Reálne riešenia kvadratickej rovnice. Kvadratické rovnice

Pomocou tohto matematického programu môžete vyriešiť kvadratickú rovnicu.

Program nielenže dáva odpoveď na problém, ale tiež zobrazuje proces riešenia dvoma spôsobmi:
- pomocou diskriminantu
- pomocou Vietovej vety (ak je to možné).

Okrem toho sa odpoveď zobrazuje presná, nie približná.
Napríklad pre rovnicu \(81x^2-16x-1=0\) sa odpoveď zobrazí v tomto tvare:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ namiesto tohto: \(x_1 = 0,247; \ quad x_2 = -0,05 \)

Tento program môže byť užitočný pre stredoškolákov pri príprave na testy a skúšky, pri testovaní vedomostí pred Jednotnou štátnou skúškou, pre rodičov na ovládanie riešenia mnohých problémov z matematiky a algebry. Alebo možno je pre vás príliš drahé najať si tútora alebo kúpiť nové učebnice? Alebo len chcete mať domácu úlohu z matematiky či algebry hotovú čo najrýchlejšie? V tomto prípade môžete využiť aj naše programy s detailným riešením.

Týmto spôsobom môžete viesť svoj vlastný výcvik a/alebo výcvik vašich mladších bratov alebo sestier, pričom sa zvýši úroveň vzdelania v oblasti úloh, ktoré je potrebné riešiť.

Ak nepoznáte pravidlá zadávania štvorcového polynómu, odporúčame vám sa s nimi oboznámiť.

Pravidlá pre zadávanie štvorcového polynómu

Akékoľvek latinské písmeno môže fungovať ako premenná.
Napríklad: \(x, y, z, a, b, c, o, p, q \) atď.

Čísla je možné zadávať ako celé čísla alebo zlomky.
Okrem toho je možné zadávať zlomkové čísla nielen vo forme desatinných miest, ale aj vo forme obyčajného zlomku.

Pravidlá pre zadávanie desatinných zlomkov.
V desatinných zlomkoch možno zlomkovú časť od celého čísla oddeliť buď bodkou alebo čiarkou.
Môžete napríklad zadať desatinné miesta takto: 2,5x – 3,5x^2

Pravidlá pre zadávanie obyčajných zlomkov.
Len celé číslo môže pôsobiť ako čitateľ, menovateľ a celá časť zlomku.

Menovateľ nemôže byť záporný.

Pri zadávaní číselného zlomku sa čitateľ oddelí od menovateľa deliacim znamienkom: /
Časť celého čísla je oddelená od zlomku znakom ampersand: &
Vstup: 3&1/3 - 5&6/5z +1/7z^2
Výsledok: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2 \)

Pri zadávaní výrazu môžete použiť zátvorky. V tomto prípade sa pri riešení kvadratickej rovnice najskôr zjednoduší zavedený výraz.
Napríklad: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Rozhodnite sa

Zistilo sa, že niektoré skripty potrebné na vyriešenie tejto úlohy neboli načítané a program nemusí fungovať.
Možno máte povolený AdBlock.
V takom prípade ho vypnite a obnovte stránku.

V prehliadači máte vypnutý JavaScript.
Aby sa riešenie zobrazilo, musí byť povolený JavaScript.
Tu je návod, ako povoliť JavaScript vo vašom prehliadači.

Pretože Existuje veľa ľudí, ktorí chcú problém vyriešiť, vaša požiadavka je v rade.
Po niekoľkých sekundách sa riešenie zobrazí nižšie.
Počkaj, prosím sek...


Ak ty si všimol chybu v riešení, potom o tom môžete napísať do Formulára spätnej väzby .
Nezabudni uveďte akú úlohu ty sa rozhodneš čo zadajte do polí.



Naše hry, hádanky, emulátory:

Trochu teórie.

Kvadratická rovnica a jej korene. Neúplné kvadratické rovnice

Každá z rovníc
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
má formu
\(ax^2+bx+c=0, \)
kde x je premenná, a, b a c sú čísla.
V prvej rovnici a = -1, b = 6 a c = 1,4, v druhej a = 8, b = -7 a c = 0, v tretej a = 1, b = 0 a c = 4/9. Takéto rovnice sa nazývajú kvadratické rovnice.

Definícia.
kvadratická rovnica nazývame rovnicu v tvare ax 2 +bx+c=0, kde x je premenná, a, b a c sú nejaké čísla a \(a \neq 0 \).

Čísla a, b a c sú koeficienty kvadratickej rovnice. Číslo a sa nazýva prvý koeficient, číslo b je druhý koeficient a číslo c je priesečník.

V každej z rovníc tvaru ax 2 +bx+c=0, kde \(a \neq 0 \), je najväčšia mocnina premennej x druhá mocnina. Odtiaľ názov: kvadratická rovnica.

Všimnite si, že kvadratická rovnica sa tiež nazýva rovnica druhého stupňa, pretože jej ľavá strana je polynómom druhého stupňa.

Nazýva sa kvadratická rovnica, v ktorej koeficient v x 2 je 1 redukovaná kvadratická rovnica. Napríklad dané kvadratické rovnice sú rovnice
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Ak v kvadratickej rovnici ax 2 +bx+c=0 je aspoň jeden z koeficientov b alebo c rovný nule, potom sa takáto rovnica nazýva neúplná kvadratická rovnica. Takže rovnice -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 sú neúplné kvadratické rovnice. V prvom z nich b=0, v druhom c=0, v treťom b=0 a c=0.

Neúplné kvadratické rovnice sú troch typov:
1) ax 2 +c=0, kde \(c \neq 0 \);
2) ax 2 +bx=0, kde \(b \neq 0 \);
3) ax2=0.

Zvážte riešenie rovníc každého z týchto typov.

Na vyriešenie neúplnej kvadratickej rovnice v tvare ax 2 +c=0 pre \(c \neq 0 \) sa jej voľný člen prenesie na pravú stranu a obe časti rovnice sa vydelia a:
\(x^2 = -\frac(c)(a) \Šípka doprava x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

Pretože \(c \neq 0 \), potom \(-\frac(c)(a) \neq 0 \)

Ak \(-\frac(c)(a)>0 \), potom má rovnica dva korene.

Ak \(-\frac(c)(a) Na vyriešenie neúplnej kvadratickej rovnice v tvare ax 2 +bx=0 pre \(b \neq 0 \) rozkladajte jej ľavú stranu a získajte rovnicu
\(x(ax+b)=0 \šípka doprava \vľavo\( \začiatok(pole)(l) x=0 \\ ax+b=0 \koniec(pole) \vpravo. \šípka doprava \vľavo\( \začiatok (pole)(l) x=0 \\ x=-\frac(b)(a) \end(pole) \vpravo. \)

Neúplná kvadratická rovnica tvaru ax 2 +bx=0 pre \(b \neq 0 \) má teda vždy dva korene.

Neúplná kvadratická rovnica tvaru ax 2 \u003d 0 je ekvivalentná rovnici x 2 \u003d 0, a preto má jeden koreň 0.

Vzorec pre korene kvadratickej rovnice

Uvažujme teraz, ako sa riešia kvadratické rovnice, v ktorých sú koeficienty neznámych aj voľný člen nenulové.

Kvadratickú rovnicu riešime vo všeobecnom tvare a výsledkom je vzorec koreňov. Potom sa tento vzorec môže použiť na riešenie akejkoľvek kvadratickej rovnice.

Vyriešte kvadratickú rovnicu ax 2 +bx+c=0

Vydelením oboch jej častí a získame ekvivalentnú redukovanú kvadratickú rovnicu
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Túto rovnicu transformujeme zvýraznením štvorca binomu:
\(x^2+2x \cdot \frac(b)(2a)+\vľavo(\frac(b)(2a)\vpravo)^2- \left(\frac(b)(2a)\vpravo)^ 2 + \frac(c)(a) = 0 \šípka doprava \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \šípka doprava \) \(\vľavo(x+\frac(b)(2a)\vpravo)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Šípka doprava \doľava(x+\frac(b)(2a)\doprava)^2 = \frac(b^2-4ac)(4a^2) \Šípka doprava \) \(x+\frac(b )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Šípka doprava x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2 -4ac) )(2a) \šípka doprava \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Koreňový výraz je tzv diskriminant kvadratickej rovnice ax 2 +bx+c=0 („diskriminačný“ v latinčine - rozlišovač). Označuje sa písmenom D, t.j.
\(D = b^2-4ac\)

Teraz pomocou zápisu diskriminantu prepíšeme vzorec pre korene kvadratickej rovnice:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), kde \(D= b^2-4ac \)

Je zrejmé, že:
1) Ak D>0, potom má kvadratická rovnica dva korene.
2) Ak D=0, potom má kvadratická rovnica jeden koreň \(x=-\frac(b)(2a)\).
3) Ak D Teda v závislosti od hodnoty diskriminantu môže mať kvadratická rovnica dva korene (pre D > 0), jeden koreň (pre D = 0) alebo žiadne korene (pre D Pri riešení kvadratickej rovnice pomocou tohto vzorca , je vhodné postupovať nasledovne:
1) vypočítajte diskriminant a porovnajte ho s nulou;
2) ak je diskriminant kladný alebo rovný nule, potom použite koreňový vzorec, ak je diskriminant záporný, napíšte, že neexistujú žiadne korene.

Vietov teorém

Daná kvadratická rovnica ax 2 -7x+10=0 má korene 2 a 5. Súčet koreňov je 7 a súčin je 10. Vidíme, že súčet koreňov sa rovná druhému koeficientu získanému pomocou opačné znamienko a súčin koreňov sa rovná voľnému členu. Každá redukovaná kvadratická rovnica, ktorá má korene, má túto vlastnosť.

Súčet koreňov danej kvadratickej rovnice sa rovná druhému koeficientu s opačným znamienkom a súčin koreňov sa rovná voľnému členu.

Tie. Vietova veta hovorí, že korene x 1 a x 2 redukovanej kvadratickej rovnice x 2 +px+q=0 majú vlastnosť:
\(\vľavo\( \začiatok(pole)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \koniec(pole) \vpravo. \)

Dúfam, že po preštudovaní tohto článku sa naučíte, ako nájsť korene úplnej kvadratickej rovnice.

Pomocou diskriminantu sa riešia len úplné kvadratické rovnice, na riešenie neúplných kvadratických rovníc sa používajú iné metódy, ktoré nájdete v článku „Riešenie neúplných kvadratických rovníc“.

Ktoré kvadratické rovnice sa nazývajú úplné? to rovnice tvaru ax 2 + b x + c = 0, kde koeficienty a, b a c sa nerovnajú nule. Takže, aby ste vyriešili úplnú kvadratickú rovnicu, musíte vypočítať diskriminant D.

D \u003d b 2 - 4ac.

Podľa toho, akú hodnotu má diskriminant, zapíšeme odpoveď.

Ak je diskriminant záporné číslo (D< 0),то корней нет.

Ak je diskriminant nula, potom x \u003d (-b) / 2a. Ak je diskriminant kladné číslo (D > 0),

potom x 1 = (-b - √D)/2a a x 2 = (-b + √D)/2a.

Napríklad. vyriešiť rovnicu x 2– 4x + 4= 0.

D \u003d 4 2 - 4 4 \u003d 0

x = (- (-4))/2 = 2

odpoveď: 2.

Vyriešte rovnicu 2 x 2 + x + 3 = 0.

D \u003d 1 2 - 4 2 3 \u003d - 23

Odpoveď: žiadne korene.

Vyriešte rovnicu 2 x 2 + 5x - 7 = 0.

D \u003d 5 2 - 4 2 (-7) \u003d 81

x 1 \u003d (-5 - √81) / (2 2) \u003d (-5 - 9) / 4 \u003d - 3,5

x 2 \u003d (-5 + √81) / (2 2) \u003d (-5 + 9) / 4 \u003d 1

Odpoveď: - 3,5; jeden.

Predstavme si teda riešenie úplných kvadratických rovníc podľa schémy na obrázku 1.

Tieto vzorce možno použiť na riešenie akejkoľvek úplnej kvadratickej rovnice. Len si treba dávať pozor rovnica bola napísaná ako polynóm štandardného tvaru

a x 2 + bx + c, inak sa môžete pomýliť. Napríklad pri písaní rovnice x + 3 + 2x 2 = 0 sa môžete mylne rozhodnúť, že

a = 1, b = 3 a c = 2. Potom

D \u003d 3 2 - 4 1 2 \u003d 1 a potom má rovnica dva korene. A to nie je pravda. (Pozri príklad 2 riešenie vyššie).

Ak teda rovnica nie je napísaná ako polynóm štandardného tvaru, musí sa najprv úplná kvadratická rovnica napísať ako polynóm štandardného tvaru (na prvom mieste by mal byť monomický prvok s najväčším exponentom, tzn. a x 2 , potom s menej bx a potom voľný termín S

Pri riešení uvedenej kvadratickej rovnice a kvadratickej rovnice s párnym koeficientom pre druhý člen možno použiť aj iné vzorce. Zoznámime sa s týmito vzorcami. Ak v úplnej kvadratickej rovnici s druhým členom je koeficient párny (b = 2k), potom rovnicu možno vyriešiť pomocou vzorcov znázornených v diagrame na obrázku 2.

Úplná kvadratická rovnica sa nazýva redukovaná, ak koeficient pri x 2 rovná sa jednote a rovnica má tvar x 2 + px + q = 0. Takáto rovnica môže byť daná na vyriešenie, alebo sa získa vydelením všetkých koeficientov rovnice koeficientom a stojaci pri x 2 .

Obrázok 3 znázorňuje schému riešenia redukovaného štvorca
rovnice. Zvážte príklad použitia vzorcov, o ktorých sa hovorí v tomto článku.

Príklad. vyriešiť rovnicu

3x 2 + 6x - 6 = 0.

Vyriešme túto rovnicu pomocou vzorcov znázornených na obrázku 1.

D \u003d 6 2 - 4 3 (- 6) \u003d 36 + 72 \u003d 108

√D = √108 = √(36 3) = 6√3

x 1 \u003d (-6 - 6 √ 3) / (2 3) \u003d (6 (-1- √ (3))) / 6 \u003d -1 - √ 3

x 2 \u003d (-6 + 6 √ 3) / (2 3) \u003d (6 (-1 + √ (3))) / 6 \u003d -1 + √ 3

Odpoveď: -1 - √3; –1 + √3

Môžete vidieť, že koeficient v x v tejto rovnici je párne číslo, to znamená b \u003d 6 alebo b \u003d 2k, odkiaľ k \u003d 3. Potom sa pokúsme vyriešiť rovnicu pomocou vzorcov znázornených na obrázku D 1 \u003d 3 2 - 3 (- 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 \u003d (-3 - 3√3) / 3 \u003d (3 (-1 - √ (3))) / 3 \u003d - 1 - √3

x 2 \u003d (-3 + 3√3) / 3 \u003d (3 (-1 + √ (3))) / 3 \u003d - 1 + √3

Odpoveď: -1 - √3; –1 + √3. Keď si všimneme, že všetky koeficienty v tejto kvadratickej rovnici sú deliteľné 3 a delením, dostaneme redukovanú kvadratickú rovnicu x 2 + 2x - 2 = 0 Túto rovnicu riešime pomocou vzorcov pre redukovanú kvadratickú rovnicu
rovnice obrázok 3.

D 2 \u003d 2 2 - 4 (- 2) \u003d 4 + 8 \u003d 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 \u003d (-2 - 2√3) / 2 \u003d (2 (-1 - √ (3))) / 2 \u003d - 1 - √3

x 2 \u003d (-2 + 2 √ 3) / 2 \u003d (2 (-1 + √ (3))) / 2 \u003d - 1 + √ 3

Odpoveď: -1 - √3; –1 + √3.

Ako vidíte, pri riešení tejto rovnice pomocou rôznych vzorcov sme dostali rovnakú odpoveď. Preto, keď dobre ovládate vzorce zobrazené v diagrame na obrázku 1, môžete vždy vyriešiť akúkoľvek úplnú kvadratickú rovnicu.

blog.site, pri úplnom alebo čiastočnom skopírovaní materiálu je potrebný odkaz na zdroj.

Vzorce pre korene kvadratickej rovnice. Zvažujú sa prípady skutočných, viacnásobných a zložitých koreňov. Faktorizácia štvorcového trojčlenu. Geometrická interpretácia. Príklady určovania koreňov a faktorizácie.

Základné vzorce

Zvážte kvadratickú rovnicu:
(1) .
Korene kvadratickej rovnice(1) sa určujú podľa vzorcov:
; .
Tieto vzorce je možné kombinovať takto:
.
Keď sú známe korene kvadratickej rovnice, potom môže byť polynóm druhého stupňa reprezentovaný ako súčin faktorov (faktorovaný):
.

Ďalej predpokladáme, že ide o reálne čísla.
Zvážte diskriminant kvadratickej rovnice:
.
Ak je diskriminant kladný, potom kvadratická rovnica (1) má dva rôzne reálne korene:
; .
Potom má rozklad štvorcového trojčlenu tvar:
.
Ak je diskriminant nulový, potom kvadratická rovnica (1) má dva viacnásobné (rovnaké) skutočné korene:
.
Faktorizácia:
.
Ak je diskriminant záporný, potom kvadratická rovnica (1) má dva komplexne konjugované korene:
;
.
Tu je pomyselná jednotka, ;
a sú skutočnými a imaginárnymi časťami koreňov:
; .
Potom

.

Grafická interpretácia

Ak nakreslíme graf funkcie
,
čo je parabola, potom priesečníky grafu s osou budú koreňmi rovnice
.
Keď , graf pretína os x (os) v dvoch bodoch.
Keď sa graf dotkne osi x v jednom bode.
Keď , graf nepretína os x.

Nižšie sú uvedené príklady takýchto grafov.

Užitočné vzorce súvisiace s kvadratickou rovnicou

(f.1) ;
(f.2) ;
(f.3) .

Odvodenie vzorca pre korene kvadratickej rovnice

Vykonávame transformácie a aplikujeme vzorce (f.1) a (f.3):




,
kde
; .

Takže sme dostali vzorec pre polynóm druhého stupňa v tvare:
.
Z toho vidno, že rovnica

vykonaná o
a .
To je a sú koreňmi kvadratickej rovnice
.

Príklady určenia koreňov kvadratickej rovnice

Príklad 1


(1.1) .

Riešenie


.
V porovnaní s našou rovnicou (1.1) nájdeme hodnoty koeficientov:
.
Nájdenie diskriminantu:
.
Keďže diskriminant je kladný, rovnica má dva skutočné korene:
;
;
.

Odtiaľ dostaneme rozklad štvorcového trinomu na faktory:

.

Graf funkcie y = 2 x 2 + 7 x + 3 pretína os x v dvoch bodoch.

Nakreslíme funkciu
.
Graf tejto funkcie je parabola. Pretína os x (os) v dvoch bodoch:
a .
Tieto body sú koreňmi pôvodnej rovnice (1.1).

Odpoveď

;
;
.

Príklad 2

Nájdite korene kvadratickej rovnice:
(2.1) .

Riešenie

Kvadratickú rovnicu napíšeme vo všeobecnom tvare:
.
V porovnaní s pôvodnou rovnicou (2.1) nájdeme hodnoty koeficientov:
.
Nájdenie diskriminantu:
.
Keďže diskriminant je nula, rovnica má dva viacnásobné (rovnaké) korene:
;
.

Potom má rozklad trojčlenu tvar:
.

Graf funkcie y = x 2 - 4 x + 4 sa v jednom bode dotýka osi x.

Nakreslíme funkciu
.
Graf tejto funkcie je parabola. Dotýka sa osi x (osi) v jednom bode:
.
Tento bod je koreňom pôvodnej rovnice (2.1). Pretože tento koreň je rozdelený dvakrát:
,
potom sa takýto koreň nazýva násobok. To znamená, že sa domnievajú, že existujú dva rovnaké korene:
.

Odpoveď

;
.

Príklad 3

Nájdite korene kvadratickej rovnice:
(3.1) .

Riešenie

Kvadratickú rovnicu napíšeme vo všeobecnom tvare:
(1) .
Prepíšme pôvodnú rovnicu (3.1):
.
V porovnaní s (1) nájdeme hodnoty koeficientov:
.
Nájdenie diskriminantu:
.
Diskriminant je negatívny, . Preto neexistujú žiadne skutočné korene.

Môžete nájsť zložité korene:
;
;
.

Potom


.

Graf funkcie nepretína os x. Neexistujú žiadne skutočné korene.

Nakreslíme funkciu
.
Graf tejto funkcie je parabola. Nepretína abscisu (os). Preto neexistujú žiadne skutočné korene.

Odpoveď

Neexistujú žiadne skutočné korene. Komplexné korene:
;
;
.

Vidiecka stredná škola Kopyevskaya

10 spôsobov riešenia kvadratických rovníc

Vedúci: Patrikeeva Galina Anatolyevna,

učiteľ matematiky

s. Kopyevo, 2007

1. História vývoja kvadratických rovníc

1.1 Kvadratické rovnice v starovekom Babylone

1.2 Ako Diophantus zostavoval a riešil kvadratické rovnice

1.3 Kvadratické rovnice v Indii

1.4 Kvadratické rovnice v al-Khwarizmi

1.5 Kvadratické rovnice v Európe XIII - XVII storočia

1.6 O Vietovej vete

2. Metódy riešenia kvadratických rovníc

Záver

Literatúra

1. História vývoja kvadratických rovníc

1.1 Kvadratické rovnice v starovekom Babylone

Potreba riešiť rovnice nielen prvého, ale aj druhého stupňa v staroveku bola spôsobená potrebou riešenia problémov súvisiacich s hľadaním oblastí zemských a zemných prác vojenského charakteru, ako aj s rozvojom astronómie, resp. samotnú matematiku. Kvadratické rovnice boli schopné vyriešiť okolo roku 2000 pred Kristom. e. Babylončania.

Pomocou modernej algebraickej notácie môžeme povedať, že v ich klinopisných textoch sú okrem neúplných napríklad aj úplné kvadratické rovnice:

X 2 + X = ¾; X 2 - X = 14,5

Pravidlo na riešenie týchto rovníc uvedené v babylonských textoch sa v podstate zhoduje s tým moderným, ale nie je známe, ako Babylončania k tomuto pravidlu prišli. Takmer všetky doteraz nájdené klinopisné texty uvádzajú len problémy s riešeniami uvedenými vo forme receptov, bez uvedenia spôsobu ich nájdenia.

Napriek vysokému stupňu rozvoja algebry v Babylone chýba v klinopisných textoch koncept záporného čísla a všeobecné metódy riešenia kvadratických rovníc.

1.2 Ako Diophantus zostavoval a riešil kvadratické rovnice.

Diophantusova aritmetika neobsahuje systematický výklad algebry, ale obsahuje systematický rad problémov, sprevádzaných vysvetleniami a riešených formulovaním rovníc rôzneho stupňa.

Pri zostavovaní rovníc Diophantus šikovne vyberá neznáme, aby zjednodušil riešenie.

Tu je napríklad jedna z jeho úloh.

Úloha 11."Nájdite dve čísla s vedomím, že ich súčet je 20 a ich súčin je 96"

Diophantus argumentuje nasledovne: z podmienky problému vyplýva, že požadované čísla sa nerovnajú, pretože ak by boli rovnaké, ich súčin by sa nerovnal 96, ale 100. Jedno z nich teda bude viac ako polovicu ich sumy, t.j. 10+x, druhý je menší, t.j. 10-te roky. Rozdiel medzi nimi 2x .

Preto rovnica:

(10 + x) (10 - x) = 96

100 - x 2 = 96

x 2 – 4 = 0 (1)

Odtiaľ x = 2. Jedným z požadovaných čísel je 12 , iné 8 . Riešenie x = -2 lebo Diophantus neexistuje, keďže grécka matematika poznala len kladné čísla.

Ak tento problém vyriešime výberom jedného z požadovaných čísel ako neznámeho, prídeme k riešeniu rovnice

y(20 - y) = 96,

y 2 - 20 y + 96 = 0. (2)


Je zrejmé, že Diophantus zjednodušuje riešenie výberom polovičného rozdielu požadovaných čísel ako neznámeho; podarí sa mu problém zredukovať na riešenie neúplnej kvadratickej rovnice (1).

1.3 Kvadratické rovnice v Indii

Úlohy pre kvadratické rovnice sa už nachádzajú v astronomickom trakte „Aryabhattam“, ktorý v roku 499 zostavil indický matematik a astronóm Aryabhatta. Ďalší indický vedec, Brahmagupta (7. storočie), načrtol všeobecné pravidlo na riešenie kvadratických rovníc zredukovaných na jedinú kanonickú formu:

ach 2+ b x = c, a > 0. (1)

V rovnici (1) sú koeficienty okrem a, môže byť aj negatívny. Brahmaguptove pravidlo sa v podstate zhoduje s naším.

V starovekej Indii boli verejné súťaže v riešení zložitých problémov bežné. V jednej zo starých indických kníh sa o takýchto súťažiach hovorí toto: „Ako slnko prežiari hviezdy svojou žiarou, tak vzdelaný človek zažiari slávu druhého na verejných stretnutiach, kde navrhuje a rieši algebraické problémy.“ Úlohy sa často obliekali do poetickej podoby.

Tu je jeden z problémov slávneho indického matematika 12. storočia. Bhaskara.

Úloha 13.

„Šikovný kŕdeľ opíc a dvanásť viniča...

Po najedení sily sa zabavili. Začali skákať, visieť ...

Ôsma časť z nich vo štvorci Koľko tam bolo opíc,

Zábava na lúke. Povieš mi, v tomto stáde?

Bhaskarovo riešenie naznačuje, že vedel o dvojhodnotovosti koreňov kvadratických rovníc (obr. 3).

Rovnica zodpovedajúca problému 13 je:

( X /8) 2 + 12 = X

Bhaskara píše pod zámienkou:

x 2 - 64x = -768

a na doplnenie ľavej strany tejto rovnice na štvorec pridá k obom stranám 32 2 , potom:

x 2 – 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Kvadratické rovnice v al-Khorezmi

Al-Khorezmiho algebraické pojednanie uvádza klasifikáciu lineárnych a kvadratických rovníc. Autor uvádza 6 typov rovníc, pričom ich vyjadruje takto:

1) „Štvorce sa rovnajú koreňom“, t.j. ax 2 + c = b X.

2) „Štvorce sa rovnajú číslu“, t.j. ax 2 = s.

3) "Korene sa rovnajú číslu", t.j. ah = s.

4) „Štvorce a čísla sa rovnajú odmocninám“, t.j. ax 2 + c = b X.

5) „Štvorce a odmocniny sa rovnajú číslu“, t.j. ach 2+ bx = s.

6) „Odmocniny a čísla sa rovnajú štvorcom“, t.j. bx + c \u003d sekera 2.

Pre al-Khwarizmiho, ktorý sa vyhýbal používaniu záporných čísel, sú členy každej z týchto rovníc sčítaním, nie odčítaním. V tomto prípade sa zjavne neberú do úvahy rovnice, ktoré nemajú kladné riešenia. Autor načrtáva metódy riešenia týchto rovníc pomocou metód al-jabr a al-muqabala. Jeho rozhodnutia sa, samozrejme, úplne nezhodujú s našimi. Nehovoriac o tom, že je to čisto rétorické, treba si napríklad uvedomiť, že pri riešení neúplnej kvadratickej rovnice prvého typu

al-Khorezmi, podobne ako všetci matematici pred 17. storočím, neberie do úvahy nulové riešenie, zrejme preto, že v konkrétnych praktických problémoch na ňom nezáleží. Pri riešení úplných kvadratických rovníc stanovuje al-Khorezmi pravidlá riešenia a potom geometrické dôkazy pomocou konkrétnych numerických príkladov.

Úloha 14.„Štvorec a číslo 21 sa rovnajú 10 odmocninám. Nájdite koreň" (za predpokladu, že koreň rovnice x 2 + 21 = 10x).

Autorovo riešenie znie asi takto: vydeľte počet koreňov na polovicu, dostanete 5, vynásobte sami 5, od súčinu odčítajte 21, zostáva 4. Vezmite odmocninu zo 4, dostanete 2. Odčítajte 2 od 5, získajte 3, bude to požadovaný koreň. Alebo pridajte 2 k 5, čím získate 7, to je tiež koreň.

Treatise al - Khorezmi je prvá kniha, ktorá sa k nám dostala, v ktorej je systematicky uvedená klasifikácia kvadratických rovníc a uvedené vzorce na ich riešenie.

1.5 Kvadratické rovnice v Európe XIII - XVII storočia

Vzorce na riešenie kvadratických rovníc podľa modelu al - Khorezmi v Európe boli prvýkrát uvedené v "Knihe počítadla", ktorú v roku 1202 napísal taliansky matematik Leonardo Fibonacci. Toto rozsiahle dielo, ktoré odráža vplyv matematiky v krajinách islamu a starovekého Grécka, sa vyznačuje úplnosťou a jasnosťou prezentácie. Autor nezávisle vyvinul niekoľko nových algebraických príkladov riešenia problémov a ako prvý v Európe pristúpil k zavedeniu záporných čísel. Jeho kniha prispela k šíreniu algebraických poznatkov nielen v Taliansku, ale aj v Nemecku, Francúzsku a ďalších európskych krajinách. Mnohé úlohy z „Knihy počítadla“ prešli takmer do všetkých európskych učebníc 16. – 17. storočia. a čiastočne XVIII.

Všeobecné pravidlo na riešenie kvadratických rovníc zredukované na jednu kanonickú formu:

x 2+ bx = s,

pre všetky možné kombinácie znamienok koeficientov b , S sformuloval v Európe až v roku 1544 M. Stiefel.

Vieta má všeobecnú deriváciu vzorca na riešenie kvadratickej rovnice, ale Vieta rozpoznal iba kladné korene. Talianski matematici Tartaglia, Cardano, Bombelli boli medzi prvými v 16. storočí. Zohľadnite okrem pozitívnych aj negatívne korene. Až v XVII storočí. Vďaka práci Girarda, Descartesa, Newtona a ďalších vedcov dostáva spôsob riešenia kvadratických rovníc moderný vzhľad.

1.6 O Vietovej vete

Vetu vyjadrujúcu vzťah medzi koeficientmi kvadratickej rovnice a jej koreňmi, nesúcu meno Vieta, sformuloval po prvý raz v roku 1591 takto: „Ak B + D vynásobeny A - A 2 , rovná sa BD, potom A rovná sa AT a rovní D ».

Aby sme porozumeli Viete, musíme si to pamätať ALE, ako každá samohláska, pre neho znamenalo neznáme (náš X), samohlásky AT, D- koeficienty pre neznáme. V jazyku modernej algebry vyššie uvedená Vietova formulácia znamená: ak

(a + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Vyjadrením vzťahu medzi koreňmi a koeficientmi rovníc všeobecnými vzorcami napísanými pomocou symbolov Viet zaviedol jednotnosť v metódach riešenia rovníc. Symbolika Viety má však k modernej podobe ešte ďaleko. Nepoznal záporné čísla, a preto pri riešení rovníc zvažoval iba prípady, keď sú všetky odmocniny kladné.

2. Metódy riešenia kvadratických rovníc

Kvadratické rovnice sú základom, na ktorom spočíva majestátna budova algebry. Kvadratické rovnice sú široko používané pri riešení goniometrických, exponenciálnych, logaritmických, iracionálnych a transcendentálnych rovníc a nerovníc. Všetci vieme, ako riešiť kvadratické rovnice od školy (8. ročník) až po maturitu.

Dúfam, že po preštudovaní tohto článku sa naučíte, ako nájsť korene úplnej kvadratickej rovnice.

Pomocou diskriminantu sa riešia len úplné kvadratické rovnice, na riešenie neúplných kvadratických rovníc sa používajú iné metódy, ktoré nájdete v článku „Riešenie neúplných kvadratických rovníc“.

Ktoré kvadratické rovnice sa nazývajú úplné? to rovnice tvaru ax 2 + b x + c = 0, kde koeficienty a, b a c sa nerovnajú nule. Takže, aby ste vyriešili úplnú kvadratickú rovnicu, musíte vypočítať diskriminant D.

D \u003d b 2 - 4ac.

Podľa toho, akú hodnotu má diskriminant, zapíšeme odpoveď.

Ak je diskriminant záporné číslo (D< 0),то корней нет.

Ak je diskriminant nula, potom x \u003d (-b) / 2a. Ak je diskriminant kladné číslo (D > 0),

potom x 1 = (-b - √D)/2a a x 2 = (-b + √D)/2a.

Napríklad. vyriešiť rovnicu x 2– 4x + 4= 0.

D \u003d 4 2 - 4 4 \u003d 0

x = (- (-4))/2 = 2

odpoveď: 2.

Vyriešte rovnicu 2 x 2 + x + 3 = 0.

D \u003d 1 2 - 4 2 3 \u003d - 23

Odpoveď: žiadne korene.

Vyriešte rovnicu 2 x 2 + 5x - 7 = 0.

D \u003d 5 2 - 4 2 (-7) \u003d 81

x 1 \u003d (-5 - √81) / (2 2) \u003d (-5 - 9) / 4 \u003d - 3,5

x 2 \u003d (-5 + √81) / (2 2) \u003d (-5 + 9) / 4 \u003d 1

Odpoveď: - 3,5; jeden.

Predstavme si teda riešenie úplných kvadratických rovníc podľa schémy na obrázku 1.

Tieto vzorce možno použiť na riešenie akejkoľvek úplnej kvadratickej rovnice. Len si treba dávať pozor rovnica bola napísaná ako polynóm štandardného tvaru

a x 2 + bx + c, inak sa môžete pomýliť. Napríklad pri písaní rovnice x + 3 + 2x 2 = 0 sa môžete mylne rozhodnúť, že

a = 1, b = 3 a c = 2. Potom

D \u003d 3 2 - 4 1 2 \u003d 1 a potom má rovnica dva korene. A to nie je pravda. (Pozri príklad 2 riešenie vyššie).

Ak teda rovnica nie je napísaná ako polynóm štandardného tvaru, musí sa najprv úplná kvadratická rovnica napísať ako polynóm štandardného tvaru (na prvom mieste by mal byť monomický prvok s najväčším exponentom, tzn. a x 2 , potom s menej bx a potom voľný termín S

Pri riešení uvedenej kvadratickej rovnice a kvadratickej rovnice s párnym koeficientom pre druhý člen možno použiť aj iné vzorce. Zoznámime sa s týmito vzorcami. Ak v úplnej kvadratickej rovnici s druhým členom je koeficient párny (b = 2k), potom rovnicu možno vyriešiť pomocou vzorcov znázornených v diagrame na obrázku 2.

Úplná kvadratická rovnica sa nazýva redukovaná, ak koeficient pri x 2 rovná sa jednote a rovnica má tvar x 2 + px + q = 0. Takáto rovnica môže byť daná na vyriešenie, alebo sa získa vydelením všetkých koeficientov rovnice koeficientom a stojaci pri x 2 .

Obrázok 3 znázorňuje schému riešenia redukovaného štvorca
rovnice. Zvážte príklad použitia vzorcov, o ktorých sa hovorí v tomto článku.

Príklad. vyriešiť rovnicu

3x 2 + 6x - 6 = 0.

Vyriešme túto rovnicu pomocou vzorcov znázornených na obrázku 1.

D \u003d 6 2 - 4 3 (- 6) \u003d 36 + 72 \u003d 108

√D = √108 = √(36 3) = 6√3

x 1 \u003d (-6 - 6 √ 3) / (2 3) \u003d (6 (-1- √ (3))) / 6 \u003d -1 - √ 3

x 2 \u003d (-6 + 6 √ 3) / (2 3) \u003d (6 (-1 + √ (3))) / 6 \u003d -1 + √ 3

Odpoveď: -1 - √3; –1 + √3

Môžete vidieť, že koeficient v x v tejto rovnici je párne číslo, to znamená b \u003d 6 alebo b \u003d 2k, odkiaľ k \u003d 3. Potom sa pokúsme vyriešiť rovnicu pomocou vzorcov znázornených na obrázku D 1 \u003d 3 2 - 3 (- 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 \u003d (-3 - 3√3) / 3 \u003d (3 (-1 - √ (3))) / 3 \u003d - 1 - √3

x 2 \u003d (-3 + 3√3) / 3 \u003d (3 (-1 + √ (3))) / 3 \u003d - 1 + √3

Odpoveď: -1 - √3; –1 + √3. Keď si všimneme, že všetky koeficienty v tejto kvadratickej rovnici sú deliteľné 3 a delením, dostaneme redukovanú kvadratickú rovnicu x 2 + 2x - 2 = 0 Túto rovnicu riešime pomocou vzorcov pre redukovanú kvadratickú rovnicu
rovnice obrázok 3.

D 2 \u003d 2 2 - 4 (- 2) \u003d 4 + 8 \u003d 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 \u003d (-2 - 2√3) / 2 \u003d (2 (-1 - √ (3))) / 2 \u003d - 1 - √3

x 2 \u003d (-2 + 2 √ 3) / 2 \u003d (2 (-1 + √ (3))) / 2 \u003d - 1 + √ 3

Odpoveď: -1 - √3; –1 + √3.

Ako vidíte, pri riešení tejto rovnice pomocou rôznych vzorcov sme dostali rovnakú odpoveď. Preto, keď dobre ovládate vzorce zobrazené v diagrame na obrázku 1, môžete vždy vyriešiť akúkoľvek úplnú kvadratickú rovnicu.

stránky, s úplným alebo čiastočným kopírovaním materiálu, je potrebný odkaz na zdroj.