Diverse tipuri de ecuații trigonometrice. Rezolvarea ecuațiilor trigonometrice

Când rezolvi multe probleme de matematică, în special cele care apar înainte de clasa a 10-a, este clar definită ordinea acțiunilor efectuate care vor duce la obiectiv. Astfel de probleme includ, de exemplu, ecuații liniare și pătratice, inegalități liniare și pătratice, ecuații fracționale și ecuații care se reduc la cele pătratice. Principiul rezolvării cu succes a fiecăreia dintre sarcinile menționate este următorul: este necesar să se stabilească ce tip de sarcină este rezolvată, să se rețină succesiunea necesară de acțiuni care vor duce la rezultatul dorit, adică. răspundeți și urmați acești pași.

În mod evident, succesul sau eșecul în rezolvarea unei anumite probleme depinde în principal de cât de corect este determinat tipul de ecuație care se rezolvă, cât de corect este reprodusă succesiunea tuturor etapelor rezolvării acesteia. Desigur, în acest caz, este necesar să aveți abilitățile de a efectua transformări și calcule identice.

O situație diferită apare cu ecuații trigonometrice. Nu este greu de stabilit faptul că ecuația este trigonometrică. Apar dificultăți la determinarea secvenței de acțiuni care ar duce la răspunsul corect.

Este uneori dificil să-i determine tipul prin apariția unei ecuații. Și fără a cunoaște tipul de ecuație, este aproape imposibil să o alegeți pe cea potrivită din câteva zeci de formule trigonometrice.

Pentru a rezolva ecuația trigonometrică, trebuie să încercăm:

1. aduce toate funcțiile incluse în ecuație la „aceleași unghiuri”;
2. aduceți ecuația la „aceleași funcții”;
3. factorizați partea stângă a ecuației etc.

Considera metode de bază pentru rezolvarea ecuațiilor trigonometrice.

I. Reducerea la cele mai simple ecuații trigonometrice

Schema de rezolvare

Pasul 1. Exprimați funcția trigonometrică în termeni de componente cunoscute.

Pasul 2 Găsiți argumentul funcției folosind formule:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x \u003d (-1) n arcsin a + πn, n Є Z.

tan x = a; x \u003d arctg a + πn, n Є Z.

ctg x = a; x \u003d arcctg a + πn, n Є Z.

Pasul 3 Găsiți o variabilă necunoscută.

Exemplu.

2 cos(3x – π/4) = -√2.

Decizie.

1) cos(3x - π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Răspuns: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Substituție variabilă

Schema de rezolvare

Pasul 1. Aduceți ecuația într-o formă algebrică în raport cu una dintre funcțiile trigonometrice.

Pasul 2 Notați funcția rezultată prin variabila t (dacă este necesar, introduceți restricții asupra t).

Pasul 3 Scrieți și rezolvați ecuația algebrică rezultată.

Pasul 4 Faceți o înlocuire inversă.

Pasul 5 Rezolvați cea mai simplă ecuație trigonometrică.

Exemplu.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Decizie.

1) 2(1 - sin 2 (x/2)) - 5sin (x/2) - 5 = 0;

2sin 2(x/2) + 5sin(x/2) + 3 = 0.

2) Fie sin (x/2) = t, unde |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 sau e = -3/2 nu satisface condiția |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Răspuns: x = π + 4πn, n Є Z.

III. Metoda de reducere a ordinii ecuațiilor

Schema de rezolvare

Pasul 1.Înlocuiți această ecuație cu una liniară folosind formulele de reducere a puterii:

sin 2 x \u003d 1/2 (1 - cos 2x);

cos 2 x = 1/2 (1 + cos 2x);

tan 2 x = (1 - cos 2x) / (1 + cos 2x).

Pasul 2 Rezolvați ecuația rezultată folosind metodele I și II.

Exemplu.

cos2x + cos2x = 5/4.

Decizie.

1) cos 2x + 1/2 (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Răspuns: x = ±π/6 + πn, n Є Z.

IV. Ecuații omogene

Schema de rezolvare

Pasul 1. Aduceți această ecuație în formă

a) a sin x + b cos x = 0 (ecuația omogenă de gradul I)

sau la vedere

b) a sin 2 x + b sin x cos x + c cos 2 x = 0 (ecuația omogenă de gradul doi).

Pasul 2Împărțiți ambele părți ale ecuației la

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

și obțineți ecuația pentru tg x:

a) a tg x + b = 0;

b) a tg 2 x + b arctg x + c = 0.

Pasul 3 Rezolvați ecuația folosind metode cunoscute.

Exemplu.

5sin 2 x + 3sin x cos x - 4 = 0.

Decizie.

1) 5sin 2 x + 3sin x cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x cos x - 4cos 2 x \u003d 0 / cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Fie tg x = t, atunci

t2 + 3t - 4 = 0;

t = 1 sau t = -4, deci

tg x = 1 sau tg x = -4.

Din prima ecuație x = π/4 + πn, n Є Z; din a doua ecuaţie x = -arctg 4 + πk, k Є Z.

Răspuns: x = π/4 + πn, n Є Z; x \u003d -arctg 4 + πk, k Є Z.

V. Metoda de transformare a unei ecuatii folosind formule trigonometrice

Schema de rezolvare

Pasul 1. Folosind tot felul de formule trigonometrice, aduceți această ecuație la o ecuație care poate fi rezolvată prin metodele I, II, III, IV.

Pasul 2 Rezolvați ecuația rezultată folosind metode cunoscute.

Exemplu.

sinx + sin2x + sin3x = 0.

Decizie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 sau 2cos x + 1 = 0;

Din prima ecuație 2x = π/2 + πn, n Є Z; din a doua ecuație cos x = -1/2.

Avem x = π/4 + πn/2, n Є Z; din a doua ecuație x = ±(π – π/3) + 2πk, k Є Z.

Ca rezultat, x \u003d π / 4 + πn / 2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Răspuns: x \u003d π / 4 + πn / 2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Abilitatea și abilitățile de a rezolva ecuații trigonometrice sunt foarte important, dezvoltarea lor necesită un efort considerabil, atât din partea elevului, cât și a profesorului.

Multe probleme de stereometrie, fizică etc. sunt asociate cu rezolvarea ecuațiilor trigonometrice.Procesul de rezolvare a unor astfel de probleme, așa cum spune, conține multe dintre cunoștințele și abilitățile care sunt dobândite la studierea elementelor de trigonometrie.

Ecuațiile trigonometrice ocupă un loc important în procesul de predare a matematicii și de dezvoltare a personalității în general.

Aveti vreo intrebare? Nu știi cum să rezolvi ecuații trigonometrice?
Pentru a primi ajutor de la un tutor -.
Prima lecție este gratuită!

blog.site, cu copierea integrală sau parțială a materialului, este necesar un link către sursă.

Cursul video „Obțineți A” include toate subiectele necesare promovării cu succes a examenului la matematică cu 60-65 de puncte. Complet toate sarcinile 1-13 din Profil USE în matematică. De asemenea, potrivit pentru promovarea USE de bază în matematică. Dacă vrei să treci examenul cu 90-100 de puncte, trebuie să rezolvi partea 1 în 30 de minute și fără greșeli!

Curs de pregătire pentru examen pentru clasele 10-11, precum și pentru profesori. Tot ce ai nevoie pentru a rezolva partea 1 a examenului la matematică (primele 12 probleme) și problema 13 (trigonometrie). Și asta înseamnă mai mult de 70 de puncte la examenul de stat unificat și nici un student de o sută de puncte, nici un umanist nu se pot descurca fără ele.

Toată teoria necesară. Soluții rapide, capcane și secrete ale examenului. Au fost analizate toate sarcinile relevante din partea 1 din sarcinile Băncii FIPI. Cursul respectă pe deplin cerințele USE-2018.

Cursul conține 5 subiecte mari, câte 2,5 ore fiecare. Fiecare subiect este dat de la zero, simplu și clar.

Sute de sarcini de examen. Probleme de text și teoria probabilității. Algoritmi simpli și ușor de reținut pentru rezolvarea problemelor. Geometrie. Teorie, material de referință, analiza tuturor tipurilor de sarcini USE. Stereometrie. Trucuri viclene pentru rezolvare, fișe utile, dezvoltarea imaginației spațiale. Trigonometrie de la zero - la sarcina 13. Înțelegerea în loc de înghesuială. Explicarea vizuală a conceptelor complexe. Algebră. Rădăcini, puteri și logaritmi, funcție și derivată. Baza pentru rezolvarea problemelor complexe din partea a 2-a a examenului.

Rezolvarea celor mai simple ecuații trigonometrice.

Rezolvarea ecuațiilor trigonometrice de orice nivel de complexitate se reduce în cele din urmă la rezolvarea celor mai simple ecuații trigonometrice. Și în acest sens, cercul trigonometric se dovedește din nou a fi cel mai bun ajutor.

Amintiți-vă definițiile cosinusului și sinusului.

Cosinusul unui unghi este abscisa (adică coordonata de-a lungul axei) a unui punct de pe cercul unitar corespunzător rotației cu un unghi dat.

Sinusul unui unghi este ordonata (adică coordonata de-a lungul axei) a unui punct de pe cercul unitar corespunzător rotației unui unghi dat.

Direcția pozitivă a mișcării de-a lungul cercului trigonometric este considerată a fi mișcarea în sens invers acelor de ceasornic. O rotație de 0 grade (sau 0 radiani) corespunde unui punct cu coordonatele (1; 0)

Folosim aceste definiții pentru a rezolva cele mai simple ecuații trigonometrice.

1. Rezolvați ecuația

Această ecuație este îndeplinită de toate aceste valori ale unghiului de rotație, care corespund punctelor cercului, a căror ordonată este egală cu .

Să marchem un punct cu ordonată pe axa y:


Desenați o linie orizontală paralelă cu axa x până când se intersectează cu cercul. Vom obține două puncte situate pe un cerc și având o ordonată. Aceste puncte corespund unghiurilor de rotație ale și radianilor:


Dacă, lasând punctul corespunzător unghiului de rotație pe radian, ocolim un cerc complet, atunci vom ajunge la un punct corespunzător unghiului de rotație pe radian și având aceeași ordonată. Adică, acest unghi de rotație satisface și ecuația noastră. Putem face câte viraje „în gol” ne dorim, revenind în același punct, iar toate aceste valori ale unghiului ne vor satisface ecuația. Numărul de rotații „în gol” este notat cu litera (sau). Deoarece putem face aceste revoluții atât în ​​direcții pozitive, cât și în direcții negative, (sau ) poate lua orice valoare întreagă.

Adică, prima serie de soluții la ecuația originală are forma:

, , - set de numere întregi (1)

În mod similar, a doua serie de soluții are forma:

, Unde , . (2)

După cum ați ghicit, această serie de soluții se bazează pe punctul cercului corespunzător unghiului de rotație cu .

Aceste două serii de soluții pot fi combinate într-o singură intrare:

Dacă luăm această intrare (adică chiar), atunci vom obține prima serie de soluții.

Dacă luăm această intrare (adică impar), atunci vom obține a doua serie de soluții.

2. Acum să rezolvăm ecuația

Deoarece abscisa punctului cercului unitar este obtinuta prin rotirea prin unghi, marcam pe axa un punct cu abscisa:


Desenați o linie verticală paralelă cu axa până când se intersectează cu cercul. Vom obține două puncte situate pe un cerc și având o abscisă. Aceste puncte corespund unghiurilor de rotație de și radiani. Amintiți-vă că atunci când ne deplasăm în sensul acelor de ceasornic, obținem un unghi negativ de rotație:


Scriem două serii de soluții:

,

,

(Ajungem la punctul potrivit trecând din cercul complet principal, adică.

Să combinăm aceste două serii într-o singură postare:

3. Rezolvați ecuația

Linia tangentelor trece prin punctul cu coordonatele (1,0) ale cercului unitar paralel cu axa OY

Marcați un punct pe el cu o ordonată egală cu 1 (căutăm tangenta a cărei unghiuri este 1):


Conectați acest punct la origine cu o linie dreaptă și marcați punctele de intersecție ale dreptei cu cercul unitar. Punctele de intersecție ale dreptei și cercului corespund unghiurilor de rotație pe și:


Deoarece punctele corespunzătoare unghiurilor de rotație care satisfac ecuația noastră se află la o distanță de radiani, putem scrie soluția după cum urmează:

4. Rezolvați ecuația

Linia cotangentelor trece prin punctul cu coordonatele cercului unitar paralel cu axa.

Marcam un punct cu abscisa -1 pe linia cotangentelor:


Conectați acest punct la originea dreptei și continuați-l până când se intersectează cu cercul. Această linie va intersecta cercul în puncte corespunzătoare unghiurilor de rotație ale și radianilor:


Deoarece aceste puncte sunt separate unul de celălalt printr-o distanță egală cu , atunci putem scrie soluția generală a acestei ecuații după cum urmează:

În exemplele date, ilustrând soluția celor mai simple ecuații trigonometrice, s-au folosit valori tabelare ale funcțiilor trigonometrice.

Cu toate acestea, dacă există o valoare care nu este tabelă în partea dreaptă a ecuației, atunci înlocuim valoarea în soluția generală a ecuației:





SOLUTII SPECIALE:

Marcați punctele de pe cerc a cărui ordonată este 0:


Marcați un singur punct pe cerc, a cărui ordonată este egală cu 1:


Marcați un singur punct pe cerc, a cărui ordonată este egală cu -1:


Deoarece se obișnuiește să se indice valorile cele mai apropiate de zero, scriem soluția după cum urmează:

Marcați punctele de pe cerc, a cărui abscisă este 0:


5.
Să marchem un singur punct pe cerc, a cărui abscisă este egală cu 1:


Marcați un singur punct pe cerc, a cărui abscisă este egală cu -1:


Și câteva exemple mai complexe:

1.

Sinusul este unul dacă argumentul este

Argumentul sinusului nostru este , deci obținem:

Împărțiți ambele părți ale ecuației la 3:

Răspuns:

2.

Cosinusul este zero dacă argumentul cosinus este

Argumentul cosinusului nostru este , deci obținem:

Exprimăm , pentru aceasta ne deplasăm mai întâi la dreapta cu semnul opus:

Simplificați partea dreaptă:

Împărțiți ambele părți la -2:

Rețineți că semnul înainte de termen nu se schimbă, deoarece k poate lua orice valoare întreagă.

Răspuns:

Și în concluzie, urmăriți tutorialul video „Selectarea rădăcinilor într-o ecuație trigonometrică folosind un cerc trigonometric”

Astfel se încheie conversația despre rezolvarea celor mai simple ecuații trigonometrice. Data viitoare vom vorbi despre cum să rezolvăm.

Lecție și prezentare pe tema: „Rezolvarea celor mai simple ecuații trigonometrice”

Materiale suplimentare
Dragi utilizatori, nu uitați să lăsați comentariile, feedback-ul, sugestiile voastre! Toate materialele sunt verificate de un program antivirus.

Manuale si simulatoare in magazinul online „Integral” pentru nota 10 din 1C
Rezolvăm probleme de geometrie. Sarcini interactive pentru construirea în spațiu
Mediul software „1C: constructor matematic 6.1”

Ce vom studia:
1. Ce sunt ecuațiile trigonometrice?

3. Două metode principale de rezolvare a ecuațiilor trigonometrice.
4. Ecuații trigonometrice omogene.
5. Exemple.

Ce sunt ecuațiile trigonometrice?

Băieți, am studiat deja arcsinus, arccosinus, arctangent și arccotangent. Acum să ne uităm la ecuațiile trigonometrice în general.

Ecuații trigonometrice - ecuații în care variabila este conținută sub semnul funcției trigonometrice.

Repetăm ​​forma rezolvării celor mai simple ecuații trigonometrice:

1) Dacă |а|≤ 1, atunci ecuația cos(x) = a are o soluție:

X= ± arccos(a) + 2πk

2) Dacă |а|≤ 1, atunci ecuația sin(x) = a are o soluție:

3) Dacă |a| > 1, atunci ecuația sin(x) = a și cos(x) = a nu au soluții 4) Ecuația tg(x)=a are o soluție: x=arctg(a)+ πk

5) Ecuația ctg(x)=a are o soluție: x=arcctg(a)+ πk

Pentru toate formulele, k este un număr întreg

Cele mai simple ecuații trigonometrice au forma: Т(kx+m)=a, T- orice funcție trigonometrică.

Exemplu.

Rezolvați ecuațiile: a) sin(3x)= √3/2

Decizie:

A) Să notăm 3x=t, apoi ne vom rescrie ecuația sub forma:

Soluția acestei ecuații va fi: t=((-1)^n)arcsin(√3/2)+ πn.

Din tabelul de valori obținem: t=((-1)^n)×π/3+ πn.

Să revenim la variabila noastră: 3x =((-1)^n)×π/3+ πn,

Atunci x= ((-1)^n)×π/9+ πn/3

Răspuns: x= ((-1)^n)×π/9+ πn/3, unde n este un număr întreg. (-1)^n - minus unu la puterea lui n.

Mai multe exemple de ecuații trigonometrice.

Rezolvați ecuațiile: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Decizie:

A) De data aceasta vom trece direct la calculul rădăcinilor ecuației:

X/5= ± arccos(1) + 2πk. Atunci x/5= πk => x=5πk

Răspuns: x=5πk, unde k este un număr întreg.

B) Scriem sub forma: 3x- π/3=arctg(√3)+ πk. Știm că: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Răspuns: x=2π/9 + πk/3, unde k este un număr întreg.

Rezolvați ecuații: cos(4x)= √2/2. Și găsiți toate rădăcinile de pe segment.

Decizie:

Să rezolvăm ecuația noastră în formă generală: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Acum să vedem ce rădăcini cad pe segmentul nostru. Pentru k Pentru k=0, x= π/16, suntem în segmentul dat .
Cu k=1, x= π/16+ π/2=9π/16, au lovit din nou.
Pentru k=2, x= π/16+ π=17π/16, dar aici nu am lovit, ceea ce înseamnă că nu vom lovi nici pentru k mare.

Răspuns: x= π/16, x= 9π/16

Două metode principale de soluție.

Am luat în considerare cele mai simple ecuații trigonometrice, dar există și altele mai complexe. Pentru rezolvarea acestora se utilizează metoda introducerii unei noi variabile și metoda factorizării. Să ne uităm la exemple.

Să rezolvăm ecuația:

Decizie:
Pentru a ne rezolva ecuația, folosim metoda introducerii unei noi variabile, notată: t=tg(x).

Ca rezultat al înlocuirii, obținem: t 2 + 2t -1 = 0

Aflați rădăcinile ecuației pătratice: t=-1 și t=1/3

Atunci tg(x)=-1 și tg(x)=1/3, am obținut cea mai simplă ecuație trigonometrică, să-i găsim rădăcinile.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Răspuns: x= -π/4+πk; x=arctg(1/3) + πk.

Un exemplu de rezolvare a unei ecuații

Rezolvați ecuații: 2sin 2 (x) + 3 cos(x) = 0

Decizie:

Să folosim identitatea: sin 2 (x) + cos 2 (x)=1

Ecuația noastră devine: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Să introducem înlocuirea t=cos(x): 2t 2 -3t - 2 = 0

Soluția ecuației noastre pătratice sunt rădăcinile: t=2 și t=-1/2

Atunci cos(x)=2 și cos(x)=-1/2.

pentru că Cosinusul nu poate lua valori mai mari de unu, atunci cos(x)=2 nu are rădăcini.

Pentru cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Răspuns: x= ±2π/3 + 2πk

Ecuații trigonometrice omogene.

Definiție: O ecuație de forma a sin(x)+b cos(x) se numește ecuații trigonometrice omogene de gradul I.

Ecuații de formă

ecuații trigonometrice omogene de gradul doi.

Pentru a rezolva o ecuație trigonometrică omogenă de gradul întâi, o împărțim la cos(x): Este imposibil să împărțiți la cosinus dacă este egal cu zero, să ne asigurăm că nu este așa:
Fie cos(x)=0, apoi asin(x)+0=0 => sin(x)=0, dar sinusul și cosinusul nu sunt egale cu zero în același timp, avem o contradicție, deci putem împărți în siguranță cu zero.

Rezolvați ecuația:
Exemplu: cos 2 (x) + sin(x) cos(x) = 0

Decizie:

Scoateți factorul comun: cos(x)(c0s(x) + sin (x)) = 0

Atunci trebuie să rezolvăm două ecuații:

cos(x)=0 și cos(x)+sin(x)=0

Cos(x)=0 pentru x= π/2 + πk;

Luați în considerare ecuația cos(x)+sin(x)=0 Împărțiți ecuația noastră la cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Răspuns: x= π/2 + πk și x= -π/4+πk

Cum se rezolvă ecuații trigonometrice omogene de gradul doi?
Băieți, respectați întotdeauna aceste reguli!

1. Vedeți cu ce este egal coeficientul a, dacă a \u003d 0, atunci ecuația noastră va lua forma cos (x) (bsin (x) + ccos (x)), un exemplu al cărei soluție este în precedenta diapozitiv

2. Dacă a≠0, atunci trebuie să împărțiți ambele părți ale ecuației la cosinusul pătrat, obținem:


Facem schimbarea variabilei t=tg(x) obținem ecuația:

Rezolvați Exemplul #:3

Rezolvați ecuația:
Decizie:

Împărțiți ambele părți ale ecuației la pătratul cosinus:

Facem o schimbare a variabilei t=tg(x): t 2 + 2 t - 3 = 0

Aflați rădăcinile ecuației pătratice: t=-3 și t=1

Atunci: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Răspuns: x=-arctg(3) + πk și x= π/4+ πk

Rezolvați Exemplul #:4

Rezolvați ecuația:

Decizie:
Să ne transformăm expresia:


Putem rezolva astfel de ecuații: x= - π/4 + 2πk și x=5π/4 + 2πk

Răspuns: x= - π/4 + 2πk și x=5π/4 + 2πk

Rezolvați Exemplul #:5

Rezolvați ecuația:

Decizie:
Să ne transformăm expresia:


Introducem înlocuirea tg(2x)=t:2 2 - 5t + 2 = 0

Soluția ecuației noastre pătratice va fi rădăcinile: t=-2 și t=1/2

Atunci obținem: tg(2x)=-2 și tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Răspuns: x=-arctg(2)/2 + πk/2 și x=arctg(1/2)/2+ πk/2

Sarcini pentru soluție independentă.

1) Rezolvați ecuația

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 e) ctg(0,5x) = -1,7

2) Rezolvați ecuațiile: sin(3x)= √3/2. Și găsiți toate rădăcinile de pe segmentul [π/2; π].

3) Rezolvați ecuația: ctg 2 (x) + 2ctg(x) + 1 =0

4) Rezolvați ecuația: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Rezolvați ecuația: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Rezolvați ecuația: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Conceptul de rezolvare a ecuațiilor trigonometrice.

  • Pentru a rezolva o ecuație trigonometrică, convertiți-o într-una sau mai multe ecuații trigonometrice de bază. Rezolvarea ecuației trigonometrice se reduce în cele din urmă la rezolvarea celor patru ecuații trigonometrice de bază.
  • Rezolvarea ecuațiilor trigonometrice de bază.

    • Există 4 tipuri de ecuații trigonometrice de bază:
    • sin x = a; cos x = a
    • tan x = a; ctg x = a
    • Rezolvarea ecuațiilor trigonometrice de bază implică examinarea diferitelor poziții x pe cercul unității, precum și utilizarea unui tabel de conversie (sau calculator).
    • Exemplul 1. sin x = 0,866. Folosind un tabel de conversie (sau un calculator), obțineți răspunsul: x = π/3. Cercul unitar dă un alt răspuns: 2π/3. Rețineți: toate funcțiile trigonometrice sunt periodice, adică valorile lor se repetă. De exemplu, periodicitatea lui sin x și cos x este 2πn, iar periodicitatea lui tg x și ctg x este πn. Deci raspunsul este scris asa:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Exemplul 2 cos x = -1/2. Folosind un tabel de conversie (sau un calculator), obțineți răspunsul: x = 2π/3. Cercul unitar dă un alt răspuns: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • Exemplul 3. tg (x - π/4) = 0.
    • Răspuns: x \u003d π / 4 + πn.
    • Exemplul 4. ctg 2x = 1.732.
    • Răspuns: x \u003d π / 12 + πn.
  • Transformări utilizate în rezolvarea ecuațiilor trigonometrice.

    • Pentru transformarea ecuațiilor trigonometrice se folosesc transformări algebrice (factorizare, reducere a termenilor omogene etc.) și identități trigonometrice.
    • Exemplul 5. Folosind identități trigonometrice, ecuația sin x + sin 2x + sin 3x = 0 este convertită în ecuația 4cos x*sin (3x/2)*cos (x/2) = 0. Astfel, următoarele ecuații trigonometrice de bază trebuie rezolvate: cos x = 0; sin(3x/2) = 0; cos(x/2) = 0.
    • Găsirea unghiurilor din valorile cunoscute ale funcțiilor.

      • Înainte de a învăța cum să rezolvi ecuațiile trigonometrice, trebuie să înveți cum să găsești unghiuri din valorile cunoscute ale funcțiilor. Acest lucru se poate face folosind un tabel de conversie sau un calculator.
      • Exemplu: cos x = 0,732. Calculatorul va da răspunsul x = 42,95 grade. Cercul unitar va da unghiuri suplimentare, al căror cosinus este, de asemenea, egal cu 0,732.
    • Pune deoparte soluția pe cercul unității.

      • Puteți pune soluții pentru ecuația trigonometrică pe cercul unității. Soluțiile ecuației trigonometrice pe cercul unitar sunt vârfurile unui poligon regulat.
      • Exemplu: Soluțiile x = π/3 + πn/2 pe cercul unitar sunt vârfurile pătratului.
      • Exemplu: Soluțiile x = π/4 + πn/3 pe cercul unitar sunt vârfurile unui hexagon regulat.
    • Metode de rezolvare a ecuațiilor trigonometrice.

      • Dacă ecuația trigonometrică dată conține o singură funcție trigonometrică, rezolvați această ecuație ca o ecuație trigonometrică de bază. Dacă această ecuație include două sau mai multe funcții trigonometrice, atunci există 2 metode de rezolvare a unei astfel de ecuații (în funcție de posibilitatea transformării acesteia).
        • Metoda 1
      • Transformați această ecuație într-o ecuație de forma: f(x)*g(x)*h(x) = 0, unde f(x), g(x), h(x) sunt ecuațiile trigonometrice de bază.
      • Exemplul 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Decizie. Folosind formula unghiului dublu sin 2x = 2*sin x*cos x, înlocuiți sin 2x.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. Rezolvați acum două ecuații trigonometrice de bază: cos x = 0 și (sin x + 1) = 0.
      • Exemplul 7 cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Rezolvare: Folosind identități trigonometrice, transformați această ecuație într-o ecuație de forma: cos 2x(2cos x + 1) = 0. Rezolvați acum două ecuații trigonometrice de bază: cos 2x = 0 și (2cos x + 1) = 0.
      • Exemplul 8. sin x - sin 3x \u003d cos 2x. (0< x < 2π)
      • Rezolvare: Folosind identități trigonometrice, transformați această ecuație într-o ecuație de forma: -cos 2x*(2sin x + 1) = 0. Rezolvați acum două ecuații trigonometrice de bază: cos 2x = 0 și (2sin x + 1) = 0.
        • Metoda 2
      • Convertiți ecuația trigonometrică dată într-o ecuație care conține o singură funcție trigonometrică. Apoi înlocuiți această funcție trigonometrică cu o necunoscută, de exemplu, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t etc.).
      • Exemplul 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Decizie. În această ecuație, înlocuiți (cos^2 x) cu (1 - sin^2 x) (în funcție de identitate). Ecuația transformată arată astfel:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Înlocuiți sin x cu t. Acum, ecuația arată astfel: 5t^2 - 4t - 9 = 0. Aceasta este o ecuație pătratică cu două rădăcini: t1 = -1 și t2 = 9/5. A doua rădăcină t2 nu satisface domeniul funcției (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Exemplul 10. tg x + 2 tg^2 x = ctg x + 2
      • Decizie. Înlocuiți tg x cu t. Rescrieți ecuația inițială după cum urmează: (2t + 1)(t^2 - 1) = 0. Acum găsiți t și apoi găsiți x pentru t = tg x.