Сохраняется ли импульс. Импульс

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только под действием силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Такими величинами являются энергия и импульс .

Импульсом тела называют векторную физиче¬скую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается . Импульс тела равен произведению массы тела на его скорость: . Направление вектора импульса р совпадает с направлением вектора скорости тела . Единица импульса - .

Для импульса системы тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае , где - начальный импульс системы, а - конечный. В случае двух тел, входящих в систему, это выражение имеет вид , где - массы тел, а - скорости до взаимодействия, - скорости после взаимодействия (рис. 4). Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия . В случае незамкнутой системы импульс тел системы не сохраняется. Однако если и системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.

Экспериментальные исследования взаимодействий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой в течение времени действует сила и скорость его движения изменяется от до , то ускорение движения а тела равно . На основании второго закона Ньютона для силы можно записать , отсюда следует

. - векторная физическая величина, характеризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время ее действия, называется импульсом силы . Единица импульса силы - .

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение - это такое движение тела, которое возникает после отделения от тела его части.

Пусть тело массой покоилось. От тела отделилась какая-то его часть массой со скоростью Тогда оставшаяся часть придет в движение в противоположную сторону со скоростью , масса оставшейся части . Действительно, сумма импульсов обеих частей тела до отделения была равна нулю и после разделения будет равна нулю:

Отсюда .

Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения; основы теории жид¬костного реактивного двигателя, а также элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспечения на них. Технические идеи Циолковского находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.

Распространенные ошибки

1. Встречались абитуриенты, допускавшие грубую ошибку при объяснении принципа действия реактивного двигателя. Они утверждали, что движение реактивного самолета обусловлено взаимодействием выбрасываемых газов и воздуха: самолет действует на воздух, а воздух, согласно третьему закону Ньютона,- на самолет, в результате чего он движется. Это, конечно, неверно. ДЕйствительной причиной движения реактивного самолета является взаимодействие истекающих из сопла газов, которые образуются при сгорании топлива. За счет большого давления в камере сгорания эти газы приобретают некоторый импульс, поэтому, согласно закону сохранения импуьса, самолет получает такой же по модулю, но противоположный по направлению импульс. Так что самолет не отталкивается от воздуха. Напротив, атмосферный воздух является лишь помехой движению самолета.

2. Некоторый учащиеся не могут дать полный и правильный ответ на вопрос: в какиз случаях можно применять закон сохранения импульса. Полезно запомнить следующие критерии его применимости:

  1. система тел замкнута, т.е. на тела этой системы не действуют внешние силы;
  2. на тела системы действуют внешние силы, но их векторная сумма равна нулю
  3. система не замкнута, но сумма проекций всех внешних сил на какую-либо координатную ось равна нулю; тогда остается постоянной и сумма проекций импульсов всех тел системы на эту ось.
  4. время взаимодействия тел мало (например, время удара, выстрела, взрыва); в этом случае импульсаом внешних сил можно пренебречь и рассматривать систему как замкнутую.

В результате взаимодействия тел их координаты и скорости могут непрерывно изменяться. Могут изменяться и силы, действующие между телами. К счастью, наряду с изменчивостью окружающего нас мира существует и неизменный фон, обусловленный так называемыми законами сохранения, утверждающими постоянство во времени некоторых физических величин, характеризующих систему взаимодействующих тел как целое.

Пусть на тело массой m в течение времени t действует какая-то постоянная сила . Выясним, как произведение этой силы на время её действиясвязано с изменением состояния этого тела.

Закон сохранения импульса обязан своим существованием такому фундаментальному свойству симметрии, как однородность пространства .

Из второго закона Ньютона (2.8) мы видим, что временная характеристика действия силы связана с изменением импульса Fdt=dP

Импульсом тела P называют произведение массы тела на скорость его движения:

(2.14)

Единица импульса - килограмм-метр в секунду (кг м/с).

Направлен импульс всегда в туже сторону, что и скорость.

В современной формулировки закон сохранения импульса гласит : при любых процессах, происходящих в замкнутой системе, её полный импульс остаётся неизменным.

Докажем справедливость этого закона. Рассмотрим движение двух материальных точек, взаимодействующих только между собой (рис. 2.4).

Такую систему можно назвать изолированной в том смысле, что нет взаимодействия с другими телами. По третьему закону Ньютона, силы, действующие на эти тела, равны по величине и противоположны по направлению:

Используя второй закон Ньютона, это можно выразить как:


Объединяя эти выражения, получим

Перепишем данное соотношение, используя понятие импульса:

Следовательно,

Если изменение какой-либо величины равно нулю, то эта физическая величина сохраняется. Таким образом, приходим к выводу: сумма импульсов двух взаимодействующих изолированных точек остается постоянной, независимо от вида взаимодействия между ними.

(2.15)

Этот вывод можно обобщить на произвольную изолированную систему материальных точек, взаимодействующих между собой.   Если система не замкнута, т.е. сумма внешних сил, действующих на систему, не равна нулю: F ≠ 0 , закон сохранения импульса не выполняется.

Центром масс (центром инерции) системы называют точку, координаты которой заданы уравнениями:

(2.16)

где х 1 ; у 1 ; z 1 ; х 2 ; у 2 ; z 2 ; …; х N ; у N ; z N - координаты соответствующих материальных точек системы.

§2.5 Энергия. Механическая работа и мощность

Количественной мерой различных видов движения является энергия. При превращении одной формы движения в другую происходит изменение энергии. Точно также при передаче движения от одного тела к другому происходит уменьшение энергии одного тела и увеличение энергии другого тела. Такие переходы и превращения движения и, следовательно, энергии могут происходить либо в процессе работы, т.е. тогда, когда осуществляется перемещение тела при воздействии силы, либо в процессе теплообмена.

Для определения работы силы F рассмотрим криволинейную траекторию (рис. 2.5), по которой движется материальная точка из положения 1 в положение 2. Разобьем траекторию на элементарные, достаточно малые перемещения dr; этот вектор совпадает с направлением движения материаль ной точки. Модуль элементарного перемещения обозначим dS: |dr| = dS. Так как элементарное перемещение достаточно мало, то в этом случае силу F можно рассматривать неизменной и элементарную работу вычислять по формуле работы постоянной силы:

dA = F соsα dS = F соsα|dr|, (2.17)

или как скалярное произведение векторов:

(2.18)

Элементарная работа или просто работа силы, есть скалярное произведение векторов силы и элементарного перемещения.

Суммируя все элементарные работы, можно определить работу переменной силы на участке траектории от точки 1 до точки 2 (см. рис. 2.5). Эта задача сводится к нахождению следующего интеграла:

(2.19)

Пусть эта зависимость представлена графически (рис.2.6), тогда искомая работа определяется на графике площадью заштрихованной фигуры.

Заметим, что в отличие от второго закона Ньютона в выражениях (2.22) и (2.23) под F совсем не обязательно понимать равнодействующую всех сил, это может быть одна сила или равнодействующая нескольких сил.

Работа может быть положительной или отрицательной. Знак элементарной работы зависит от значения соsα. Так, например, из рисунка 2.7 видно, что при перемещении по горизонтальной поверхности тела, на которое действуют силы F, F тр и mg, работа силы F положительна (α > 0), работа силы трения F тр отрицательна (α = 180°), а работа силы тяжести mg равна нулю (α = 90°). Так как тангенциальная составляющая силы F t = F соs α, то элементарная работа вычисляется как произведение F t на модуль элементарного перемещения dS:

dA = F t dS (2.20)

Таким образом, работу совершает лишь тангенциальная составляющая силы, нор­мальная составляющая силы (α = 90°) работы не совершает.

Быстроту совершения работы характеризуют величиной, называемой мощностью.

Мощностью называется скалярная физическая величина, равная отношению работы ко времени, за которое она совер шается:

(2.21)

Учитывая (2.22), получаем

(2.22)

или N = Fυcosα (2.23) Мощность равна скалярному произведению векторов силы и скорости.

Из полученной формулы видно, что при постоянной мощности двигателя сила тяги больше тогда, когда скорость движения меньше
. Именно поэтому водитель автомобиля при подъёме в гору, когда нужна наибольшая сила тяги, переключает двигатель на малую скорость.

Цели урока:

  1. образовательные : формирование понятий “импульс тела”, “импульс силы”; умения применять их к анализу явления взаимодействия тел в простейших случаях; добиться усвоения учащимися формулировки и вывода закона сохранения импульса;
  2. развивающие : формировать умения анализировать, устанавливать связи между элементами содержания ранее изученного материала по основам механики, навыки поисковой познавательной деятельности, способность к самоанализу;
  3. воспитательные : развитие эстетического вкуса учащихся, вызвать желание постоянно пополнять свои знания; поддерживать интерес к предмету.

Оборудование: металлические шарики на нитях, тележки демонстрационные, грузы.

Средства обучения: карточки с тестами.

Ход урока

1. Организационный этап (1мин)

2. Повторение изученного материала. (10 мин)

Учитель: Тему урока вы узнаете, разгадав небольшой кроссворд, ключевым словом, которого и будет тема нашего урока. (Разгадываем слева на право, слова записываем по очереди вертикально).

  1. Явление сохранения скорости постоянной при отсутствии внешних воздействий или при их компенсации.
  2. Явление изменения объема или формы тела.
  3. Сила, возникающая при деформации, стремящая вернуть тело в первоначальное положение.
  4. Английский ученый, современник Ньютона, установил зависимость силы упругости от деформации.
  5. Единица массы.
  6. Английский ученый, открывший основные законы механики.
  7. Векторная физическая величина, численно равная изменению скорости за единицу времени.
  8. Сила, с которой Земля притягивает к себе все тела.
  9. Сила, возникающая благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел.
  10. Мера взаимодействия тел.
  11. Раздел механики, в которой изучают закономерности механического движения материальных тел под действием приложенных к ним сил.

3. Изучение нового материала. (18 мин)

Ребята тема нашего урока “Импульс тела. Закон сохранения импульса”

Цели урока : усвоить понятие импульса тела, понятие замкнутой системы, изучить закон сохранения импульса, научится решать задачи на закон сохранения.

Сегодня на уроке мы с вами не только будем ставить опыты, но и доказывать их математически.

Зная основные законы механики, в первую очередь три закона Ньютона, казалось бы, можно решить любую задачу о движении тел. Ребята, я вам продемонстрирую опыты, а вы подумайте, можно ли в этих случаях используя только законы Ньютона решить задачи?

Проблемный эксперимент.

Опыт №1.Скатывание легкоподвижной тележки с наклонной плоскости. Она сдвигает тело, находящееся на ее пути.

Можно ли найти силу взаимодействия тележки и тела? (нет, так как столкновение тележки и тела кратковременное и силу их взаимодействия определить трудно).

Опыт №2. Скатывание нагруженной тележки. Сдвигает тело дальше.

Можно ли в данном случае найти силу взаимодействия тележки и тела?

Сделайте вывод: с помощью каких физических величин можно охарактеризовать движение тела?

Вывод: Законы Ньютона позволяют решать задачи связанные с нахождением ускорения движущегося тела, если известны все действующие на тело силы, т.е. равнодействующая всех сил. Но часто бывает очень сложно определить равнодействующую силу, как это было в наших случаях.

Если на вас катится игрушечная тележка, вы можете остановить ее носком ноги, а если на вас катится грузовик?

Вывод : для характеристики движения надо знать массу тела и его скорость.

Поэтому для решения задач используют еще одну важнейшую физическую величину - импульс тела.

Понятие импульса было введено в физику французским ученым Рене Декартом (1596-1650 г.), который назвал эту величину “количеством движения”: “Я принимаю, что во вселенной… есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает”.

Найдем взаимосвязь между действующей на тело силой, временем ее действия, и изменением скорости тела.

Пусть на тело массой m начинает действовать сила F. Тогда из второго закона Ньютона ускорение этого тела будет а .

Вспомните как читается 2 закон Ньютона?

Запишем закон в виде

С другой стороны:

Или Получили формулу второго закона Ньютона в импульсной форме.

Обозначим произведение через р:

Произведение массы тела на его скорость называется импульсом тела.

Импульс р – векторная величина. Он всегда совпадает по направлению с вектором скорости тела. Любое тело, которое движется, обладает импульсом.

Определение: импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость и имеющая направление скорости.

Как любая физическая величина, импульс измеряется в определенных единицах.

Кто желает вывести единицу измерения для импульса? (Ученик у доски делает записи).

(р) = (кг м/с)

Вернемся к нашему равенству . В физике произведение силы на время действия называют импульсом силы.

Импульс силы показывает, как изменяется импульс тела за данное время.

Декарт установил закон сохранения количества движения, однако он не ясно представлял себе, что количество движения является векторной величиной. Понятие количества движения уточнил голландский физик и математик Гюйгенс, который, исследуя удар шаров, доказал, что при их соударении сохраняется не арифметическая сумма, а векторная сумма количества движения.

Эксперимент (на нитях подвешиваются два шарика)

Правый отклоняют и отпускают. Вернувшись в прежнее положение и ударившись о неподвижный шарик, он останавливается. При этом левый шарик приходит в движение и отклоняется практически на тот же угол, что и отклоняли правый шар.

Импульс обладает интересным свойством, которое есть лишь у немногих физических величин. Это свойство сохранения. Но закон сохранения импульса выполняется только в замкнутой системе.

Система тел называется замкнутой, если взаимодействующие между собой тела, не взаимодействуют с другими телами.

Импульс каждого из тел, составляющих замкнутую систему, может меняться в результате их взаимодействия друг с другом.

Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

В этом заключается закон сохранения импульса.

Примеры: ружье и пуля в его стволе, пушка и снаряд, оболочка ракеты и топливо в ней.

Закон сохранения импульса.

Закон сохранения импульса выводится из второго и третьего законов Ньютона.

Рассмотрим замкнутую систему, состоящую из двух тел – шаров с массами m 1 и m 2 , которые движутся вдоль прямой в одном направлении со скоростью? 1 и? 2 . С небольшим приближением можно считать, что шары представляют собой замкнутую систему.

Из опыта видно, что второй шар движется с большей скоростью (вектор изображен более длинной стрелочкой). Поэтому он нагонит первый шар и они столкнуться. (Просмотр эксперимента с комментариями учителя).

Математический вывод закона сохранения

А сейчас мы с вами побудим “полководцами”, используя законы математики и физики сделаем математический вывод закона сохранения импульса.

5) При каких условиях выполняется этот закон?

6) Какую систему называют замкнутой?

7) Почему происходит отдача при выстреле из ружья?

5. Решение задач (10мин.)

№ 323 (Рымкевич).

Два неупругих тела, массы которых 2 и 6 кг, движутся навстечу друг другу со скоростями 2 м/с каждое. С какой скоростью и в каком направлении будут двигаться эти тела после удара?

Учитель комментирует рисунок к задаче.

7. Подведение итогов урока; домашнее задание (2 мин)

Домашнее задание: § 41, 42 упр. 8 (1, 2).

Литература:

  1. В. Я. Лыков. Эстетическое воспитание при обучении физике. Книга для учителя. -Москва “ПРОСВЯЩЕНИЕ”1986.
  2. В. А. Волков. Поурочные разработки по физике 10 класс. - Москва “ ВАКО”2006.
  3. Под редакцией профессора Б. И. Спасского. Хрестоматия по физике. -МОСКВА “ПРОСВЯЩЕНИЕ”1987.
  4. И. И. Мокрова. Поурочные планы по учебнику А. В. Перышкина “Физика. 9класс”. - Волгоград 2003.

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р . Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:

Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.

Общий импульс системы тел равен векторной сумме импульсов всех тел системы:

Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):

где: p н – импульс тела в начальный момент времени, p к – в конечный. Главное не путать два последних понятия.

Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.

Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.

Закон сохранения импульса

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ) . Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:

Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.

Сохранение проекции импульса

Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.

Многомерный случай ЗСИ. Векторный метод

В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:

Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов.

  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.