходит в потенциальную энергию взаимодействия ядра атома металла и - частицы. За основу решения задачи следует принять закон сохранения энергии.:

Потенциальную энергию точечных заряженных частиц найдем как:

где заряд - частицы равен: , так как и - частиц - это ядро атома гелия, которое состоит из двух протонов и двух нейтронов, , так как будем считать, что эксперимент проводят в воздухе.

Кинетическая энергия - частицы до соударения с ядром атома равна:

В соответствии с (1.1) приравняем правые части выражений (1.2) и (1.3), имеем:

Из формулы (1.4) выразим заряд ядра:

Ответ

Инструкция

В таблице Д.И.Менделеева, как в многоэтажном многоквартирном доме « » химические элементы, каждый из которых занимает свою собственную квартиру. Таким образом, каждый из элементов имеет определенный порядковый номер, указанный в таблице. Нумерация химических элементов начинается слева направо, причем сверху. В таблице горизонтальные ряды называются периодами, а вертикальные столбцы – группами. Это немаловажно, потому что по номеру группы или периода можно также дать характеристику некоторым параметрам атома .

Атом представляет собой химически неделимую , но при этом состоящую из более мелких составных частей, к которым можно отнести (положительно заряженные частицы), (заряжены отрицательно) (нейтральные частицы). Основная масса атома в ядре (за счет протонов и нейтронов), вокруг которого вращаются электроны. В целом атом электронейтрален, то есть в нем количество положительных зарядов совпадает с количеством отрицательных, следовательно, число протонов и одинаково. Положительный заряд ядра атома имеет место быть как раз за счет протонов.

Пример № 1. Определить заряд ядра атома углерода (С). Начинаем анализировать химический элемент углерод, ориентируясь на таблицу Д.И.Менделеева. Углерод находится в «квартире» № 6. Следовательно, он ядра +6 за счет 6 протонов (положительно заряженных частиц), которые располагаются в ядре. Учитывая, что атом электронейтрален, значит, электронов тоже будет 6.

Пример № 2. Определить заряд ядра атома алюминия (Al). Алюминий имеет порядковый номер - № 13. Следовательно, заряд ядра атома алюминия +13 (за счет 13 протонов). Электронов также будет 13.

Пример № 3. Определить заряд ядра атома серебра (Ag). Серебро имеет порядковый номер - № 47. Значит, заряд ядра атома серебра + 47 (за счет 47 протонов). Электронов также 47.

Обратите внимание

В таблице Д.И.Менделеева в одной клетке для каждого химического элемента указаны два числовых значения. Не путайте порядковый номер и относительную атомную массу элемента

Атом химического элемента состоит из ядра и электронной оболочки. Ядро - это центральная часть атома, в котором сосредоточена почти вся его масса. В отличие от электронной оболочки, ядро имеет положительный заряд .

Вам понадобится

  • Атомный номер химического элемента, закон Мозли

Инструкция

Таким образом, заряд ядра равен количеству протонов. В свою очередь, количество протонов в ядре равно атомному номеру . К примеру, атомный номер водорода - 1, то есть ядро водорода состоит из одного протона имеет заряд +1. Атомный номер натрия - 11, заряд его ядра равен +11.

При альфа-распаде ядра его его атомный номер уменьшается на два за счет испускания альфа-частицы (ядра атома ). Таким образом, количество протонов в ядре, испытавшем альфа-распад, также уменьшается на два.
Бета-распад может происходить в трех различных . В случае распада «бета-минус» нейтрон превращается в при испускании и антинейтрино. Тогда заряд ядра на единицу.
В случае распада «бета-плюс» протон превращается в нейтрон, позитрон и нйтрино, заряд ядра уменьшается на единицу.
В случае электронного захвата заряд ядра также уменьшается на единицу.

Заряд ядра можно также определить по частоте спектральных линий характеристического излучения атома. Согласно закону Мозли: sqrt(v/R) = (Z-S)/n, где v - спектральная характеристического излучения, R - постоянная Ридберга, S - постоянная экранирования, n - главное квантовое число.
Таким образом, Z = n*sqrt(v/r)+s.

Видео по теме

Источники:

  • как изменяется заряд ядра

Атом – мельчайшая частица каждого элемента, которая несет его химические свойства. Как существование, так и строение атома являлось предметом рассуждений и изучений с древних времен. Было установлено, что строение атомов сродни строению Солнечной системы: в центре ядро, занимающее очень мало места, но сосредоточившее в себе почти всю массу; вокруг него вращаются «планеты» - электроны, несущие отрицательные заряды . А как можно найти заряд ядра атома?

Инструкция

Любой атом электрически нейтрален. Но, поскольку несут отрицательные заряды , они должны быть уравновешены противоположными зарядами. Так и есть. Положительные заряды несут частицы под названием «протоны», расположенные в ядре атома. Протон гораздо массивнее электрона: он весит столько же, сколько 1836 электронов!

Самый простой случай – атом водорода первого элемента Периодической таблицы. Посмотрев в таблицу, вы убедитесь, что он под первым номером, а его ядро состоит из единственного протона, вокруг которого вращается единственный . Из этого следует, что ядра атома водорода равен +1.

Ядра других элементов состоят уже не только из протонов, но и из так называемых «нейтронов». Как вы легко можете из самого названия, вообще не несут никакого заряда – ни отрицательного, ни положительного. Поэтому запомните: сколько бы нейтронов не входило в состав атомного ядра , они влияют лишь на его массу, но не на заряд.

Следовательно, величина положительно заряда ядра атома зависит лишь от того, сколько протонов в нем содержится. Но поскольку, как уже указывалось, атом электрически нейтрален, в его ядре должно содержаться столько же протонов, вращается вокруг ядра . Количество же протонов определяется порядковым номером элемента в Таблице Менделеева.

Рассмотрите несколько элементов. Например, известный и жизненно необходимый кислород находится в «ячейке» под номером 8. Следовательно, в его ядре содержатся 8 протонов, и заряд ядра будет +8. Железо занимает «ячейку» с номером 26, и, соответственно, имеет заряд ядра +26. А металл - , с порядковым номером 79 - будет иметь точно такой же заряд ядра (79), со знаком +. Соответственно, в атоме кислорода содержится 8 электронов, в атоме – 26, а в атоме золота – 79.

Видео по теме

В обычных условиях атом электрически нейтрален. При этом ядро атома, состоящее из протонов и нейтронов, положительно, а электроны несут отрицательный заряд. При избытке или недостатке электронов атом превращается в ион.

Инструкция

Химические соединения могут иметь молекулярную или ионную природу. Молекулы также электрически нейтральны, а ионы несут в себе некоторый заряд. Так, молекула аммиака NH3 нейтральна, а вот ион аммония NH4+ заряжен положительно. Связи в молекуле аммиака , образованные по обменному типу. Четвертый атом водорода присоединяется по донорно-акцепторному механизму, это тоже ковалентная связь. Аммоний образуется при взаимодействии аммиака с растворами кислот.

Важно понимать, что заряд ядра элемента не зависит от химических превращений. Сколько электронов ни добавляй и ни отнимай, заряд ядра останется тем же. К примеру, атом O, анион O- и катион O+ характеризуются одним и тем же зарядом ядра +8. При этом атом имеет 8 электронов, анион 9, катион - 7. Само ядро можно изменить только путем ядерных превращений.

Наиболее частый вид ядерных реакцийрадиоактивный распад, который может протекать в естественной среде. Атомная масса элементов, подвергающихся в такому распаду, заключена в квадратные скобки. Это означает, что массовое число непостоянно, меняется на протяжении времени.

В периодической системе элементов Д.И. Менделеева серебро имеет порядковый номер 47 и обозначение «Ag» (argentum). Название этого металла, вероятно, произошло от латинского «argos», что означает «белый», «блистающий».

Инструкция

Серебро было известно человечеству еще в IV тысячелетии до нашей эры. В Древнем Египте его называли даже «белым золотом». Этот металл встречается в природе как в самородном виде, так и в виде соединений, например, сульфидов. Серебряные самородки обладают большим весом и часто содержат примеси золота, ртути, меди, платины, сурьмы и висмута.

Химические свойства серебра.

Серебро относится к группе переходных металлов и обладает всеми свойствами металлов. Однако активность серебра невелика – в электрохимическом ряду напряжений металлов оно находится правее водорода, почти в самом конце. В соединениях серебро чаще всего проявляет степень окисления +1.

При обычных условиях серебро не реагирует с кислородом, водородом, азотом, углеродом, кремнием, но взаимодействует с серой, образуя сульфид серебра: 2Ag+S=Ag2S. При нагревании серебро взаимодействует с галогенами: 2Ag+Cl2=2AgCl↓.

Растворимый нитрат серебра AgNO3 используется для качественного определения галогенид-ионов в растворе – (Cl-), (Br-), (I-): (Ag+)+(Hal-)=AgHal↓. К примеру, при взаимодействии с анионами хлора серебро дает нерастворимый белый осадок AgCl↓.

Почему серебряные изделия темнеют на воздухе?

Причина постепенного изделий из серебра объясняется тем, что серебро реагирует с содержащимся в воздухе сероводородом. В результате этого на поверхности металла образуется пленка Ag2S: 4Ag+2H2S+O2=2Ag2S+2H2O.

ЗАРЯД ЯДРА

Закон Мозли. Электрический заряд ядра образуют протоны, входящие в его состав. Число протонов Z называют его зарядом, имея ввиду, что абсолютное значение заряда ядра равно Ze. Заряд ядра совпадает с порядковым номером Z элемента в периодической системе элементов Менделеева. Впервые заряды атомных ядер определил английский физик Мозли в 1913 году. Измерив с помощью кристалла длину волны λ характеристического рентгеновского излучения для атомов некоторых элементов, Мозли обнаружил регулярное изменение длины волны λ у элементов, следующих друг за другом в периодической системе (рис.2.1). Это наблюдение Мозли интерпретировал зависимостью λ от некоторой константы атома Z , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

где и - постоянные. Из экспериментов по рассеянию рентгеновских квантов атомными электронами и α -частиц атомными ядрами уже было известно, что заряд ядра примерно равен половине атомной массы и, следовательно, близок к порядковому номеру элемента. Поскольку испускание характеристического рентгеновского излучения является следствием электрических процессов в атоме, Мозли сделал вывод, что найденная в его опытах константа атомов, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра (закон Мозли).

Рис. 2.1. Рентгеновские спектры атомов соседних элементов, полученные Мозли

Измерение длин волн рентгеновского излучения выполняется с большой точностью, так что на основе закона Мозли принадлежность атома к химическому элементу устанавливается абсолютно надежно. Вместе с тем тот факт, что константа Z в последнем уравнении является зарядом ядра, хотя и обоснован косвенными экспериментами, в конечном счете держится на постулате – законе Мозли. Поэтому после открытия Мозли заряды ядер многократно измерялись в опытах по рассеянию α -частиц на основе закона Кулона. В 1920 году Чедвиг усовершенствовал методику измерения доли рассеянных α -частиц и получил заряды ядер атомов меди, серебра и платины (см. таблицу 2.1). Данные Чедвига не оставляют сомнений в справедливости закона Мозли. Помимо указанных элементов в экспериментах были определены также заряды ядер магния, алюминия, аргона и золота.

Таблица 2.1. Результаты опытов Чедвика

Определения. После открытия Мозли стало ясно, что основной характеристикой атома является заряд ядра, а не его атомная масса, как это предполагали химики 19 века, ибо заряд ядра определяет число атомных электронов, а значит, химические свойства атомов. Причина различия атомов химических элементов как раз и состоит в том, что их ядра имеют разное число протонов в своем составе. Напротив, разное число нейтронов в ядрах атомов при одинаковом числе протонов никак не меняет химические свойства атомов. Атомы, различающиеся только числом нейтронов в ядрах, называются изотопами химического элемента.