Určte, pod akým uhlom sa čiary pretínajú. Uhol medzi čiarami

UHOL MEDZI ROVINAMI

Uvažujme dve roviny α 1 a α 2 dané rovnicami:

Pod rohu medzi dvoma rovinami máme na mysli jeden z uhlov dvojsteny, ktoré tieto roviny zvierajú. Je zrejmé, že uhol medzi normálovými vektormi a rovinami α 1 a α 2 sa rovná jednému z uvedených susedných dihedrálnych uhlov, resp. . Takže . Pretože a , potom

.

Príklad. Určte uhol medzi rovinami X+2r-3z+4 = 0 a 2 X+3r+z+8=0.

Podmienka rovnobežnosti dvoch rovín.

Dve roviny α 1 a α 2 sú rovnobežné práve vtedy, ak ich normálové vektory a sú rovnobežné, a teda .

Takže dve roviny sú navzájom rovnobežné vtedy a len vtedy, ak sú koeficienty na zodpovedajúcich súradniciach úmerné:

alebo

Podmienka kolmosti rovín.

Je jasné, že dve roviny sú kolmé vtedy a len vtedy, ak sú ich normálové vektory kolmé, a teda alebo .

Teda, .

Príklady.

PRIAMO V PRIESTORU.

VEKTOROVÁ ROVNICE PRIAMA.

PARAMETRICKÉ ROVNICE PRIAME

Poloha priamky v priestore je úplne určená určením ktoréhokoľvek z jej pevných bodov M 1 a vektor rovnobežný s touto čiarou.

Vektor rovnobežný s priamkou sa nazýva vedenie vektor tejto čiary.

Tak nech rovno l prechádza cez bod M 1 (X 1 , r 1 , z 1) ležiace na priamke rovnobežnej s vektorom .

Zvážte svojvoľný bod M(x,y,z) na priamke. Z obrázku je vidieť, že .

Vektory a sú kolineárne, takže existuje také číslo t, čo , kde je násobiteľ t môže nadobudnúť akúkoľvek číselnú hodnotu v závislosti od polohy bodu M na priamke. Faktor t sa nazýva parameter. Označenie vektorov polomerov bodov M 1 a M respektíve prostredníctvom a , získame . Táto rovnica sa nazýva vektor priamka rovnica. Ukazuje, že hodnota každého parametra t zodpovedá vektoru polomeru nejakého bodu M ležiace na priamke.

Túto rovnicu zapíšeme v súradnicovom tvare. Všimni si , a odtiaľto

Výsledné rovnice sú tzv parametrické priamkové rovnice.

Pri zmene parametra t zmena súradníc X, r a z a bodka M sa pohybuje v priamom smere.


KANONICKÉ ROVNICE PRIAME

Nechať byť M 1 (X 1 , r 1 , z 1) - bod ležiaci na priamke l a je jeho smerový vektor. Opäť vezmite ľubovoľný bod na priamke M(x,y,z) a zvážte vektor .

Je jasné, že vektory a sú kolineárne, takže ich príslušné súradnice musia byť proporcionálne

kanonický priamkové rovnice.

Poznámka 1. Všimnite si, že kanonické rovnice priamky možno získať z parametrických rovníc odstránením parametra t. V skutočnosti z parametrických rovníc, ktoré získame alebo .

Príklad. Napíšte rovnicu priamky parametrickým spôsobom.

Označiť , teda X = 2 + 3t, r = –1 + 2t, z = 1 –t.

Poznámka 2. Nech je čiara kolmá na jednu zo súradnicových osí, napríklad na os Vôl. Potom je smerový vektor priamky kolmý Vôl, teda, m=0. V dôsledku toho nadobúdajú tvar parametrické rovnice priamky

Vylúčenie parametra z rovníc t, dostaneme rovnice priamky v tvare

Aj v tomto prípade však súhlasíme s formálnym zápisom kanonických rovníc priamky do formulára . Ak je teda menovateľ jedného zo zlomkov nula, znamená to, že čiara je kolmá na príslušnú súradnicovú os.

Podobne aj kanonické rovnice zodpovedá priamke kolmej na osi Vôl a Oj alebo rovnobežná os Oz.

Príklady.

VŠEOBECNÉ ROVNICE PRIAMA ČIARA AKO PRIESTOROVÁ ČIARA DVOCH ROVINEK

Cez každú priamku v priestore prechádza nekonečný počet rovín. Akékoľvek dva z nich, ktoré sa pretínajú, ho definujú v priestore. Preto rovnice akýchkoľvek dvoch takýchto rovín, uvažované spolu, sú rovnicami tejto priamky.

Vo všeobecnosti akékoľvek dve nerovnobežné roviny dané všeobecnými rovnicami

určiť ich priesečník. Tieto rovnice sa nazývajú všeobecné rovnice rovno.

Príklady.

Zostrojte priamku danú rovnicami

Na zostrojenie priamky stačí nájsť dva ľubovoľné jej body. Najjednoduchším spôsobom je vybrať priesečníky úsečky so súradnicovými rovinami. Napríklad priesečník s rovinou xOy získame z rovníc priamky za predpokladu z= 0:

Pri riešení tohto systému nachádzame pointu M 1 (1;2;0).

Podobne za predpokladu r= 0, dostaneme priesečník priamky s rovinou xOz:

Od všeobecných rovníc priamky možno prejsť k jej kanonickým alebo parametrickým rovniciam. Aby ste to dosiahli, musíte nájsť nejaký bod M 1 na priamke a smerový vektor priamky.

Súradnice bodu M 1 získame z tejto sústavy rovníc, pričom jednej zo súradníc priradíme ľubovoľnú hodnotu. Ak chcete nájsť smerový vektor, všimnite si, že tento vektor musí byť kolmý na oba normálové vektory a . Preto pre smerový vektor priamky l môžete vziať krížový súčin normálnych vektorov:

.

Príklad. Uveďte všeobecné rovnice priamky na kánonickú formu.

Nájdite bod na priamke. Aby sme to dosiahli, zvolíme ľubovoľne jednu zo súradníc, napr. r= 0 a vyriešte sústavu rovníc:

Normálne vektory rovín definujúcich priamku majú súradnice Preto bude smerový vektor rovný

. teda l: .


UHOL MEDZI PRÁVAMI

rohu medzi priamkami v priestore budeme nazývať ktorýkoľvek zo susedných uhlov tvorených dvomi priamkami vedenými cez ľubovoľný bod rovnobežný s údajmi.

Nech sú v priestore dané dve rovné čiary:

Je zrejmé, že uhol φ medzi čiarami možno považovať za uhol medzi ich smerovými vektormi a . Vzhľadom k tomu, potom podľa vzorca pre kosínus uhla medzi vektormi dostaneme

a. Uveďme dve čiary, ktoré, ako bolo naznačené v kapitole 1, zvierajú rôzne kladné a záporné uhly, ktoré môžu byť ostré alebo tupé. Keď poznáme jeden z týchto uhlov, môžeme ľahko nájsť ktorýkoľvek iný.

Mimochodom, pre všetky tieto uhly je číselná hodnota dotyčnice rovnaká, rozdiel môže byť iba v znamienku

Rovnice čiar. Čísla sú priemety smerovacích vektorov prvej a druhej priamky.Uhol medzi týmito vektormi sa rovná jednému z uhlov tvorených priamkami. Preto sa problém redukuje na určenie uhla medzi vektormi, dostaneme

Pre jednoduchosť sa môžeme dohodnúť na uhle medzi dvoma priamkami, aby sme pochopili ostrý kladný uhol (ako napríklad na obr. 53).

Potom bude dotyčnica tohto uhla vždy kladná. Ak teda dostaneme znamienko mínus na pravej strane vzorca (1), musíme ho zahodiť, t.j. ponechať len absolútnu hodnotu.

Príklad. Určte uhol medzi čiarami

Podľa vzorca (1) máme

s Ak je naznačené, ktorá zo strán uhla je jeho začiatkom a ktorá je jeho koncom, potom, počítajúc vždy smer uhla proti smeru hodinových ručičiek, môžeme zo vzorcov (1) extrahovať niečo viac. Ako je ľahko vidieť z obr. 53 znamienko získané na pravej strane vzorca (1) udáva, ktorý uhol – ostrý alebo tupý – tvorí druhú čiaru s prvým.

(Z obr. 53 vidíme, že uhol medzi vektorom prvého a druhého smeru sa buď rovná požadovanému uhlu medzi čiarami, alebo sa od neho líši o ±180°.)

d. Ak sú priamky rovnobežné, tak aj ich smerové vektory sú rovnobežné.Aplikovaním podmienky rovnobežnosti dvoch vektorov dostaneme!

Toto je nevyhnutná a postačujúca podmienka, aby dve čiary boli rovnobežné.

Príklad. Priamy

sú paralelné, pretože

e. Ak sú čiary kolmé, ich smerové vektory sú tiež kolmé. Aplikovaním podmienky kolmosti dvoch vektorov získame podmienku kolmosti dvoch priamok, a to

Príklad. Priamy

kolmá, pretože

V súvislosti s podmienkami rovnobežnosti a kolmosti budeme riešiť nasledujúce dva problémy.

f. Nakreslite čiaru rovnobežnú s danou čiarou cez bod

Rozhodnutie sa robí takto. Keďže požadovaná priamka je rovnobežná s danou, potom za jej smerovací vektor môžeme brať rovnaký, ako má daná priamka, t.j. vektor s priemetmi A a B. Potom sa napíše rovnica požadovanej priamky. vo forme (§ 1)

Príklad. Rovnica priamky prechádzajúcej bodom (1; 3) rovnobežným s priamkou

bude ďalší!

g. Nakreslite čiaru cez bod kolmý na danú čiaru

Tu už nie je vhodné brať vektor s priemetmi A a ako smerovací vektor, ale je potrebné vyhrať vektor kolmý naň. Priemetne tohto vektora je preto potrebné voliť podľa podmienky, že oba vektory sú kolmé, t.j.

Táto podmienka môže byť splnená nekonečným množstvom spôsobov, keďže tu existuje jedna rovnica s dvoma neznámymi. Najjednoduchšie je však vziať ju. Potom sa rovnica požadovanej priamky zapíše v tvare

Príklad. Rovnica priamky prechádzajúcej bodom (-7; 2) v kolmej priamke

bude nasledujúci (podľa druhého vzorca)!

h. V prípade, keď sú čiary dané rovnicami tvaru

prepísať tieto rovnice inak, máme

Budem stručný. Uhol medzi dvoma čiarami sa rovná uhlu medzi ich smerovými vektormi. Ak sa vám teda podarí nájsť súradnice smerových vektorov a \u003d (x 1; y 1; z 1) a b \u003d (x 2; y 2; z 2), môžete nájsť uhol. Presnejšie, kosínus uhla podľa vzorca:

Pozrime sa, ako tento vzorec funguje na konkrétnych príkladoch:

Úloha. Body E a F sú označené v kocke ABCDA 1 B 1 C 1 D 1 - stredy hrán A 1 B 1 a B 1 C 1, v tomto poradí. Nájdite uhol medzi čiarami AE a BF.

Keďže hrana kocky nie je špecifikovaná, nastavíme AB = 1. Zavedieme štandardný súradnicový systém: počiatok je v bode A a osi x, y, z smerujú pozdĺž AB, AD a AA 1, v tomto poradí. . Jednotkový segment sa rovná AB = 1. Teraz nájdime súradnice smerových vektorov pre naše čiary.

Nájdite súradnice vektora AE. Na to potrebujeme body A = (0; 0; 0) a E = (0,5; 0; 1). Pretože bod E je stredom úsečky A 1 B 1, jeho súradnice sa rovnajú aritmetickému priemeru súradníc koncov. Všimnite si, že počiatok vektora AE sa zhoduje s počiatkom, takže AE = (0,5; 0; 1).

Teraz sa poďme zaoberať BF vektorom. Podobne analyzujeme body B = (1; 0; 0) a F = (1; 0,5; 1), pretože F - stred segmentu B 1 C 1 . Máme:
BF = (1 - 1; 0,5 - 0; 1 - 0) = (0; 0,5; 1).

Smerové vektory sú teda pripravené. Kosínus uhla medzi čiarami je kosínus uhla medzi smerovými vektormi, takže máme:

Úloha. V pravidelnom trojstennom hranole ABCA 1 B 1 C 1, ktorého všetky hrany sú rovné 1, sú vyznačené body D a E - stredy hrán A 1 B 1 a B 1 C 1, v tomto poradí. Nájdite uhol medzi čiarami AD a BE.

Zavádzame štandardný súradnicový systém: počiatok je v bode A, os x smeruje pozdĺž AB, z - pozdĺž AA 1 . Os y nasmerujeme tak, aby sa rovina OXY zhodovala s rovinou ABC. Jednotkový segment sa rovná AB = 1. Nájdite súradnice smerových vektorov pre požadované čiary.

Najprv nájdime súradnice vektora AD. Zvážte body: A = (0; 0; 0) a D = (0,5; 0; 1), pretože D - stred segmentu A 1 B 1 . Keďže začiatok vektora AD sa zhoduje s počiatkom, dostaneme AD = (0,5; 0; 1).

Teraz nájdime súradnice vektora BE. Bod B = (1; 0; 0) sa dá ľahko vypočítať. S bodom E - stredom segmentu C 1 B 1 - trochu ťažšie. Máme:

Zostáva nájsť kosínus uhla:

Úloha. V pravidelnom šesťhrannom hranole ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, ktorého všetky hrany sú rovné 1, sú vyznačené body K a L - stredy hrán A 1 B 1 a B 1 C 1, resp. Nájdite uhol medzi čiarami AK a BL.

Zavádzame štandardný súradnicový systém pre hranol: počiatok súradníc umiestnime do stredu spodnej základne, nasmerujeme os x pozdĺž FC, os y cez stredy segmentov AB a DE a os z kolmo nahor. Jednotkový segment sa opäť rovná AB = 1. Vypíšme súradnice bodov, ktoré nás zaujímajú:

Body K a L sú stredovými bodmi segmentov A 1 B 1 a B 1 C 1, takže ich súradnice sa nachádzajú aritmetickým priemerom. Keď poznáme body, nájdeme súradnice smerových vektorov AK a BL:

Teraz nájdime kosínus uhla:

Úloha. V pravidelnej štvorhrannej pyramíde SABCD, ktorej všetky hrany sú rovné 1, sú označené body E a F - stredy strán SB a SC. Nájdite uhol medzi čiarami AE a BF.

Zavádzame štandardný súradnicový systém: počiatok je v bode A, osi x a y sú nasmerované pozdĺž AB a AD a os z smeruje vertikálne nahor. Jednotkový segment sa rovná AB = 1.

Body E a F sú stredovými bodmi segmentov SB a SC, takže ich súradnice sa nachádzajú ako aritmetický priemer koncov. Zapisujeme si súradnice bodov záujmu:
A = (0; 0; 0); B = (1; 0; 0)

Keď poznáme body, nájdeme súradnice smerových vektorov AE a BF:

Súradnice vektora AE sa zhodujú so súradnicami bodu E, keďže bod A je počiatok. Zostáva nájsť kosínus uhla:


Definícia. Ak sú dané dve čiary y = k 1 x + b 1 , y = k 2 x + b 2 , potom ostrý uhol medzi týmito čiarami bude definovaný ako

Dve priamky sú rovnobežné, ak k 1 = k 2 . Dve čiary sú kolmé, ak k 1 = -1/ k 2 .

Veta. Priamky Ax + Vy + C \u003d 0 a A 1 x + B 1 y + C 1 \u003d 0 sú rovnobežné, keď sú koeficienty A 1 \u003d λA, B 1 \u003d λB úmerné. Ak aj С 1 = λС, potom sa čiary zhodujú. Súradnice priesečníka dvoch priamok sa nachádzajú ako riešenie sústavy rovníc týchto priamok.

Rovnica priamky prechádzajúcej daným bodom

Kolmo na túto čiaru

Definícia.Čiara prechádzajúca bodom M 1 (x 1, y 1) a kolmá na priamku y \u003d kx + b je reprezentovaná rovnicou:

Vzdialenosť od bodu k čiare

Veta. Ak je daný bod M(x 0, y 0), potom je vzdialenosť k priamke Ax + Vy + C \u003d 0 definovaná ako

.

Dôkaz. Nech je bod M 1 (x 1, y 1) základňou kolmice spadnutej z bodu M na danú priamku. Potom vzdialenosť medzi bodmi M a M 1:

(1)

Súradnice x 1 a y 1 možno nájsť ako riešenie systému rovníc:

Druhá rovnica sústavy je rovnica priamky prechádzajúcej daným bodom M 0 kolmým na danú priamku. Ak transformujeme prvú rovnicu systému do tvaru:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

potom pri riešení dostaneme:

Dosadením týchto výrazov do rovnice (1) zistíme:

Veta bola dokázaná.

Príklad. Určte uhol medzi čiarami: y = -3 x + 7; y = 2 x + 1.

k 1 \u003d -3; k2 = 2; tgφ = ; φ= p/4.

Príklad. Ukážte, že čiary 3x - 5y + 7 = 0 a 10x + 6y - 3 = 0 sú kolmé.

rozhodnutie. Nájdeme: k 1 \u003d 3/5, k 2 \u003d -5/3, k 1 * k 2 \u003d -1, preto sú čiary kolmé.

Príklad. Uvedené sú vrcholy trojuholníka A(0; 1), B (6; 5), C (12; -1). Nájdite rovnicu pre výšku nakreslenú z vrcholu C.

rozhodnutie. Nájdeme rovnicu strany AB: ; 4 x = 6 y - 6;

2x – 3r + 3 = 0;

Požadovaná výšková rovnica je: Ax + By + C = 0 alebo y = kx + b. k = . Potom y =. Pretože výška prechádza bodom C, potom jej súradnice spĺňajú túto rovnicu: odkiaľ b = 17. Spolu: .

Odpoveď: 3x + 2 roky - 34 = 0.

Rovnica priamky prechádzajúcej daným bodom v danom smere. Rovnica priamky prechádzajúcej cez dva dané body. Uhol medzi dvoma čiarami. Podmienka rovnobežnosti a kolmosti dvoch priamok. Určenie priesečníka dvoch priamok

1. Rovnica priamky prechádzajúcej daným bodom A(X 1 , r 1) v danom smere, určenom sklonom k,

r - r 1 = k(X - X 1). (1)

Táto rovnica definuje ceruzku čiar prechádzajúcich bodom A(X 1 , r 1), ktorý sa nazýva stred lúča.

2. Rovnica priamky prechádzajúcej cez dva body: A(X 1 , r 1) a B(X 2 , r 2) píše sa takto:

Sklon priamky prechádzajúcej cez dva dané body je určený vzorcom

3. Uhol medzi rovnými čiarami A a B je uhol, o ktorý sa musí otočiť prvá priamka A okolo priesečníka týchto čiar proti smeru hodinových ručičiek, kým sa nezhoduje s druhou čiarou B. Ak sú dve čiary dané rovnicami sklonu

r = k 1 X + B 1 ,

r = k 2 X + B 2 , (4)

potom je uhol medzi nimi určený vzorcom

Treba poznamenať, že v čitateli zlomku sa sklon prvej priamky odpočítava od sklonu druhej priamky.

Ak sú rovnice priamky uvedené vo všeobecnom tvare

A 1 X + B 1 r + C 1 = 0,

A 2 X + B 2 r + C 2 = 0, (6)

uhol medzi nimi je určený vzorcom

4. Podmienky pre rovnobežnosť dvoch čiar:

a) Ak sú priamky dané rovnicami (4) so ​​sklonom, potom nevyhnutnou a postačujúcou podmienkou ich rovnobežnosti je rovnosť ich sklonov:

k 1 = k 2 . (8)

b) Pre prípad, keď sú priamky dané rovnicami vo všeobecnom tvare (6), je nutnou a postačujúcou podmienkou ich rovnobežnosti, aby koeficienty na zodpovedajúcich súradniciach prúdu v ich rovniciach boli úmerné, t.j.

5. Podmienky pre kolmosť dvoch čiar:

a) V prípade, keď sú priamky dané rovnicami (4) so ​​sklonom, nevyhnutnou a postačujúcou podmienkou ich kolmosti je, aby ich sklony boli veľkosťou vzájomné a opačného znamienka, t.j.

Túto podmienku je možné zapísať aj do formulára

k 1 k 2 = -1. (11)

b) Ak sú rovnice priamok uvedené vo všeobecnom tvare (6), tak podmienkou ich kolmosti (nutnej a postačujúcej) je splnenie rovnosti

A 1 A 2 + B 1 B 2 = 0. (12)

6. Súradnice priesečníka dvoch priamok nájdeme riešením sústavy rovníc (6). Čiary (6) sa pretínajú vtedy a len vtedy

1. Napíšte rovnice priamok prechádzajúcich bodom M, z ktorých jedna je rovnobežná a druhá kolmá na danú priamku l.

Ach-och-och-och-och ... no je to plechové, ako keby ste si tú vetu prečítali sami =) Vtedy však pomôže relax, hlavne, že som si dnes kúpila vhodné doplnky. Preto prejdime k prvej časti, dúfam, že do konca článku si zachovám veselú náladu.

Vzájomné usporiadanie dvoch priamych línií

Prípad, keď sála spieva v zbore. Môžu byť dva riadky:

1) zápas;

2) byť paralelné: ;

3) alebo sa pretínajú v jednom bode: .

Pomoc pre figuríny : zapamätajte si prosím matematické znamienko križovatky , vyskytuje sa veľmi často. Zadanie znamená, že čiara sa pretína s čiarou v bode.

Ako určiť vzájomnú polohu dvoch čiar?

Začnime prvým prípadom:

Dve čiary sa zhodujú vtedy a len vtedy, ak sú ich príslušné koeficienty proporcionálne, teda je tam také číslo "lambda", že tie rovnosti

Uvažujme rovné čiary a zo zodpovedajúcich koeficientov zostavme tri rovnice: . Z každej rovnice vyplýva, že tieto čiary sa teda zhodujú.

Vskutku, ak sú všetky koeficienty rovnice vynásobte -1 (zmeníte znamienka) a znížte všetky koeficienty rovnice o 2, dostanete rovnakú rovnicu: .

Druhý prípad, keď sú čiary rovnobežné:

Dve čiary sú rovnobežné vtedy a len vtedy, ak sú ich koeficienty v premenných proporcionálne: , ale.

Ako príklad zvážte dve priame čiary. Skontrolujeme proporcionalitu zodpovedajúcich koeficientov pre premenné:

Je však jasné, že .

A tretí prípad, keď sa čiary pretínajú:

Dve čiary sa pretínajú vtedy a len vtedy, ak ich koeficienty premenných NIE sú proporcionálne, teda NIE JE taká hodnota "lambda", aby boli splnené rovnosti

Takže pre priame čiary zostavíme systém:

Z prvej rovnice vyplýva, že a z druhej rovnice: , teda, systém je nekonzistentný(žiadne riešenia). Koeficienty premenných teda nie sú proporcionálne.

Záver: čiary sa pretínajú

V praktických problémoch možno použiť práve uvažovanú schému riešenia. Mimochodom, je to veľmi podobné algoritmu na kontrolu kolinearity vektorov, o ktorom sme uvažovali v lekcii. Koncept lineárnej (ne)závislosti vektorov. Vektorový základ. Existuje však civilizovanejší balík:

Príklad 1

Zistite relatívnu polohu čiar:

rozhodnutie založené na štúdiu smerových vektorov priamych čiar:

a) Z rovníc nájdeme smerové vektory priamok: .


, takže vektory nie sú kolineárne a čiary sa pretínajú.

Pre každý prípad položím na križovatku kameň s ukazovateľmi:

Zvyšok preskočí kameň a pokračuje priamo ku Kašcheiovi Smrťujúcemu =)

b) Nájdite smerové vektory čiar:

Čiary majú rovnaký smerový vektor, čo znamená, že sú buď rovnobežné, alebo rovnaké. Tu determinant nie je potrebný.

Je zrejmé, že koeficienty neznámych sú úmerné, zatiaľ čo .

Poďme zistiť, či je rovnosť pravdivá:

teda

c) Nájdite smerové vektory čiar:

Vypočítajme determinant zložený zo súradníc týchto vektorov:
, preto sú smerové vektory kolineárne. Čiary sú buď rovnobežné, alebo sa zhodujú.

Faktor proporcionality "lambda" je ľahko viditeľný priamo z pomeru vektorov kolineárneho smeru. Dá sa to však zistiť aj prostredníctvom koeficientov samotných rovníc: .

Teraz poďme zistiť, či je rovnosť pravdivá. Oba voľné termíny sú nulové, takže:

Výsledná hodnota spĺňa túto rovnicu (vo všeobecnosti ju spĺňa akékoľvek číslo).

Čiary sa teda zhodujú.

Odpoveď:

Veľmi skoro sa naučíte (alebo dokonca ste sa už naučili) riešiť uvažovaný problém slovne doslova v priebehu niekoľkých sekúnd. V tomto ohľade nevidím dôvod ponúkať niečo pre nezávislé riešenie, je lepšie položiť do geometrického základu ešte jednu dôležitú tehlu:

Ako nakresliť čiaru rovnobežnú s danou?

Za neznalosť tejto najjednoduchšej úlohy slávik zbojník tvrdo trestá.

Príklad 2

Priamka je daná rovnicou . Napíšte rovnicu pre rovnobežku, ktorá prechádza bodom.

rozhodnutie: Neznámy riadok označte písmenom . Čo o tom hovorí podmienka? Čiara prechádza bodom. A ak sú priamky rovnobežné, tak je zrejmé, že smerový vektor priamky „ce“ je vhodný aj na zostrojenie priamky „de“.

Z rovnice vyberieme smerový vektor:

Odpoveď:

Geometria príkladu vyzerá jednoducho:

Analytické overenie pozostáva z nasledujúcich krokov:

1) Skontrolujeme, či priamky majú rovnaký smerový vektor (ak rovnica priamky nie je správne zjednodušená, vektory budú kolineárne).

2) Skontrolujte, či bod vyhovuje výslednej rovnici.

Analytické overenie je vo väčšine prípadov jednoduché vykonať ústne. Pozrite sa na tieto dve rovnice a mnohí z vás rýchlo prídu na to, ako sú čiary rovnobežné bez akéhokoľvek kreslenia.

Príklady na samoriešenie dnes budú kreatívne. Pretože stále musíte súťažiť s Babou Yagou a ona, viete, je milovníčkou všetkých druhov hádaniek.

Príklad 3

Napíšte rovnicu pre priamku prechádzajúcu bodom rovnobežným s priamkou, ak

Existuje racionálny a nie veľmi racionálny spôsob riešenia. Najkratšia cesta je na konci hodiny.

Trochu sme popracovali s paralelnými čiarami a vrátime sa k nim neskôr. Prípad zhodujúcich sa línií je málo zaujímavý, preto sa zamyslime nad problémom, ktorý je vám dobre známy zo školských osnov:

Ako nájsť priesečník dvoch čiar?

Ak je rovný pretínajú v bode , potom sú riešením jeho súradnice sústavy lineárnych rovníc

Ako nájsť priesečník čiar? Vyriešte systém.

Tu je pre vás geometrický význam sústavy dvoch lineárnych rovníc s dvoma neznámymi sú dve pretínajúce sa (najčastejšie) priame čiary v rovine.

Príklad 4

Nájdite priesečník čiar

rozhodnutie: Existujú dva spôsoby riešenia - grafický a analytický.

Grafický spôsob je jednoducho nakresliť dané čiary a zistiť priesečník priamo z výkresu:

Tu je naša pointa: . Pre kontrolu by ste mali nahradiť jej súradnice do každej rovnice priamky, mali by sa zmestiť tam aj tam. Inými slovami, súradnice bodu sú riešením systému . V skutočnosti sme zvažovali grafický spôsob riešenia sústavy lineárnych rovníc s dvoma rovnicami, dvoma neznámymi.

Grafická metóda, samozrejme, nie je zlá, ale existujú značné nevýhody. Nie, nejde o to, že siedmaci sa takto rozhodujú, ide o to, že správny a PRESNÝ nákres potrvá. Navyše niektoré čiary nie je také ľahké zostrojiť a samotný priesečník môže byť niekde v tridsiatom kráľovstve mimo zošitového listu.

Preto je vhodnejšie hľadať priesečník analytickou metódou. Poďme vyriešiť systém:

Na riešenie systému bola použitá metóda termického sčítania rovníc. Ak chcete rozvíjať príslušné zručnosti, navštívte lekciu Ako vyriešiť sústavu rovníc?

Odpoveď:

Overenie je triviálne - súradnice priesečníka musia spĺňať každú rovnicu systému.

Príklad 5

Nájdite priesečník čiar, ak sa pretínajú.

Toto je príklad „urob si sám“. Je vhodné rozdeliť problém do niekoľkých etáp. Analýza stavu naznačuje, že je potrebné:
1) Napíšte rovnicu priamky.
2) Napíšte rovnicu priamky.
3) Zistite vzájomnú polohu čiar.
4) Ak sa čiary pretínajú, nájdite priesečník.

Vývoj algoritmu akcií je typický pre mnohé geometrické problémy a budem sa na to opakovane zameriavať.

Úplné riešenie a odpoveď na konci tutoriálu:

Pár topánok ešte nebol opotrebovaný, pretože sme sa dostali k druhej časti lekcie:

Kolmé čiary. Vzdialenosť od bodu k čiare.
Uhol medzi čiarami

Začnime typickou a veľmi dôležitou úlohou. V prvej časti sme sa naučili postaviť priamku rovnobežnú s danou a teraz sa chatrč na kuracích stehnách otočí o 90 stupňov:

Ako nakresliť čiaru kolmú na danú?

Príklad 6

Priamka je daná rovnicou . Napíšte rovnicu pre kolmicu prechádzajúcu bodom.

rozhodnutie: Je známe, že . Bolo by pekné nájsť smerový vektor priamky. Keďže čiary sú kolmé, trik je jednoduchý:

Z rovnice „odstránime“ normálový vektor: , ktorý bude smerovacím vektorom priamky.

Zostavíme rovnicu priamky bodom a smerovacím vektorom:

Odpoveď:

Rozvinieme geometrický náčrt:

Hmmm... Oranžová obloha, oranžové more, oranžová ťava.

Analytické overenie riešenia:

1) Vytiahnite smerové vektory z rovníc a s pomocou bodový súčin vektorov usúdime, že priamky sú skutočne kolmé: .

Mimochodom, môžete použiť normálne vektory, je to ešte jednoduchšie.

2) Skontrolujte, či bod vyhovuje výslednej rovnici .

Overenie je opäť jednoduché vykonať verbálne.

Príklad 7

Nájdite priesečník kolmých čiar, ak je rovnica známa a bodka.

Toto je príklad „urob si sám“. V úlohe je viacero akcií, preto je vhodné usporiadať riešenie bod po bode.

Naša vzrušujúca cesta pokračuje:

Vzdialenosť od bodu k čiare

Pred nami je rovný pás rieky a našou úlohou je dostať sa k nemu čo najkratšou cestou. Neexistujú žiadne prekážky a najoptimálnejšou trasou bude pohyb po kolmici. To znamená, že vzdialenosť od bodu k priamke je dĺžka kolmého segmentu.

Vzdialenosť v geometrii sa tradične označuje gréckym písmenom "ro", napríklad: - vzdialenosť od bodu "em" k priamke "de".

Vzdialenosť od bodu k čiare sa vyjadruje vzorcom

Príklad 8

Nájdite vzdialenosť od bodu k čiare

rozhodnutie: všetko, čo potrebujete, je starostlivo nahradiť čísla do vzorca a vykonať výpočty:

Odpoveď:

Vykonajte kreslenie:

Zistená vzdialenosť od bodu k čiare je presne dĺžka červeného segmentu. Ak kreslíte na kockovaný papier v mierke 1 jednotky. \u003d 1 cm (2 bunky), potom je možné vzdialenosť zmerať bežným pravítkom.

Zvážte ďalšiu úlohu podľa toho istého výkresu:

Úlohou je nájsť súradnice bodu , ktorý je symetrický k bodu vzhľadom na priamku . Navrhujem vykonať akcie sami, načrtnem však algoritmus riešenia s priebežnými výsledkami:

1) Nájdite priamku, ktorá je kolmá na priamku.

2) Nájdite priesečník čiar: .

Obidve akcie sú podrobne diskutované v tejto lekcii.

3) Bod je stredom segmentu. Poznáme súradnice stredu a jedného z koncov. Autor: vzorce pre súradnice stredu segmentu Nájsť .

Nebude zbytočné kontrolovať, či sa vzdialenosť rovná aj 2,2 jednotkám.

Ťažkosti tu môžu nastať pri výpočtoch, ale vo veži veľmi pomáha mikrokalkulačka, ktorá vám umožní počítať bežné zlomky. Radil som mnohokrát a budem odporúčať znova.

Ako nájsť vzdialenosť medzi dvoma rovnobežnými čiarami?

Príklad 9

Nájdite vzdialenosť medzi dvoma rovnobežnými čiarami

Toto je ďalší príklad nezávislého riešenia. Malá nápoveda: spôsobov riešenia je nekonečne veľa. Zhrnutie na konci lekcie, ale skúste to hádať sami, myslím, že vaša vynaliezavosť bola dobre rozptýlená.

Uhol medzi dvoma čiarami

Akýkoľvek roh, potom zárubňa:


V geometrii sa uhol medzi dvoma priamkami berie ako MENŠÍ uhol, z čoho automaticky vyplýva, že nemôže byť tupý. Na obrázku sa uhol označený červeným oblúkom nepovažuje za uhol medzi pretínajúcimi sa čiarami. A jeho “zelený” sused resp opačne orientované karmínový roh.

Ak sú čiary kolmé, potom ktorýkoľvek zo 4 uhlov možno považovať za uhol medzi nimi.

Ako sa líšia uhly? Orientácia. Po prvé, smer „rolovania“ rohu je zásadne dôležitý. Po druhé, negatívne orientovaný uhol sa zapíše so znamienkom mínus, napríklad ak .

Prečo som to povedal? Zdá sa, že si vystačíte s obvyklou koncepciou uhla. Faktom je, že vo vzorcoch, podľa ktorých nájdeme uhly, možno ľahko získať negatívny výsledok, čo by vás nemalo prekvapiť. Uhol so znamienkom mínus nie je o nič horší a má veľmi špecifický geometrický význam. Na výkrese pre záporný uhol je nevyhnutné označiť jeho orientáciu (v smere hodinových ručičiek) šípkou.

Ako nájsť uhol medzi dvoma čiarami? Existujú dva pracovné vzorce:

Príklad 10

Nájdite uhol medzi čiarami

rozhodnutie a Metóda jedna

Zvážte dve priame čiary dané rovnicami vo všeobecnom tvare:

Ak je rovný nie kolmá, potom orientovaný uhol medzi nimi možno vypočítať pomocou vzorca:

Pozorne si všímajme menovateľa – presne taký je skalárny produkt smerové vektory priamych čiar:

Ak , potom menovateľ vzorca zmizne a vektory budú ortogonálne a čiary budú kolmé. Preto bola vznesená výhrada k nekolmosti čiar vo formulácii.

Na základe vyššie uvedeného je riešenie pohodlne formalizované v dvoch krokoch:

1) Vypočítajte skalárny súčin smerových vektorov priamych čiar:
takže čiary nie sú kolmé.

2) Uhol medzi čiarami nájdeme podľa vzorca:

Pomocou inverznej funkcie je ľahké nájsť samotný uhol. V tomto prípade použijeme nepárnosť arkus tangenty (pozri obr. Grafy a vlastnosti elementárnych funkcií):

Odpoveď:

V odpovedi uvádzame presnú hodnotu, ako aj približnú hodnotu (najlepšie v stupňoch aj v radiánoch), vypočítanú pomocou kalkulačky.

No, mínus, tak mínus, je to v poriadku. Tu je geometrická ilustrácia:

Nie je prekvapujúce, že sa ukázalo, že uhol má negatívnu orientáciu, pretože v stave problému je prvé číslo priamka a „krútenie“ uhla začalo presne od nej.

Ak naozaj chcete získať kladný uhol, musíte zameniť priame čiary, to znamená vziať koeficienty z druhej rovnice a zoberte koeficienty z prvej rovnice. Stručne povedané, musíte začať s priamym .