Potenzieren einer negativen ganzen Zahl mit einer negativen Potenz. Wie man eine Zahl negativ potenziert - Beispiele mit Beschreibung in Excel

Der Exponent wird verwendet, um das Schreiben der Operation des Multiplizierens einer Zahl mit sich selbst zu vereinfachen. Anstatt zu schreiben, kannst du zum Beispiel schreiben 4 5 (\displaystyle 4^(5))(Eine Erläuterung eines solchen Übergangs finden Sie im ersten Abschnitt dieses Artikels). Potenzen erleichtern das Schreiben langer oder komplexer Ausdrücke oder Gleichungen; Außerdem lassen sich Potenzen leicht addieren und subtrahieren, was zu einer Vereinfachung eines Ausdrucks oder einer Gleichung führt (z. B. 4 2 ∗ 4 3 = 4 5 (\displaystyle 4^(2)*4^(3)=4^(5))).


Notiz: Wenn Sie eine Exponentialgleichung lösen müssen (in einer solchen Gleichung steht die Unbekannte im Exponenten), lesen Sie.

Schritte

Einfache Probleme mit Potenzen lösen

    Multipliziere die Basis des Exponenten so oft mit sich selbst, wie der Exponent. Wenn Sie ein Problem mit Exponenten manuell lösen müssen, schreiben Sie den Exponenten als Multiplikationsoperation um, bei der die Basis des Exponenten mit sich selbst multipliziert wird. Zum Beispiel angesichts des Abschlusses 3 4 (\displaystyle 3^(4)). In diesem Fall muss die Basis von Grad 3 4-mal mit sich selbst multipliziert werden: 3 ∗ 3 ∗ 3 ∗ 3 (\displaystyle 3*3*3*3). Hier sind weitere Beispiele:

    Multiplizieren Sie zuerst die ersten beiden Zahlen. Zum Beispiel, 4 5 (\displaystyle 4^(5)) = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 (\displaystyle 4*4*4*4*4). Keine Sorge – der Berechnungsprozess ist nicht so kompliziert, wie es auf den ersten Blick scheint. Multipliziere zuerst die ersten beiden Quadrupel und ersetze sie dann durch das Ergebnis. So:

    • 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 (\displaystyle 4^(5)=4*4*4*4*4)
      • 4 ∗ 4 = 16 (\displaystyle 4*4=16)
  1. Multiplizieren Sie das Ergebnis (in unserem Beispiel 16) mit der nächsten Zahl. Jedes nachfolgende Ergebnis erhöht sich proportional. Multiplizieren Sie in unserem Beispiel 16 mit 4. So:

    • 4 5 = 16 ∗ 4 ∗ 4 ∗ 4 (\displaystyle 4^(5)=16*4*4*4)
      • 16 ∗ 4 = 64 (\displaystyle 16*4=64)
    • 4 5 = 64 ∗ 4 ∗ 4 (\displaystyle 4^(5)=64*4*4)
      • 64 ∗ 4 = 256 (\displaystyle 64*4=256)
    • 4 5 = 256 ∗ 4 (\displaystyle 4^(5)=256*4)
      • 256 ∗ 4 = 1024 (\displaystyle 256*4=1024)
    • Multiplizieren Sie das Ergebnis der Multiplikation der ersten beiden Zahlen mit der nächsten Zahl, bis Sie das endgültige Ergebnis erhalten. Multiplizieren Sie dazu die ersten beiden Zahlen und multiplizieren Sie dann das Ergebnis mit der nächsten Zahl in der Folge. Diese Methode gilt für alle Studiengänge. In unserem Beispiel sollten Sie Folgendes erhalten: 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 (\displaystyle 4^(5)=4*4*4*4*4=1024) .
  2. Löse die folgenden Probleme.Überprüfe deine Antwort mit einem Taschenrechner.

    • 8 2 (\displaystyle 8^(2))
    • 3 4 (\displaystyle 3^(4))
    • 10 7 (\displaystyle 10^(7))
  3. Suchen Sie auf dem Taschenrechner nach der Taste mit der Bezeichnung „exp“ oder „ xn (\displaystyle x^(n))“ oder „^“. Mit dieser Taste potenzieren Sie eine Zahl. Es ist praktisch unmöglich, den Grad mit einem großen Exponenten manuell zu berechnen (z 9 15 (\displaystyle 9^(15))), aber der Taschenrechner kann diese Aufgabe problemlos bewältigen. In Windows 7 kann der Standardrechner in den Engineering-Modus geschaltet werden; Klicken Sie dazu auf "Ansicht" -\u003e "Engineering". Um in den normalen Modus zu wechseln, klicken Sie auf "Ansicht" -\u003e "Normal".

    • Überprüfen Sie die erhaltene Antwort mit einer Suchmaschine (Google oder Yandex). Geben Sie den Ausdruck mit der Taste "^" auf der Computertastatur in die Suchmaschine ein, die sofort die richtige Antwort anzeigt (und möglicherweise ähnliche Ausdrücke zum Lernen vorschlägt).

    Addition, Subtraktion, Multiplikation von Potenzen

    1. Sie können Potenzen nur dann addieren und subtrahieren, wenn sie dieselbe Basis haben. Wenn Sie Potenzen mit denselben Basen und Exponenten addieren müssen, können Sie die Additionsoperation durch eine Multiplikationsoperation ersetzen. Zum Beispiel angesichts des Ausdrucks 4 5 + 4 5 (\displaystyle 4^(5)+4^(5)). Denken Sie daran, dass der Grad 4 5 (\displaystyle 4^(5)) darstellen kann als 1 ∗ 4 5 (\displaystyle 1*4^(5)); auf diese Weise, 4 5 + 4 5 = 1 ∗ 4 5 + 1 ∗ 4 5 = 2 ∗ 4 5 (\displaystyle 4^(5)+4^(5)=1*4^(5)+1*4^(5) =2*4^(5))(wobei 1 +1 =2). Das heißt, zähle die Anzahl ähnlicher Grade und multipliziere dann einen solchen Grad und diese Zahl. Potenzieren Sie in unserem Beispiel 4 mit der fünften Potenz und multiplizieren Sie das Ergebnis dann mit 2. Denken Sie daran, dass die Additionsoperation durch eine Multiplikationsoperation ersetzt werden kann, zum Beispiel: 3 + 3 = 2 ∗ 3 (\displaystyle 3+3=2*3). Hier sind weitere Beispiele:

      • 3 2 + 3 2 = 2 ∗ 3 2 (\displaystyle 3^(2)+3^(2)=2*3^(2))
      • 4 5 + 4 5 + 4 5 = 3 ∗ 4 5 (\displaystyle 4^(5)+4^(5)+4^(5)=3*4^(5))
      • 4 5 − 4 5 + 2 = 2 (\displaystyle 4^(5)-4^(5)+2=2)
      • 4 x 2 − 2 x 2 = 2 x 2 (\displaystyle 4x^(2)-2x^(2)=2x^(2))
    2. Beim Multiplizieren von Potenzen mit derselben Basis werden ihre Exponenten addiert (die Basis ändert sich nicht). Zum Beispiel angesichts des Ausdrucks x 2 ∗ x 5 (\displaystyle x^(2)*x^(5)). In diesem Fall müssen Sie nur die Indikatoren hinzufügen und die Basis unverändert lassen. Auf diese Weise, x 2 ∗ x 5 = x 7 (\displaystyle x^(2)*x^(5)=x^(7)). Hier ist eine visuelle Erklärung dieser Regel:

      Beim Potenzieren einer Potenz werden die Exponenten multipliziert. Zum Beispiel mit einem Abschluss. Da die Exponenten also multipliziert werden (x 2) 5 = x 2 ∗ 5 = x 10 (\displaystyle (x^(2))^(5)=x^(2*5)=x^(10)). Die Bedeutung dieser Regel ist, dass Sie die Leistung multiplizieren (x 2) (\displaystyle (x^(2))) auf sich selbst fünfmal. So:

      • (x 2) 5 (\displaystyle (x^(2))^(5))
      • (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 (\displaystyle (x^(2))^(5)=x^(2)*x^(2)*x^( 2)*x^(2)*x^(2))
      • Da die Basis dieselbe ist, addieren sich die Exponenten einfach: (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 = x 10 (\displaystyle (x^(2))^(5)=x^(2)*x^(2)* x^(2)*x^(2)*x^(2)=x^(10))
    3. Ein Exponent mit einem negativen Exponenten sollte in einen Bruch umgewandelt werden (inverse Potenz). Es macht nichts, wenn Sie nicht wissen, was ein Kehrwert ist. Wenn Sie beispielsweise einen Abschluss mit negativem Exponenten erhalten, 3 − 2 (\displaystyle 3^(-2)), schreibe diese Potenz in den Nenner des Bruchs (setze 1 in den Zähler) und mache den Exponenten positiv. In unserem Beispiel: 1 3 2 (\displaystyle (\frac (1)(3^(2)))). Hier sind weitere Beispiele:

      Beim Dividieren von Potenzen mit gleicher Basis werden deren Exponenten subtrahiert (die Basis ändert sich nicht). Die Divisionsoperation ist das Gegenteil der Multiplikationsoperation. Zum Beispiel angesichts des Ausdrucks 4 4 4 2 (\displaystyle (\frac (4^(4))(4^(2)))). Subtrahiere den Exponenten im Nenner vom Exponenten im Zähler (verändere die Basis nicht). Auf diese Weise, 4 4 4 2 = 4 4 − 2 = 4 2 (\displaystyle (\frac (4^(4))(4^(2)))=4^(4-2)=4^(2)) = 16 .

      • Der Grad im Nenner kann wie folgt geschrieben werden: 1 4 2 (\displaystyle (\frac (1)(4^(2)))) = 4 − 2 (\displaystyle 4^(-2)). Denken Sie daran, dass ein Bruch eine Zahl (Potenz, Ausdruck) mit einem negativen Exponenten ist.
    4. Im Folgenden finden Sie einige Ausdrücke, die Ihnen helfen sollen, Energieprobleme zu lösen. Die obigen Ausdrücke decken das in diesem Abschnitt präsentierte Material ab. Um die Antwort zu sehen, markieren Sie einfach das leere Feld nach dem Gleichheitszeichen.

    Lösen von Problemen mit Bruchexponenten

      Ein Grad mit einem gebrochenen Exponenten (z. B. ) wird in eine Wurzelziehoperation umgewandelt. In unserem Beispiel: x 1 2 (\displaystyle x^(\frac (1)(2))) = x(\displaystyle(\sqrt(x))). Es spielt keine Rolle, welche Zahl im Nenner des Bruchexponenten steht. Zum Beispiel, x 1 4 (\displaystyle x^(\frac (1)(4))) ist die vierte Wurzel von "x" x 4 (\displaystyle (\sqrt[(4)](x))) .

    1. Wenn der Exponent ein unechter Bruch ist, dann kann ein solcher Exponent in zwei Potenzen zerlegt werden, um die Lösung des Problems zu vereinfachen. Daran ist nichts Kompliziertes - denken Sie nur an die Regel zum Multiplizieren von Potenzen. Zum Beispiel mit einem Abschluss. Verwandle diesen Exponenten in eine Wurzel, deren Exponent gleich dem Nenner des Bruchexponenten ist, und erhöhe dann diese Wurzel auf den Exponenten, der gleich dem Zähler des Bruchexponenten ist. Denken Sie daran, um dies zu tun 5 3 (\displaystyle (\frac (5)(3))) = (1 3) ∗ 5 (\displaystyle ((\frac (1)(3)))*5). In unserem Beispiel:

      • x 5 3 (\displaystyle x^(\frac (5)(3)))
      • x 1 3 = x 3 (\displaystyle x^(\frac (1)(3))=(\sqrt[(3)](x)))
      • x 5 3 = x 5 ∗ x 1 3 (\displaystyle x^(\frac (5)(3))=x^(5)*x^(\frac (1)(3))) = (x 3) 5 (\displaystyle ((\sqrt[(3)](x)))^(5))
    2. Einige Taschenrechner haben eine Schaltfläche zum Berechnen von Exponenten (zuerst müssen Sie die Basis eingeben, dann die Schaltfläche drücken und dann den Exponenten eingeben). Es wird als ^ oder x^y bezeichnet.
    3. Denken Sie daran, dass jede Zahl gleich sich selbst zur ersten Potenz ist, zum Beispiel, 4 1 = 4. (\displaystyle 4^(1)=4.) Außerdem ist jede Zahl multipliziert oder dividiert mit eins gleich sich selbst, zum Beispiel 5 ∗ 1 = 5 (\displaystyle 5*1=5) und 5 / 1 = 5 (\displaystyle 5/1=5).
    4. Wisse, dass der Grad 0 0 nicht existiert (ein solcher Grad hat keine Lösung). Wenn Sie versuchen, einen solchen Abschluss auf einem Taschenrechner oder Computer zu lösen, erhalten Sie eine Fehlermeldung. Aber denken Sie daran, dass jede Zahl hoch Null gleich 1 ist, zum Beispiel, 4 0 = 1. (\displaystyle 4^(0)=1.)
    5. In der höheren Mathematik, die mit imaginären Zahlen operiert: e ein ich x = c o s ein x + ich s ich n ein x (\ displaystyle e ^ (a) ix = cosax + isinax), wo ich = (− 1) (\displaystyle i=(\sqrt (())-1)); e eine Konstante ist, die ungefähr gleich 2,7 ist; a ist eine beliebige Konstante. Den Beweis dieser Gleichheit findet man in jedem Lehrbuch der höheren Mathematik.
    6. Warnungen

    • Wenn der Exponent zunimmt, nimmt sein Wert stark zu. Wenn Ihnen also die Antwort falsch erscheint, kann sie sich tatsächlich als wahr herausstellen. Sie können dies überprüfen, indem Sie eine beliebige Exponentialfunktion zeichnen, z. B. 2 x .

Wir haben herausgefunden, was der Grad einer Zahl im Allgemeinen ist. Jetzt müssen wir verstehen, wie man es richtig berechnet, d.h. Zahlen potenzieren. In diesem Material analysieren wir die Grundregeln für die Berechnung des Grades im Fall eines ganzzahligen, natürlichen, gebrochenen, rationalen und irrationalen Exponenten. Alle Definitionen werden mit Beispielen illustriert.

Yandex.RTB R-A-339285-1

Das Konzept der Potenzierung

Beginnen wir mit der Formulierung grundlegender Definitionen.

Bestimmung 1

Potenzierung ist die Berechnung des Wertes der Potenz einer Zahl.

Das heißt, die Wörter "Berechnung des Gradwerts" und "Potenzierung" bedeuten dasselbe. Wenn also die Aufgabe lautet „Potenziere die Zahl 0 , 5 mit der fünften Potenz“, ist dies zu verstehen als „Berechne den Wert der Potenz (0 , 5) 5 .

Jetzt geben wir die Grundregeln an, die bei solchen Berechnungen befolgt werden müssen.

Erinnere dich daran, was eine Potenz einer Zahl mit einem natürlichen Exponenten ist. Bei einer Potenz mit Basis a und Exponent n ist dies das Produkt der n-ten Anzahl von Faktoren, von denen jeder gleich a ist. Dies kann so geschrieben werden:

Um den Wert des Grades zu berechnen, müssen Sie die Operation der Multiplikation durchführen, dh die Basen des Grades mit der angegebenen Anzahl multiplizieren. Das Konzept eines Abschlusses mit einem natürlichen Indikator basiert auf der Fähigkeit, sich schnell zu vermehren. Lassen Sie uns Beispiele geben.

Beispiel 1

Bedingung: Raise - 2 hoch 4 .

Entscheidung

Unter Verwendung der obigen Definition schreiben wir: (− 2) 4 = (− 2) (− 2) (− 2) (− 2) . Als nächstes müssen wir nur diese Schritte befolgen und erhalten 16 .

Nehmen wir ein komplizierteres Beispiel.

Beispiel 2

Berechne den Wert 3 2 7 2

Entscheidung

Dieser Eintrag kann umgeschrieben werden als 3 2 7 · 3 2 7 . Weiter oben haben wir uns angesehen, wie man die in der Bedingung erwähnten gemischten Zahlen richtig multipliziert.

Führen Sie diese Schritte aus und erhalten Sie die Antwort: 3 2 7 3 2 7 = 23 7 23 7 = 529 49 = 10 39 49

Wenn die Aufgabe die Notwendigkeit anzeigt, irrationale Zahlen in eine natürliche Potenz zu erheben, müssen wir ihre Basen zuerst auf eine Ziffer runden, die es uns ermöglicht, eine Antwort mit der gewünschten Genauigkeit zu erhalten. Nehmen wir ein Beispiel.

Beispiel 3

Führen Sie das Quadrieren der Zahl π durch.

Entscheidung

Runden wir zuerst auf Hundertstel auf. Dann ist π 2 ≈ (3, 14) 2 = 9, 8596. Wenn π ≈ 3 . 14159, dann erhalten wir ein genaueres Ergebnis: π 2 ≈ (3, 14159) 2 = 9, 8695877281.

Beachten Sie, dass die Notwendigkeit, die Potenzen irrationaler Zahlen zu berechnen, in der Praxis relativ selten auftritt. Die Antwort können wir dann als Potenz selbst schreiben (ln 6) 3 oder wenn möglich umrechnen: 5 7 = 125 5 .

Getrennt davon sollte angegeben werden, was die erste Potenz einer Zahl ist. Hier können Sie sich nur daran erinnern, dass jede Zahl, die zur ersten Potenz erhoben wird, sie selbst bleibt:

Das geht aus dem Protokoll hervor. .

Es kommt nicht auf die Grundlage des Abschlusses an.

Beispiel 4

Also, (− 9) 1 = − 9 , und 7 3 in die erste Potenz erhoben bleibt gleich 7 3 .

Der Einfachheit halber werden wir drei Fälle separat analysieren: wenn der Exponent eine positive ganze Zahl ist, wenn er Null ist und wenn er eine negative ganze Zahl ist.

Im ersten Fall kommt dies einer Potenzierung gleich, schließlich gehören positive ganze Zahlen zur Menge der natürlichen Zahlen. Wie man mit solchen Graden arbeitet, haben wir oben bereits beschrieben.

Sehen wir uns nun an, wie man richtig zur Nullpotenz erhebt. Bei einer Basis ungleich Null ergibt diese Berechnung immer eine Ausgabe von 1 . Wir haben bereits erklärt, dass die 0. Potenz von a für jede reelle Zahl ungleich 0 definiert werden kann und a 0 = 1 ist.

Beispiel 5

5 0 = 1 , (- 2 , 56) 0 = 1 2 3 0 = 1

0 0 - nicht definiert.

Uns bleibt nur der Fall eines Grads mit einem negativen ganzzahligen Exponenten. Wir haben bereits besprochen, dass solche Grade als Bruch 1 a z geschrieben werden können, wobei a eine beliebige Zahl und z eine negative ganze Zahl ist. Wir sehen, dass der Nenner dieses Bruchs nichts anderes als ein gewöhnlicher Grad mit einer positiven ganzen Zahl ist, und wir haben bereits gelernt, wie man ihn berechnet. Lassen Sie uns Beispiele für Aufgaben geben.

Beispiel 6

Erhöhe 3 hoch -2.

Entscheidung

Unter Verwendung der obigen Definition schreiben wir: 2 - 3 = 1 2 3

Wir berechnen den Nenner dieses Bruchs und erhalten 8: 2 3 \u003d 2 2 2 \u003d 8.

Dann lautet die Antwort: 2 - 3 = 1 2 3 = 1 8

Beispiel 7

Erhöhe 1, 43 hoch -2.

Entscheidung

Formuliere neu: 1 , 43 - 2 = 1 (1 , 43) 2

Wir berechnen das Quadrat im Nenner: 1,43 1,43. Dezimalzahlen können auf diese Weise multipliziert werden:

Als Ergebnis erhalten wir (1, 43) - 2 = 1 (1, 43) 2 = 1 2 , 0449 . Es bleibt uns überlassen, dieses Ergebnis in Form eines gewöhnlichen Bruchs zu schreiben, für den es mit 10.000 multipliziert werden muss (siehe Material zur Umwandlung von Brüchen).

Antwort: (1, 43) - 2 = 10000 20449

Ein separater Fall ist das Potenzieren einer Zahl mit der ersten minus minus. Der Wert eines solchen Grades ist gleich der Zahl, die dem ursprünglichen Wert der Basis gegenüberliegt: a - 1 \u003d 1 a 1 \u003d 1 a.

Beispiel 8

Beispiel: 3 − 1 = 1 / 3

9 13 - 1 = 13 9 6 4 - 1 = 1 6 4 .

Wie man eine Zahl mit einer Bruchzahl potenziert

Um eine solche Operation durchzuführen, müssen wir uns an die grundlegende Definition eines Grades mit einem Bruchexponenten erinnern: a m n \u003d a m n für jedes positive a, jede ganze Zahl m und jedes natürliche n.

Bestimmung 2

Daher muss die Berechnung eines Bruchgrades in zwei Schritten durchgeführt werden: Erhöhen auf eine ganzzahlige Potenz und Finden der Wurzel des n-ten Grades.

Wir haben die Gleichung a m n = a m n , die aufgrund der Eigenschaften der Wurzeln normalerweise verwendet wird, um Probleme in der Form a m n = a n m zu lösen. Das heißt, wenn wir die Zahl a auf eine gebrochene Potenz m / n potenzieren, ziehen wir zuerst die Wurzel n-ten Grades aus a, dann potenzieren wir das Ergebnis mit einem ganzzahligen Exponenten m.

Lassen Sie es uns an einem Beispiel veranschaulichen.

Beispiel 9

Berechnen Sie 8 - 2 3 .

Entscheidung

Methode 1. Gemäß der grundlegenden Definition können wir dies darstellen als: 8 - 2 3 \u003d 8 - 2 3

Jetzt berechnen wir den Grad unter der Wurzel und ziehen die dritte Wurzel aus dem Ergebnis: 8 - 2 3 = 1 64 3 = 1 3 3 64 3 = 1 3 3 4 3 3 = 1 4

Methode 2. Lassen Sie uns die grundlegende Gleichheit umwandeln: 8 - 2 3 \u003d 8 - 2 3 \u003d 8 3 - 2

Danach ziehen wir die Wurzel 8 3 - 2 = 2 3 3 - 2 = 2 - 2 und quadrieren das Ergebnis: 2 - 2 = 1 2 2 = 1 4

Wir sehen, dass die Lösungen identisch sind. Sie können es beliebig verwenden.

Es gibt Fälle, in denen der Abschluss einen Indikator hat, der als gemischte Zahl oder als Dezimalbruch ausgedrückt wird. Zur Vereinfachung der Berechnung ist es besser, ihn durch einen gewöhnlichen Bruch zu ersetzen und wie oben angegeben zu zählen.

Beispiel 10

Erhöhen Sie 44,89 hoch 2,5.

Entscheidung

Lassen Sie uns den Wert des Indikators in einen gewöhnlichen Bruch umwandeln - 44, 89 2, 5 = 49, 89 5 2.

Und jetzt führen wir alle oben angegebenen Aktionen der Reihe nach aus: 44 , 89 5 2 = 44 , 89 5 = 44 , 89 5 = 4489 100 5 = 4489 100 5 = 67 2 10 2 5 = 67 10 5 = = 1350125107 100000 = 13 501, 25107

Antwort: 13501, 25107.

Wenn Zähler und Nenner eines Bruchexponenten große Zahlen enthalten, dann ist die Berechnung solcher Exponenten mit rationalen Exponenten eine ziemlich schwierige Aufgabe. Es erfordert normalerweise Computertechnologie.

Separat gehen wir auf den Grad mit einer Nullbasis und einem gebrochenen Exponenten ein. Einem Ausdruck der Form 0 m n kann folgende Bedeutung gegeben werden: wenn m n > 0, dann 0 m n = 0 m n = 0 ; wenn m n< 0 нуль остается не определен. Таким образом, возведение нуля в дробную положительную степень приводит к нулю: 0 7 12 = 0 , 0 3 2 5 = 0 , 0 0 , 024 = 0 , а в целую отрицательную - значения не имеет: 0 - 4 3 .

Wie man eine Zahl irrational potenziert

Die Notwendigkeit, den Wert des Abschlusses zu berechnen, in dessen Indikator sich eine irrationale Zahl befindet, tritt nicht so oft auf. In der Praxis beschränkt sich die Aufgabe meist auf die Berechnung eines Näherungswerts (bis zu einer bestimmten Anzahl von Nachkommastellen). Dies wird aufgrund der Komplexität solcher Berechnungen normalerweise auf einem Computer berechnet, daher werden wir nicht im Detail darauf eingehen, sondern nur die wichtigsten Bestimmungen angeben.

Wenn wir den Wert des Grades a mit einem irrationalen Exponenten a berechnen müssen, dann nehmen wir die dezimale Annäherung des Exponenten und zählen damit. Das Ergebnis wird eine ungefähre Antwort sein. Je genauer die Dezimalannäherung genommen wird, desto genauer ist die Antwort. Lassen Sie uns mit einem Beispiel zeigen:

Beispiel 11

Berechnen Sie einen ungefähren Wert von 21, 174367 ....

Entscheidung

Wir beschränken uns auf die dezimale Näherung a n = 1,17 . Führen wir die Berechnungen mit dieser Zahl durch: 2 1 , 17 ≈ 2 , 250116 . Nehmen wir zum Beispiel die Näherung a n = 1 , 1743 , dann wird die Antwort etwas präziser: 2 1 , 174367 . . . ≈ 2 1 . 1743 ≈ 2 . 256833 .

Wenn Sie einen Fehler im Text bemerken, markieren Sie ihn bitte und drücken Sie Strg+Enter

Erste Ebene

Grad und seine Eigenschaften. Umfassender Leitfaden (2019)

Warum braucht es Abschlüsse? Wo brauchen Sie sie? Warum müssen Sie Zeit damit verbringen, sie zu studieren?

Lesen Sie diesen Artikel, um alles über Abschlüsse zu erfahren, wozu sie gut sind und wie Sie Ihr Wissen im Alltag einsetzen können.

Und natürlich bringt Sie die Kenntnis der Abschlüsse dem erfolgreichen Bestehen der OGE oder der Einheitlichen Staatsprüfung und dem Eintritt in die Universität Ihrer Träume näher.

Los geht's!)

Wichtiger Hinweis! Wenn Sie anstelle von Formeln Kauderwelsch sehen, leeren Sie Ihren Cache. Drücken Sie dazu STRG+F5 (unter Windows) oder Cmd+R (unter Mac).

ERSTE EBENE

Potenzierung ist die gleiche mathematische Operation wie Addition, Subtraktion, Multiplikation oder Division.

Jetzt werde ich alles in menschlicher Sprache anhand sehr einfacher Beispiele erklären. Passt auf. Beispiele sind elementar, erklären aber wichtige Dinge.

Beginnen wir mit der Addition.

Hier gibt es nichts zu erklären. Ihr wisst schon alles: Wir sind zu acht. Jeder hat zwei Flaschen Cola. Wie viel Cola? Das ist richtig - 16 Flaschen.

Jetzt Multiplikation.

Dasselbe Beispiel mit Cola kann auch anders geschrieben werden: . Mathematiker sind schlaue und faule Leute. Sie bemerken zuerst einige Muster und finden dann eine Möglichkeit, sie schneller zu „zählen“. In unserem Fall bemerkten sie, dass jede der acht Personen die gleiche Anzahl von Cola-Flaschen hatte, und entwickelten eine Technik namens Multiplikation. Stimmen Sie zu, es gilt als einfacher und schneller als.


Um also schneller, einfacher und fehlerfrei zu zählen, müssen Sie sich nur daran erinnern Multiplikationstabelle. Natürlich geht alles auch langsamer, härter und mit Fehlern! Aber…

Hier ist das Einmaleins. Wiederholen.

Und noch ein hübscher:

Und welche anderen kniffligen Zähltricks sind faulen Mathematikern eingefallen? Richtig - eine Zahl potenzieren.

Eine Zahl potenzieren

Wenn Sie eine Zahl fünfmal mit sich selbst multiplizieren müssen, sagen Mathematiker, dass Sie diese Zahl in die fünfte Potenz erheben müssen. Zum Beispiel, . Mathematiker erinnern sich, dass zwei hoch fünf ist. Und sie lösen solche Probleme im Kopf – schneller, einfacher und fehlerfrei.

Dazu brauchen Sie nur Merken Sie sich, was in der Tabelle der Zahlenpotenzen farbig hervorgehoben ist. Glauben Sie mir, es wird Ihr Leben viel einfacher machen.

Übrigens, warum heißt der zweite Grad Quadrat Nummern und die dritte Würfel? Was bedeutet das? Eine sehr gute Frage. Jetzt haben Sie sowohl Quadrate als auch Würfel.

Beispiel #1 aus dem wirklichen Leben

Beginnen wir mit einem Quadrat oder der zweiten Potenz einer Zahl.

Stellen Sie sich einen quadratischen Pool vor, der Meter für Meter misst. Der Pool ist in Ihrem Hinterhof. Es ist heiß und ich möchte wirklich schwimmen. Aber ... ein Pool ohne Boden! Es ist notwendig, den Boden des Beckens mit Fliesen abzudecken. Wie viele Fliesen benötigen Sie? Um dies zu bestimmen, müssen Sie die Fläche des Beckenbodens kennen.

Sie können einfach zählen, indem Sie mit dem Finger hineinstecken, dass der Boden des Pools Meter für Meter aus Würfeln besteht. Wenn Ihre Fliesen Meter für Meter sind, benötigen Sie Stücke. Ganz einfach... Aber wo hast du so eine Kachel gesehen? Die Fliese wird eher cm für cm sein und dann wird man mit „Fingerzählen“ gequält. Dann musst du multiplizieren. Wir werden also auf einer Seite des Beckenbodens Fliesen (Stücke) und auf der anderen Seite auch Fliesen anbringen. Durch Multiplizieren mit erhalten Sie Kacheln ().

Haben Sie bemerkt, dass wir dieselbe Zahl mit sich selbst multipliziert haben, um die Fläche des Beckenbodens zu bestimmen? Was bedeutet das? Da dieselbe Zahl multipliziert wird, können wir die Potenzierungstechnik anwenden. (Wenn du nur zwei Zahlen hast, musst du sie natürlich trotzdem multiplizieren oder potenzieren. Aber wenn du viele davon hast, dann ist das Potenzieren viel einfacher und es gibt auch weniger Fehler bei Berechnungen. Für die Prüfung ist dies sehr wichtig).
Also, dreißig bis zum zweiten Grad werden (). Oder Sie können sagen, dass dreißig zum Quadrat sein wird. Mit anderen Worten, die zweite Potenz einer Zahl kann immer als Quadrat dargestellt werden. Und umgekehrt, wenn Sie ein Quadrat sehen, ist es IMMER die zweite Potenz einer Zahl. Ein Quadrat ist ein Bild der zweiten Potenz einer Zahl.

Beispiel #2 aus dem wirklichen Leben

Hier ist eine Aufgabe für Sie, zählen Sie, wie viele Quadrate auf dem Schachbrett sind, indem Sie das Quadrat der Zahl verwenden ... Auf der einen Seite der Zellen und auf der anderen auch. Um ihre Anzahl zu zählen, müssen Sie acht mit acht multiplizieren, oder ... wenn Sie feststellen, dass ein Schachbrett ein Quadrat mit einer Seite ist, können Sie acht quadrieren. Zellen bekommen. () So?

Beispiel #3 aus dem wirklichen Leben

Jetzt der Würfel oder die dritte Potenz einer Zahl. Das gleiche Becken. Aber jetzt müssen Sie herausfinden, wie viel Wasser in diesen Pool gegossen werden muss. Du musst das Volumen berechnen. (Volumen und Flüssigkeiten werden übrigens in Kubikmetern gemessen. Unerwartet, oder?) Zeichnen Sie ein Becken: einen Meter großen und einen Meter tiefen Boden und versuchen Sie zu berechnen, wie viele Meter für Meter Würfel in Ihr Becken gelangen.

Einfach mit dem Finger zeigen und zählen! Eins, zwei, drei, vier … zweiundzwanzig, dreiundzwanzig … Wie viel ist herausgekommen? Nicht verloren gegangen? Ist es schwierig, mit dem Finger zu zählen? So dass! Nehmen Sie ein Beispiel von Mathematikern. Sie sind faul, also haben sie bemerkt, dass man Länge, Breite und Höhe miteinander multiplizieren muss, um das Volumen des Pools zu berechnen. In unserem Fall entspricht das Volumen des Pools Würfeln ... Einfacher, oder?

Stellen Sie sich nun vor, wie faul und schlau Mathematiker sind, wenn sie sich das zu einfach machen. Alles auf eine Aktion reduziert. Sie bemerkten, dass Länge, Breite und Höhe gleich sind und dass dieselbe Zahl mit sich selbst multipliziert wird ... Und was bedeutet das? Das bedeutet, dass Sie den Abschluss verwenden können. Was Sie also einmal mit dem Finger gezählt haben, machen sie in einer Aktion: Drei in einem Würfel ist gleich. Es ist so geschrieben:

Bleibt nur die Gradtabelle auswendig lernen. Es sei denn natürlich, Sie sind so faul und schlau wie Mathematiker. Wenn Sie gerne hart arbeiten und Fehler machen, können Sie mit dem Finger weiterzählen.

Nun, um Sie endlich davon zu überzeugen, dass die Abschlüsse von Faulenzern und schlauen Menschen erfunden wurden, um ihre Lebensprobleme zu lösen, und nicht, um Ihnen Probleme zu bereiten, hier noch ein paar Beispiele aus dem Leben.

Beispiel #4 aus dem wirklichen Leben

Sie haben eine Million Rubel. Zu Beginn eines jeden Jahres verdienen Sie für jede Million eine weitere Million. Das heißt, jede Ihrer Millionen verdoppelt sich zu Beginn eines jeden Jahres. Wie viel Geld wirst du in Jahren haben? Wenn Sie jetzt dasitzen und „mit dem Finger zählen“, dann sind Sie ein sehr fleißiger Mensch und … dumm. Aber höchstwahrscheinlich werden Sie in ein paar Sekunden eine Antwort geben, weil Sie schlau sind! Also, im ersten Jahr - zwei mal zwei ... im zweiten Jahr - was geschah, um zwei weitere, im dritten Jahr ... Halt! Sie haben bemerkt, dass die Zahl einmal mit sich selbst multipliziert wird. Zwei hoch fünf ist also eine Million! Stellen Sie sich jetzt vor, Sie haben einen Wettbewerb und derjenige, der schneller rechnet, bekommt diese Millionen ... Lohnt es sich, sich an die Zahlengrade zu erinnern, was denken Sie?

Beispiel #5 aus dem wirklichen Leben

Du hast eine Million. Zu Beginn eines jeden Jahres verdienen Sie zwei weitere für jede Million. Es ist großartig, oder? Jede Million wird verdreifacht. Wie viel Geld wirst du in einem Jahr haben? Lass uns zählen. Das erste Jahr - mit multiplizieren, dann das Ergebnis mit einem anderen ... Es ist schon langweilig, weil Sie schon alles verstanden haben: Drei wird mal mit sich selbst multipliziert. Die vierte Potenz ist also eine Million. Sie müssen sich nur daran erinnern, dass drei hoch vier oder ist.

Jetzt wissen Sie, dass Sie Ihr Leben viel einfacher machen werden, wenn Sie eine Zahl potenzieren. Lassen Sie uns einen weiteren Blick darauf werfen, was Sie mit Abschlüssen machen können und was Sie darüber wissen müssen.

Begriffe und Konzepte ... um nicht verwirrt zu werden

Lassen Sie uns also zuerst die Konzepte definieren. Wie denkst du, was ist exponent? Es ist ganz einfach – das ist die Zahl, die „an der Spitze“ der Potenz der Zahl steht. Nicht wissenschaftlich, aber klar und leicht zu merken ...

Nun, gleichzeitig, was eine solche Studienbasis? Noch einfacher ist die Zahl, die ganz unten an der Basis steht.

Hier ist ein Bild, damit Sie sicher sein können.

Nun, allgemein gesagt, um zu verallgemeinern und sich besser zu erinnern ... Ein Abschluss mit einer Basis "" und einem Indikator "" wird als "im Abschluss" gelesen und wie folgt geschrieben:

Potenz einer Zahl mit natürlichem Exponenten

Du hast es wahrscheinlich schon erraten: weil der Exponent eine natürliche Zahl ist. Ja, aber was ist natürliche Zahl? Elementar! Natürliche Zahlen sind diejenigen, die zum Zählen beim Auflisten von Artikeln verwendet werden: eins, zwei, drei ... Wenn wir Artikel zählen, sagen wir nicht: „minus fünf“, „minus sechs“, „minus sieben“. Wir sagen auch nicht „ein Drittel“ oder „null Komma fünf Zehntel“. Das sind keine natürlichen Zahlen. Was glauben Sie, was diese Zahlen sind?

Zahlen wie „minus fünf“, „minus sechs“, „minus sieben“ beziehen sich auf ganze Zahlen. Im Allgemeinen umfassen ganze Zahlen alle natürlichen Zahlen, Zahlen, die natürlichen Zahlen entgegengesetzt sind (dh mit einem Minuszeichen genommen werden) und eine Zahl. Null ist leicht zu verstehen - das ist, wenn es nichts gibt. Und was bedeuten negative ("minus") Zahlen? Aber sie wurden hauptsächlich erfunden, um Schulden anzuzeigen: Wenn Sie ein Guthaben in Rubel auf Ihrem Telefon haben, bedeutet dies, dass Sie dem Betreiber Rubel schulden.

Alle Brüche sind rationale Zahlen. Wie sind sie entstanden, denken Sie? Sehr einfach. Vor mehreren tausend Jahren entdeckten unsere Vorfahren, dass sie nicht genügend natürliche Zahlen hatten, um Länge, Gewicht, Fläche usw. Und sie kamen auf Rationale Zahlen… Interessant, nicht wahr?

Es gibt auch irrationale Zahlen. Was sind das für Zahlen? Kurz gesagt, ein unendlicher Dezimalbruch. Wenn Sie beispielsweise den Umfang eines Kreises durch seinen Durchmesser teilen, erhalten Sie eine irrationale Zahl.

Zusammenfassung:

Lassen Sie uns das Konzept des Grads definieren, dessen Exponent eine natürliche Zahl ist (dh ganzzahlig und positiv).

  1. Jede Zahl hoch 1 ist gleich sich selbst:
  2. Eine Zahl quadrieren heißt, sie mit sich selbst multiplizieren:
  3. Eine Zahl in die dritte Potenz zu bringen heißt, sie dreimal mit sich selbst zu multiplizieren:

Definition. Eine Zahl mit einer natürlichen Potenz zu potenzieren heißt, die Zahl mit sich selbst zu multiplizieren:
.

Grad Eigenschaften

Woher kommen diese Eigenschaften? Ich zeige es dir jetzt.

Mal sehen, was ist und ?

A-Priorat:

Wie viele Multiplikatoren gibt es insgesamt?

Es ist ganz einfach: Wir haben Faktoren zu den Faktoren hinzugefügt, und das Ergebnis sind Faktoren.

Aber per Definition ist dies der Grad einer Zahl mit einem Exponenten, also: , der bewiesen werden musste.

Beispiel: Den Ausdruck vereinfachen.

Entscheidung:

Beispiel: Den Ausdruck vereinfachen.

Entscheidung: Es ist wichtig, dies in unserer Regel zu beachten Notwendig muss der selbe grund sein!
Daher kombinieren wir die Grade mit der Basis, bleiben aber ein separater Faktor:

nur für Potenzprodukte!

Das darfst du auf keinen Fall schreiben.

2. das heißt -te Potenz einer Zahl

Wenden wir uns wie bei der vorherigen Eigenschaft der Definition des Grades zu:

Es stellt sich heraus, dass der Ausdruck einmal mit sich selbst multipliziert wird, das heißt, laut Definition ist dies die te Potenz der Zahl:

Tatsächlich kann dies als "Einklammern des Indikators" bezeichnet werden. Aber Sie können dies niemals vollständig tun:

Erinnern wir uns an die Formeln für die abgekürzte Multiplikation: Wie oft wollten wir schreiben?

Aber das ist nicht wahr, wirklich.

Abschluss mit negativer Basis

Bis zu diesem Punkt haben wir nur besprochen, was der Exponent sein sollte.

Aber was soll die Basis sein?

In Grad von natürlicher Indikator die Grundlage kann sein irgendeine Nummer. Tatsächlich können wir jede Zahl miteinander multiplizieren, egal ob sie positiv, negativ oder gerade ist.

Lassen Sie uns darüber nachdenken, welche Zeichen ("" oder "") Grad positiver und negativer Zahlen haben werden?

Wird die Zahl beispielsweise positiv oder negativ sein? SONDERN? ? Mit dem ersten ist alles klar: Egal wie viele positive Zahlen wir miteinander multiplizieren, das Ergebnis wird positiv sein.

Aber die negativen sind ein wenig interessanter. Schließlich erinnern wir uns an eine einfache Regel aus der 6. Klasse: „Minus mal Minus ergibt Plus.“ Das heißt, bzw. Aber wenn wir mit multiplizieren, stellt sich heraus.

Bestimmen Sie selbst, welches Vorzeichen die folgenden Ausdrücke haben:

1) 2) 3)
4) 5) 6)

Hast du es geschafft?

Hier die Antworten: In den ersten vier Beispielen ist hoffentlich alles klar? Wir schauen uns einfach die Basis und den Exponenten an und wenden die entsprechende Regel an.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In Beispiel 5) ist auch nicht alles so beängstigend, wie es scheint: Es spielt keine Rolle, wie die Basis gleich ist - der Grad ist gleichmäßig, was bedeutet, dass das Ergebnis immer positiv sein wird.

Nun, außer wenn die Basis Null ist. Die Basis ist nicht die gleiche, oder? Offensichtlich nicht, da (weil).

Beispiel 6) ist nicht mehr so ​​einfach!

6 Praxisbeispiele

Analyse der Lösung 6 Beispiele

Wenn wir den achten Grad nicht beachten, was sehen wir hier? Werfen wir einen Blick auf das Programm der 7. Klasse. Also denk daran? Das ist die abgekürzte Multiplikationsformel, nämlich die Differenz von Quadraten! Wir bekommen:

Wir schauen uns den Nenner genau an. Es sieht sehr nach einem der Zählerfaktoren aus, aber was ist falsch? Falsche Reihenfolge der Begriffe. Wenn sie ausgetauscht würden, könnte die Regel gelten.

Aber wie macht man das? Es stellt sich heraus, dass es sehr einfach ist: Hier hilft uns der gerade Grad des Nenners.

Die Begriffe haben auf magische Weise die Plätze gewechselt. Dieses "Phänomen" gilt für jeden Ausdruck in gleichem Maße: Wir können die Zeichen in Klammern frei ändern.

Aber es ist wichtig, sich daran zu erinnern: Alle Vorzeichen ändern sich gleichzeitig!

Kommen wir zurück zum Beispiel:

Und nochmal die Formel:

ganz wir nennen die natürlichen Zahlen, ihre Gegensätze (also mit dem Vorzeichen "") und die Zahl.

positive ganze Zahl, und es ist nicht anders als natürlich, dann sieht alles genauso aus wie im vorigen Abschnitt.

Schauen wir uns nun neue Fälle an. Beginnen wir mit einem Indikator gleich.

Jede Zahl hoch null ist gleich eins:

Wie immer fragen wir uns: Warum ist das so?

Betrachten Sie etwas Macht mit einer Basis. Nimm zum Beispiel und multipliziere mit:

Also multiplizierten wir die Zahl mit und bekamen dasselbe wie es war -. Mit welcher Zahl muss multipliziert werden, damit sich nichts ändert? Das ist richtig, auf. Meint.

Wir können dasselbe mit einer beliebigen Zahl tun:

Wiederholen wir die Regel:

Jede Zahl hoch null ist gleich eins.

Aber von vielen Regeln gibt es Ausnahmen. Und hier ist es auch da - das ist eine Zahl (als Basis).

Einerseits muss sie beliebig gleich sein – egal wie sehr man Null mit sich selbst multipliziert, man bekommt immer noch Null, das ist klar. Aber andererseits muss sie, wie jede Zahl bis zum Nullgrad, gleich sein. Also, was ist die Wahrheit davon? Die Mathematiker beschlossen, sich nicht einzumischen und weigerten sich, Null mit Null zu potenzieren. Das heißt, jetzt können wir nicht nur durch Null dividieren, sondern auch mit Null potenzieren.

Gehen wir weiter. Zu den ganzen Zahlen gehören neben natürlichen Zahlen und Zahlen auch negative Zahlen. Um zu verstehen, was ein negativer Grad ist, machen wir dasselbe wie beim letzten Mal: ​​Wir multiplizieren eine normale Zahl mit derselben in einem negativen Grad:

Von hier aus ist es bereits einfach, das Gewünschte auszudrücken:

Nun erweitern wir die resultierende Regel beliebig:

Also formulieren wir die Regel:

Eine Zahl zu einer negativen Potenz ist die Umkehrung derselben Zahl zu einer positiven Potenz. Aber zur selben Zeit Basis darf nicht null sein:(weil es unmöglich ist, zu teilen).

Fassen wir zusammen:

I. Ausdruck ist nicht in Groß-/Kleinschreibung definiert. Wenn, dann.

II. Jede Zahl hoch null ist gleich eins: .

III. Eine Zahl, die nicht gleich Null zu einer negativen Potenz ist, ist die Umkehrung derselben Zahl zu einer positiven Potenz: .

Aufgaben zur selbstständigen Lösung:

Nun, wie üblich, Beispiele für eine unabhängige Lösung:

Aufgabenanalyse zur eigenständigen Lösung:

Ich weiß, ich weiß, die Zahlen sind beängstigend, aber bei der Prüfung muss man auf alles gefasst sein! Löse diese Beispiele oder analysiere ihre Lösung, wenn du es nicht lösen konntest und du wirst lernen, wie du sie in der Prüfung leicht bewältigen kannst!

Erweitern wir den Bereich der als Exponent „geeigneten“ Zahlen weiter.

Jetzt bedenke Rationale Zahlen. Welche Zahlen nennt man rational?

Antwort: alles, was als Bruch dargestellt werden kann, wobei und außerdem ganze Zahlen sind.

Zu verstehen, was ist "Bruchgrad" Betrachten wir einen Bruch:

Lassen Sie uns beide Seiten der Gleichung potenzieren:

Erinnere dich jetzt an die Regel „Grad zu Grad“:

Welche Zahl muss potenziert werden, um zu erhalten?

Diese Formulierung ist die Definition der Wurzel des 1. Grades.

Ich möchte Sie daran erinnern: Die Wurzel der Potenz einer Zahl () ist eine Zahl, die, wenn sie potenziert wird, gleich ist.

Das heißt, die Wurzel des . Grades ist die Umkehroperation der Potenzierung: .

Es stellt sich heraus, dass. Offensichtlich kann dieser Spezialfall erweitert werden: .

Fügen Sie nun den Zähler hinzu: Was ist das? Die Antwort ist mit der Power-to-Power-Regel leicht zu bekommen:

Aber kann die Basis eine beliebige Zahl sein? Schließlich kann die Wurzel nicht aus allen Zahlen gezogen werden.

Keiner!

Denke an die Regel: Jede gerade Potenzierte Zahl ist eine positive Zahl. Das heißt, es ist unmöglich, Wurzeln mit geradem Grad aus negativen Zahlen zu ziehen!

Und das bedeutet, dass solche Zahlen nicht mit einem geraden Nenner auf eine gebrochene Potenz erhoben werden können, dh der Ausdruck macht keinen Sinn.

Was ist mit dem Ausdruck?

Aber hier taucht ein Problem auf.

Die Zahl kann beispielsweise als andere, gekürzte Brüche oder dargestellt werden.

Und es stellt sich heraus, dass es existiert, aber nicht existiert, und dies sind nur zwei verschiedene Datensätze mit derselben Nummer.

Oder ein anderes Beispiel: einmal, dann kannst du es aufschreiben. Aber sobald wir den Indikator anders schreiben, bekommen wir wieder Ärger: (das heißt, wir haben ein völlig anderes Ergebnis!).

Um solche Paradoxien zu vermeiden, bedenken Sie nur positiver Basisexponent mit gebrochenem Exponenten.

Also wenn:

  • - natürliche Zahl;
  • - ganze Zahl;

Beispiele:

Potenzen mit rationalem Exponenten sind sehr nützlich, um Ausdrücke mit Wurzeln umzuwandeln, zum Beispiel:

5 Praxisbeispiele

Analyse von 5 Beispielen für die Ausbildung

Nun, jetzt - das Schwierigste. Jetzt werden wir analysieren Grad mit einem irrationalen Exponenten.

Alle Regeln und Eigenschaften von Graden sind hier genau die gleichen wie für Grade mit einem rationalen Exponenten, mit Ausnahme von

Tatsächlich sind irrationale Zahlen per Definition Zahlen, die nicht als Bruch dargestellt werden können, wobei und ganze Zahlen sind (das heißt, irrationale Zahlen sind alle reelle Zahlen außer rationalen).

Beim Studium von Abschlüssen mit einem natürlichen, ganzzahligen und rationalen Indikator haben wir uns jedes Mal ein bestimmtes „Bild“, eine „Analogie“ oder eine Beschreibung in vertrauteren Begriffen ausgedacht.

Ein natürlicher Exponent ist beispielsweise eine Zahl, die mehrmals mit sich selbst multipliziert wird;

...Null Leistung- dies ist sozusagen eine einmal mit sich selbst multiplizierte Zahl, das heißt, sie hat noch nicht begonnen, sich zu multiplizieren, was bedeutet, dass die Zahl selbst noch nicht einmal aufgetreten ist - daher ist das Ergebnis nur eine gewisse „Vorbereitung von eine Zahl“, nämlich eine Zahl;

...negativer ganzzahliger Exponent- es ist, als hätte ein gewisser „umgekehrter Prozess“ stattgefunden, das heißt, die Zahl wurde nicht mit sich selbst multipliziert, sondern dividiert.

Übrigens wird in der Wissenschaft oft ein Grad mit einem komplexen Exponenten verwendet, das heißt, ein Exponent ist nicht einmal eine reelle Zahl.

Aber in der Schule denken wir nicht über solche Schwierigkeiten nach, Sie haben die Möglichkeit, diese neuen Konzepte am Institut zu verstehen.

WO WIR SICHER SIND, DASS SIE GEHEN WERDEN! (wenn du lernst, wie man solche Beispiele löst :))

Zum Beispiel:

Entscheide dich selbst:

Analyse von Lösungen:

1. Beginnen wir mit der bereits üblichen Regel zur Anhebung eines Abschlusses auf einen Abschluss:

Sehen Sie sich jetzt die Partitur an. Erinnert er dich an etwas? Wir erinnern uns an die Formel zur abgekürzten Multiplikation der Differenz von Quadraten:

BEIM dieser Fall,

Es stellt sich heraus, dass:

Antworten: .

2. Wir bringen Brüche in Exponenten auf die gleiche Form: entweder beide dezimal oder beide gewöhnlich. Wir bekommen zum Beispiel:

Antwort: 16

3. Nichts Besonderes, wir wenden die üblichen Eigenschaften von Graden an:

FORTGESCHRITTENES LEVEL

Definition von Grad

Der Grad ist ein Ausdruck der Form: , wobei:

  • Basis des Abschlusses;
  • - Exponent.

Grad mit natürlichem Exponenten (n = 1, 2, 3,...)

Eine Zahl mit der natürlichen Potenz n zu potenzieren bedeutet, die Zahl mit sich selbst zu multiplizieren:

Potenz mit ganzzahligem Exponenten (0, ±1, ±2,...)

Wenn der Exponent ist positive ganze Zahl Anzahl:

Erektion auf Nullleistung:

Der Ausdruck ist unbestimmt, weil einerseits bis zu jedem Grad dies ist und andererseits jede Zahl bis zum ten Grad dies ist.

Wenn der Exponent ist Ganzzahl negativ Anzahl:

(weil es unmöglich ist, zu teilen).

Noch einmal zu Nullen: Der Ausdruck ist im Fall nicht definiert. Wenn, dann.

Beispiele:

Grad mit rationalem Exponenten

  • - natürliche Zahl;
  • - ganze Zahl;

Beispiele:

Grad Eigenschaften

Um das Lösen von Problemen zu erleichtern, versuchen wir zu verstehen: Woher kommen diese Eigenschaften? Beweisen wir sie.

Mal sehen: was ist und?

A-Priorat:

Auf der rechten Seite dieses Ausdrucks erhält man also das folgende Produkt:

Aber per Definition ist dies eine Potenz einer Zahl mit einem Exponenten, das heißt:

Q.E.D.

Beispiel : Den Ausdruck vereinfachen.

Entscheidung : .

Beispiel : Den Ausdruck vereinfachen.

Entscheidung : Es ist wichtig, das in unserer Regel zu beachten Notwendig müssen auf der gleichen Grundlage stehen. Daher kombinieren wir die Grade mit der Basis, bleiben aber ein separater Faktor:

Noch ein wichtiger Hinweis: Diese Regel - nur für Potenzprodukte!

Das darf ich auf keinen Fall schreiben.

Wenden wir uns wie bei der vorherigen Eigenschaft der Definition des Grades zu:

Ordnen wir es so um:

Es stellt sich heraus, dass der Ausdruck einmal mit sich selbst multipliziert wird, das heißt, laut Definition ist dies die -te Potenz der Zahl:

Tatsächlich kann dies als "Einklammern des Indikators" bezeichnet werden. Aber das schaffst du nie im Ganzen:!

Erinnern wir uns an die Formeln für die abgekürzte Multiplikation: Wie oft wollten wir schreiben? Aber das ist nicht wahr, wirklich.

Macht mit negativer Basis.

Bis zu diesem Punkt haben wir nur diskutiert, was sein sollte Indikator Grad. Aber was soll die Basis sein? In Grad von natürlich Indikator die Grundlage kann sein irgendeine Nummer .

Tatsächlich können wir jede Zahl miteinander multiplizieren, egal ob sie positiv, negativ oder gerade ist. Lassen Sie uns darüber nachdenken, welche Zeichen ("" oder "") Grad positiver und negativer Zahlen haben werden?

Wird die Zahl beispielsweise positiv oder negativ sein? SONDERN? ?

Mit dem ersten ist alles klar: Egal wie viele positive Zahlen wir miteinander multiplizieren, das Ergebnis wird positiv sein.

Aber die negativen sind ein wenig interessanter. Schließlich erinnern wir uns an eine einfache Regel aus der 6. Klasse: „Minus mal Minus ergibt Plus.“ Das heißt, bzw. Aber wenn wir mit () multiplizieren, erhalten wir -.

Und so weiter bis ins Unendliche: Bei jeder weiteren Multiplikation ändert sich das Vorzeichen. Sie können diese einfachen Regeln formulieren:

  1. sogar Grad, - Zahl positiv.
  2. Negative Zahl erhöht auf seltsam Grad, - Zahl Negativ.
  3. Eine positive Zahl zu jeder Potenz ist eine positive Zahl.
  4. Null hoch jede Potenz ist gleich Null.

Bestimmen Sie selbst, welches Vorzeichen die folgenden Ausdrücke haben:

1. 2. 3.
4. 5. 6.

Hast du es geschafft? Hier sind die Antworten:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In den ersten vier Beispielen ist hoffentlich alles klar? Wir schauen uns einfach die Basis und den Exponenten an und wenden die entsprechende Regel an.

In Beispiel 5) ist auch nicht alles so beängstigend, wie es scheint: Es spielt keine Rolle, wie die Basis gleich ist - der Grad ist gleichmäßig, was bedeutet, dass das Ergebnis immer positiv sein wird. Nun, außer wenn die Basis Null ist. Die Basis ist nicht die gleiche, oder? Offensichtlich nicht, da (weil).

Beispiel 6) ist nicht mehr so ​​einfach. Hier müssen Sie herausfinden, was weniger ist: oder? Wenn Sie sich das merken, wird klar, dass die Basis kleiner als Null ist. Das heißt, wir wenden Regel 2 an: Das Ergebnis wird negativ sein.

Und wieder verwenden wir die Definition von Grad:

Alles ist wie immer - wir schreiben die Definition von Graden auf und teilen sie ineinander, teilen sie in Paare und erhalten:

Lassen Sie uns vor der Analyse der letzten Regel einige Beispiele lösen.

Berechnen Sie die Werte von Ausdrücken:

Lösungen :

Wenn wir den achten Grad nicht beachten, was sehen wir hier? Werfen wir einen Blick auf das Programm der 7. Klasse. Also denk daran? Das ist die abgekürzte Multiplikationsformel, nämlich die Differenz von Quadraten!

Wir bekommen:

Wir schauen uns den Nenner genau an. Es sieht sehr nach einem der Zählerfaktoren aus, aber was ist falsch? Falsche Reihenfolge der Begriffe. Wenn sie umgekehrt wären, könnte Regel 3 angewendet werden, aber wie macht man das? Es stellt sich heraus, dass es sehr einfach ist: Hier hilft uns der gerade Grad des Nenners.

Wenn Sie es mit multiplizieren, ändert sich nichts, oder? Aber jetzt sieht es so aus:

Die Begriffe haben auf magische Weise die Plätze gewechselt. Dieses "Phänomen" gilt für jeden Ausdruck in gleichem Maße: Wir können die Zeichen in Klammern frei ändern. Aber es ist wichtig, sich daran zu erinnern: alle Zeichen ändern sich gleichzeitig! Es kann nicht durch Änderung ersetzt werden, nur ein beanstandetes Minus an uns!

Kommen wir zurück zum Beispiel:

Und nochmal die Formel:

Also jetzt die letzte Regel:

Wie werden wir es beweisen? Natürlich, wie immer: Erweitern wir das Konzept des Abschlusses und vereinfachen es:

Nun, lassen Sie uns jetzt die Klammern öffnen. Wie viele Buchstaben werden es sein? mal durch Multiplikatoren - wie sieht es aus? Dies ist nichts anderes als die Definition einer Operation Multiplikation: Insgesamt stellte sich heraus, dass es Multiplikatoren gab. Das heißt, es ist per Definition eine Potenz einer Zahl mit einem Exponenten:

Beispiel:

Grad mit irrationalem Exponenten

Neben Informationen zu den Abschlüssen für das Durchschnittsniveau werden wir den Abschluss mit einem irrationalen Indikator analysieren. Alle Regeln und Eigenschaften von Graden sind hier genau die gleichen wie für einen Grad mit einem rationalen Exponenten, mit der Ausnahme, dass irrationale Zahlen per Definition Zahlen sind, die nicht als Bruch dargestellt werden können, wobei und ganze Zahlen sind (d.h , irrationale Zahlen sind alle reelle Zahlen außer rationale).

Beim Studium von Abschlüssen mit einem natürlichen, ganzzahligen und rationalen Indikator haben wir uns jedes Mal ein bestimmtes „Bild“, eine „Analogie“ oder eine Beschreibung in vertrauteren Begriffen ausgedacht. Ein natürlicher Exponent ist beispielsweise eine Zahl, die mehrmals mit sich selbst multipliziert wird; eine Zahl bis zum Grad null ist sozusagen eine einmal mit sich selbst multiplizierte Zahl, das heißt, sie hat noch nicht begonnen, sich zu multiplizieren, was bedeutet, dass die Zahl selbst noch nicht einmal aufgetreten ist - daher ist das Ergebnis nur a bestimmte „Vorbereitung einer Nummer“, nämlich eine Nummer; ein Grad mit einem ganzzahligen negativen Indikator - es ist, als ob ein gewisser „umgekehrter Prozess“ stattgefunden hätte, dh die Zahl wurde nicht mit sich selbst multipliziert, sondern geteilt.

Es ist äußerst schwierig, sich einen Grad mit einem irrationalen Exponenten vorzustellen (ebenso wie es schwierig ist, sich einen 4-dimensionalen Raum vorzustellen). Vielmehr ist es ein rein mathematisches Objekt, das Mathematiker geschaffen haben, um das Konzept eines Grades auf den gesamten Zahlenraum auszudehnen.

Übrigens wird in der Wissenschaft oft ein Grad mit einem komplexen Exponenten verwendet, das heißt, ein Exponent ist nicht einmal eine reelle Zahl. Aber in der Schule denken wir nicht über solche Schwierigkeiten nach, Sie haben die Möglichkeit, diese neuen Konzepte am Institut zu verstehen.

Was machen wir also, wenn wir einen irrationalen Exponenten sehen? Wir versuchen unser Bestes, um es loszuwerden! :)

Zum Beispiel:

Entscheide dich selbst:

1) 2) 3)

Antworten:

  1. Erinnere dich an die Quadratdifferenz-Formel. Antworten: .
  2. Wir bringen Brüche in dieselbe Form: entweder beide Dezimalzahlen oder beide gewöhnliche. Wir erhalten zum Beispiel: .
  3. Nichts Besonderes, wir wenden die üblichen Eigenschaften von Graden an:

ABSCHNITT ZUSAMMENFASSUNG UND GRUNDFORMEL

Grad heißt ein Ausdruck der Form: , wobei:

Grad mit ganzzahligem Exponenten

Grad, dessen Exponent eine natürliche Zahl ist (d. h. ganzzahlig und positiv).

Grad mit rationalem Exponenten

Grad, dessen Indikator negative und Bruchzahlen sind.

Grad mit irrationalem Exponenten

Exponent, dessen Exponent ein unendlicher Dezimalbruch oder eine Wurzel ist.

Grad Eigenschaften

Merkmale von Abschlüssen.

  • Negative Zahl erhöht auf sogar Grad, - Zahl positiv.
  • Negative Zahl erhöht auf seltsam Grad, - Zahl Negativ.
  • Eine positive Zahl zu jeder Potenz ist eine positive Zahl.
  • Null ist gleich jeder Potenz.
  • Jede Zahl hoch null ist gleich.

JETZT HAST DU EIN WORT...

Wie gefällt Ihnen der Artikel? Lassen Sie mich in den Kommentaren unten wissen, ob es Ihnen gefallen hat oder nicht.

Erzählen Sie uns von Ihren Erfahrungen mit den Power-Eigenschaften.

Vielleicht haben Sie Fragen. Oder Vorschläge.

Schreiben Sie in die Kommentare.

Und viel Erfolg bei deinen Prüfungen!

In einem der vorherigen Artikel haben wir bereits den Grad einer Zahl erwähnt. Heute werden wir versuchen, im Prozess der Suche nach seiner Bedeutung zu navigieren. Wissenschaftlich gesehen werden wir herausfinden, wie man richtig potenziert. Wir werden verstehen, wie dieser Prozess durchgeführt wird, und gleichzeitig alle möglichen Exponenten berühren: natürlich, irrational, rational, ganz.

Schauen wir uns also die Lösungen der Beispiele genauer an und finden heraus, was es bedeutet:

  1. Konzeptdefinition.
  2. Erhebung zur negativen Kunst.
  3. Ganze Partitur.
  4. Eine Zahl ins Irrationale potenzieren.

Hier ist eine Definition, die die Bedeutung genau widerspiegelt: „Potenzieren ist die Definition des Wertes des Grades einer Zahl.“

Dementsprechend ist die Konstruktion der Ziffer a in Art. r und das Finden des Wertes des Grades a mit dem Exponenten r sind identische Konzepte. Wenn die Aufgabe beispielsweise darin besteht, den Wert des Grades (0,6) 6 ″ zu berechnen, kann dies zu dem Ausdruck „Erhöhen Sie die Zahl 0,6 hoch 6“ vereinfacht werden.

Danach können Sie direkt zur Bauordnung übergehen.

Erhebung zu einer negativen Potenz

Zur Verdeutlichung sollten Sie auf folgende Ausdruckskette achten:

110 \u003d 0,1 \u003d 1 * 10 in minus 1 st.,

1100 \u003d 0,01 \u003d 1 * 10 in minus 2 Schritten.,

11000 \u003d 0,0001 \u003d 1 * 10 minus 3 st.,

110000=0,00001=1*10 bis minus 4 Grad.

Dank dieser Beispiele können Sie deutlich erkennen, dass Sie sofort 10 hoch jede negative Potenz berechnen können. Dazu genügt es, einfach den Dezimalanteil zu verschieben:

  • 10 bis -1 Grad - vor der Einheit 1 Null;
  • in -3 - drei Nullen vor einer;
  • -9 sind 9 Nullen und so weiter.

Nach diesem Schema ist es auch leicht zu verstehen, wie viel 10 minus 5 EL sind. -

1100000=0,000001=(1*10)-5.

Wie man eine Zahl zu einer natürlichen Potenz erhebt

Unter Hinweis auf die Definition berücksichtigen wir, dass die natürliche Zahl a in der Kunst. n ist gleich dem Produkt von n Faktoren, von denen jeder gleich a ist. Zur Veranschaulichung: (a * a * ... a) n, wobei n die Anzahl der Zahlen ist, die multipliziert werden. Dementsprechend muss, um a auf n zu erhöhen, das Produkt der folgenden Form berechnet werden: a * a * ... und durch n-mal dividiert werden.

Ab hier wird es offensichtlich Erektion in der Naturkunst. beruht auf der Fähigkeit, Multiplikationen durchzuführen(dieses Material wird im Abschnitt über die Multiplikation reeller Zahlen behandelt). Schauen wir uns das Problem an:

Erhöhen Sie -2 bis zum 4. EL.

Wir haben es mit einem natürlichen Indikator zu tun. Dementsprechend wird der Ablauf der Entscheidung wie folgt sein: (-2) in Art. 4 = (-2)*(-2)*(-2)*(-2). Jetzt muss nur noch die Multiplikation ganzer Zahlen durchgeführt werden: (-2) * (-2) * (-2) * (-2). Wir bekommen 16.

Antwort auf die Aufgabe:

(-2) in der Kunst. 4=16.

Beispiel:

Berechnen Sie den Wert: drei Komma zwei Siebtel zum Quadrat.

Dieses Beispiel entspricht dem folgenden Produkt: drei Komma zwei Siebtel mal drei Komma zwei Siebtel. Wenn wir uns daran erinnern, wie die Multiplikation gemischter Zahlen durchgeführt wird, vervollständigen wir die Konstruktion:

  • 3 ganze 2 Siebtel multipliziert mit sich selbst;
  • entspricht 23 Siebtel mal 23 Siebtel;
  • entspricht 529 Neunundvierzigstel;
  • wir reduzieren und erhalten 10 neununddreißig neunundvierzigstel.

Antworten: 10 39/49

In Bezug auf das Erhöhen auf einen irrationalen Indikator ist anzumerken, dass die Berechnungen nach Abschluss der vorläufigen Rundung der Basis des Grads auf einen bestimmten Rang durchgeführt werden, wodurch ein Wert mit einem bestimmten Wert erhalten werden kann Richtigkeit. Zum Beispiel müssen wir die Zahl P (pi) quadrieren.

Wir beginnen damit, P auf Hundertstel zu runden und erhalten:

P zum Quadrat \u003d (3,14) 2 \u003d 9,8596. Wenn wir jedoch P auf Zehntausendstel reduzieren, erhalten wir P = 3,14159. Dann bekommt das Quadrieren eine ganz andere Nummer: 9.8695877281.

An dieser Stelle sei angemerkt, dass es bei vielen Problemen nicht nötig ist, irrationale Zahlen zu potenzieren. In der Regel wird die Antwort entweder in Form eines Grads eingegeben, beispielsweise der Wurzel von 6 hoch 3, oder, wenn der Ausdruck dies zulässt, wird ihre Transformation durchgeführt: die Wurzel von 5 bis 7 Grad \u003d 125 Wurzel aus 5.

Wie man eine Zahl mit einer ganzen Zahl potenziert

Diese algebraische Manipulation ist angemessen für folgende Fälle berücksichtigen:

  • für ganze Zahlen;
  • für Nullanzeige;
  • für eine positive ganze Zahl.

Da fast alle positiven ganzen Zahlen mit der Masse der natürlichen Zahlen übereinstimmen, ist das Setzen auf eine positive ganzzahlige Potenz der gleiche Vorgang wie das Setzen in Art. natürlich. Wir haben diesen Prozess im vorherigen Absatz beschrieben.

Kommen wir nun zur Berechnung von Art. Null. Wir haben oben bereits herausgefunden, dass die Nullpotenz der Zahl a für jedes a (reell) ungleich Null bestimmt werden kann, während a in st. 0 wird gleich 1 sein.

Dementsprechend ist die Konstruktion jeder reellen Zahl zu Null Kunst. werde einen geben.

Beispiel: 10 in st.0=1, (-3,65)0=1 und 0 in st. 0 kann nicht ermittelt werden.

Um die Potenzierung zu einer ganzzahligen Potenz zu vervollständigen, bleibt noch die Entscheidung über die Optionen für negative ganzzahlige Werte. Wir erinnern uns, dass Art. von a mit ganzzahligem Exponenten -z wird als Bruch definiert. Im Nenner des Bruchs steht Art. mit einem positiven ganzzahligen Wert, dessen Wert wir bereits zu finden gelernt haben. Jetzt bleibt nur noch ein Konstruktionsbeispiel zu betrachten.

Beispiel:

Berechnen Sie den Wert der Zahl 2 hoch drei mit einer negativen Ganzzahl.

Lösungsprozess:

Gemäß der Definition eines Grades mit einem negativen Indikator bezeichnen wir: zwei in minus 3 EL. gleich eins bis zwei hoch 3.

Der Nenner wird einfach berechnet: zwei hoch drei;

3 = 2*2*2=8.

Antworten: zwei bis minus der 3. EL. = ein Achtel.

Erste Ebene

Grad und seine Eigenschaften. Umfassender Leitfaden (2019)

Warum braucht es Abschlüsse? Wo brauchen Sie sie? Warum müssen Sie Zeit damit verbringen, sie zu studieren?

Lesen Sie diesen Artikel, um alles über Abschlüsse zu erfahren, wozu sie gut sind und wie Sie Ihr Wissen im Alltag einsetzen können.

Und natürlich bringt Sie die Kenntnis der Abschlüsse dem erfolgreichen Bestehen der OGE oder der Einheitlichen Staatsprüfung und dem Eintritt in die Universität Ihrer Träume näher.

Los geht's!)

Wichtiger Hinweis! Wenn Sie anstelle von Formeln Kauderwelsch sehen, leeren Sie Ihren Cache. Drücken Sie dazu STRG+F5 (unter Windows) oder Cmd+R (unter Mac).

ERSTE EBENE

Potenzierung ist die gleiche mathematische Operation wie Addition, Subtraktion, Multiplikation oder Division.

Jetzt werde ich alles in menschlicher Sprache anhand sehr einfacher Beispiele erklären. Passt auf. Beispiele sind elementar, erklären aber wichtige Dinge.

Beginnen wir mit der Addition.

Hier gibt es nichts zu erklären. Ihr wisst schon alles: Wir sind zu acht. Jeder hat zwei Flaschen Cola. Wie viel Cola? Das ist richtig - 16 Flaschen.

Jetzt Multiplikation.

Dasselbe Beispiel mit Cola kann auch anders geschrieben werden: . Mathematiker sind schlaue und faule Leute. Sie bemerken zuerst einige Muster und finden dann eine Möglichkeit, sie schneller zu „zählen“. In unserem Fall bemerkten sie, dass jede der acht Personen die gleiche Anzahl von Cola-Flaschen hatte, und entwickelten eine Technik namens Multiplikation. Stimmen Sie zu, es gilt als einfacher und schneller als.


Um also schneller, einfacher und fehlerfrei zu zählen, müssen Sie sich nur daran erinnern Multiplikationstabelle. Natürlich geht alles auch langsamer, härter und mit Fehlern! Aber…

Hier ist das Einmaleins. Wiederholen.

Und noch ein hübscher:

Und welche anderen kniffligen Zähltricks sind faulen Mathematikern eingefallen? Richtig - eine Zahl potenzieren.

Eine Zahl potenzieren

Wenn Sie eine Zahl fünfmal mit sich selbst multiplizieren müssen, sagen Mathematiker, dass Sie diese Zahl in die fünfte Potenz erheben müssen. Zum Beispiel, . Mathematiker erinnern sich, dass zwei hoch fünf ist. Und sie lösen solche Probleme im Kopf – schneller, einfacher und fehlerfrei.

Dazu brauchen Sie nur Merken Sie sich, was in der Tabelle der Zahlenpotenzen farbig hervorgehoben ist. Glauben Sie mir, es wird Ihr Leben viel einfacher machen.

Übrigens, warum heißt der zweite Grad Quadrat Nummern und die dritte Würfel? Was bedeutet das? Eine sehr gute Frage. Jetzt haben Sie sowohl Quadrate als auch Würfel.

Beispiel #1 aus dem wirklichen Leben

Beginnen wir mit einem Quadrat oder der zweiten Potenz einer Zahl.

Stellen Sie sich einen quadratischen Pool vor, der Meter für Meter misst. Der Pool ist in Ihrem Hinterhof. Es ist heiß und ich möchte wirklich schwimmen. Aber ... ein Pool ohne Boden! Es ist notwendig, den Boden des Beckens mit Fliesen abzudecken. Wie viele Fliesen benötigen Sie? Um dies zu bestimmen, müssen Sie die Fläche des Beckenbodens kennen.

Sie können einfach zählen, indem Sie mit dem Finger hineinstecken, dass der Boden des Pools Meter für Meter aus Würfeln besteht. Wenn Ihre Fliesen Meter für Meter sind, benötigen Sie Stücke. Ganz einfach... Aber wo hast du so eine Kachel gesehen? Die Fliese wird eher cm für cm sein und dann wird man mit „Fingerzählen“ gequält. Dann musst du multiplizieren. Wir werden also auf einer Seite des Beckenbodens Fliesen (Stücke) und auf der anderen Seite auch Fliesen anbringen. Durch Multiplizieren mit erhalten Sie Kacheln ().

Haben Sie bemerkt, dass wir dieselbe Zahl mit sich selbst multipliziert haben, um die Fläche des Beckenbodens zu bestimmen? Was bedeutet das? Da dieselbe Zahl multipliziert wird, können wir die Potenzierungstechnik anwenden. (Wenn du nur zwei Zahlen hast, musst du sie natürlich trotzdem multiplizieren oder potenzieren. Aber wenn du viele davon hast, dann ist das Potenzieren viel einfacher und es gibt auch weniger Fehler bei Berechnungen. Für die Prüfung ist dies sehr wichtig).
Also, dreißig bis zum zweiten Grad werden (). Oder Sie können sagen, dass dreißig zum Quadrat sein wird. Mit anderen Worten, die zweite Potenz einer Zahl kann immer als Quadrat dargestellt werden. Und umgekehrt, wenn Sie ein Quadrat sehen, ist es IMMER die zweite Potenz einer Zahl. Ein Quadrat ist ein Bild der zweiten Potenz einer Zahl.

Beispiel #2 aus dem wirklichen Leben

Hier ist eine Aufgabe für Sie, zählen Sie, wie viele Quadrate auf dem Schachbrett sind, indem Sie das Quadrat der Zahl verwenden ... Auf der einen Seite der Zellen und auf der anderen auch. Um ihre Anzahl zu zählen, müssen Sie acht mit acht multiplizieren, oder ... wenn Sie feststellen, dass ein Schachbrett ein Quadrat mit einer Seite ist, können Sie acht quadrieren. Zellen bekommen. () So?

Beispiel #3 aus dem wirklichen Leben

Jetzt der Würfel oder die dritte Potenz einer Zahl. Das gleiche Becken. Aber jetzt müssen Sie herausfinden, wie viel Wasser in diesen Pool gegossen werden muss. Du musst das Volumen berechnen. (Volumen und Flüssigkeiten werden übrigens in Kubikmetern gemessen. Unerwartet, oder?) Zeichnen Sie ein Becken: einen Meter großen und einen Meter tiefen Boden und versuchen Sie zu berechnen, wie viele Meter für Meter Würfel in Ihr Becken gelangen.

Einfach mit dem Finger zeigen und zählen! Eins, zwei, drei, vier … zweiundzwanzig, dreiundzwanzig … Wie viel ist herausgekommen? Nicht verloren gegangen? Ist es schwierig, mit dem Finger zu zählen? So dass! Nehmen Sie ein Beispiel von Mathematikern. Sie sind faul, also haben sie bemerkt, dass man Länge, Breite und Höhe miteinander multiplizieren muss, um das Volumen des Pools zu berechnen. In unserem Fall entspricht das Volumen des Pools Würfeln ... Einfacher, oder?

Stellen Sie sich nun vor, wie faul und schlau Mathematiker sind, wenn sie sich das zu einfach machen. Alles auf eine Aktion reduziert. Sie bemerkten, dass Länge, Breite und Höhe gleich sind und dass dieselbe Zahl mit sich selbst multipliziert wird ... Und was bedeutet das? Das bedeutet, dass Sie den Abschluss verwenden können. Was Sie also einmal mit dem Finger gezählt haben, machen sie in einer Aktion: Drei in einem Würfel ist gleich. Es ist so geschrieben:

Bleibt nur die Gradtabelle auswendig lernen. Es sei denn natürlich, Sie sind so faul und schlau wie Mathematiker. Wenn Sie gerne hart arbeiten und Fehler machen, können Sie mit dem Finger weiterzählen.

Nun, um Sie endlich davon zu überzeugen, dass die Abschlüsse von Faulenzern und schlauen Menschen erfunden wurden, um ihre Lebensprobleme zu lösen, und nicht, um Ihnen Probleme zu bereiten, hier noch ein paar Beispiele aus dem Leben.

Beispiel #4 aus dem wirklichen Leben

Sie haben eine Million Rubel. Zu Beginn eines jeden Jahres verdienen Sie für jede Million eine weitere Million. Das heißt, jede Ihrer Millionen verdoppelt sich zu Beginn eines jeden Jahres. Wie viel Geld wirst du in Jahren haben? Wenn Sie jetzt dasitzen und „mit dem Finger zählen“, dann sind Sie ein sehr fleißiger Mensch und … dumm. Aber höchstwahrscheinlich werden Sie in ein paar Sekunden eine Antwort geben, weil Sie schlau sind! Also, im ersten Jahr - zwei mal zwei ... im zweiten Jahr - was geschah, um zwei weitere, im dritten Jahr ... Halt! Sie haben bemerkt, dass die Zahl einmal mit sich selbst multipliziert wird. Zwei hoch fünf ist also eine Million! Stellen Sie sich jetzt vor, Sie haben einen Wettbewerb und derjenige, der schneller rechnet, bekommt diese Millionen ... Lohnt es sich, sich an die Zahlengrade zu erinnern, was denken Sie?

Beispiel #5 aus dem wirklichen Leben

Du hast eine Million. Zu Beginn eines jeden Jahres verdienen Sie zwei weitere für jede Million. Es ist großartig, oder? Jede Million wird verdreifacht. Wie viel Geld wirst du in einem Jahr haben? Lass uns zählen. Das erste Jahr - mit multiplizieren, dann das Ergebnis mit einem anderen ... Es ist schon langweilig, weil Sie schon alles verstanden haben: Drei wird mal mit sich selbst multipliziert. Die vierte Potenz ist also eine Million. Sie müssen sich nur daran erinnern, dass drei hoch vier oder ist.

Jetzt wissen Sie, dass Sie Ihr Leben viel einfacher machen werden, wenn Sie eine Zahl potenzieren. Lassen Sie uns einen weiteren Blick darauf werfen, was Sie mit Abschlüssen machen können und was Sie darüber wissen müssen.

Begriffe und Konzepte ... um nicht verwirrt zu werden

Lassen Sie uns also zuerst die Konzepte definieren. Wie denkst du, was ist exponent? Es ist ganz einfach – das ist die Zahl, die „an der Spitze“ der Potenz der Zahl steht. Nicht wissenschaftlich, aber klar und leicht zu merken ...

Nun, gleichzeitig, was eine solche Studienbasis? Noch einfacher ist die Zahl, die ganz unten an der Basis steht.

Hier ist ein Bild, damit Sie sicher sein können.

Nun, allgemein gesagt, um zu verallgemeinern und sich besser zu erinnern ... Ein Abschluss mit einer Basis "" und einem Indikator "" wird als "im Abschluss" gelesen und wie folgt geschrieben:

Potenz einer Zahl mit natürlichem Exponenten

Du hast es wahrscheinlich schon erraten: weil der Exponent eine natürliche Zahl ist. Ja, aber was ist natürliche Zahl? Elementar! Natürliche Zahlen sind diejenigen, die zum Zählen beim Auflisten von Artikeln verwendet werden: eins, zwei, drei ... Wenn wir Artikel zählen, sagen wir nicht: „minus fünf“, „minus sechs“, „minus sieben“. Wir sagen auch nicht „ein Drittel“ oder „null Komma fünf Zehntel“. Das sind keine natürlichen Zahlen. Was glauben Sie, was diese Zahlen sind?

Zahlen wie „minus fünf“, „minus sechs“, „minus sieben“ beziehen sich auf ganze Zahlen. Im Allgemeinen umfassen ganze Zahlen alle natürlichen Zahlen, Zahlen, die natürlichen Zahlen entgegengesetzt sind (dh mit einem Minuszeichen genommen werden) und eine Zahl. Null ist leicht zu verstehen - das ist, wenn es nichts gibt. Und was bedeuten negative ("minus") Zahlen? Aber sie wurden hauptsächlich erfunden, um Schulden anzuzeigen: Wenn Sie ein Guthaben in Rubel auf Ihrem Telefon haben, bedeutet dies, dass Sie dem Betreiber Rubel schulden.

Alle Brüche sind rationale Zahlen. Wie sind sie entstanden, denken Sie? Sehr einfach. Vor mehreren tausend Jahren entdeckten unsere Vorfahren, dass sie nicht genügend natürliche Zahlen hatten, um Länge, Gewicht, Fläche usw. Und sie kamen auf Rationale Zahlen… Interessant, nicht wahr?

Es gibt auch irrationale Zahlen. Was sind das für Zahlen? Kurz gesagt, ein unendlicher Dezimalbruch. Wenn Sie beispielsweise den Umfang eines Kreises durch seinen Durchmesser teilen, erhalten Sie eine irrationale Zahl.

Zusammenfassung:

Lassen Sie uns das Konzept des Grads definieren, dessen Exponent eine natürliche Zahl ist (dh ganzzahlig und positiv).

  1. Jede Zahl hoch 1 ist gleich sich selbst:
  2. Eine Zahl quadrieren heißt, sie mit sich selbst multiplizieren:
  3. Eine Zahl in die dritte Potenz zu bringen heißt, sie dreimal mit sich selbst zu multiplizieren:

Definition. Eine Zahl mit einer natürlichen Potenz zu potenzieren heißt, die Zahl mit sich selbst zu multiplizieren:
.

Grad Eigenschaften

Woher kommen diese Eigenschaften? Ich zeige es dir jetzt.

Mal sehen, was ist und ?

A-Priorat:

Wie viele Multiplikatoren gibt es insgesamt?

Es ist ganz einfach: Wir haben Faktoren zu den Faktoren hinzugefügt, und das Ergebnis sind Faktoren.

Aber per Definition ist dies der Grad einer Zahl mit einem Exponenten, also: , der bewiesen werden musste.

Beispiel: Den Ausdruck vereinfachen.

Entscheidung:

Beispiel: Den Ausdruck vereinfachen.

Entscheidung: Es ist wichtig, dies in unserer Regel zu beachten Notwendig muss der selbe grund sein!
Daher kombinieren wir die Grade mit der Basis, bleiben aber ein separater Faktor:

nur für Potenzprodukte!

Das darfst du auf keinen Fall schreiben.

2. das heißt -te Potenz einer Zahl

Wenden wir uns wie bei der vorherigen Eigenschaft der Definition des Grades zu:

Es stellt sich heraus, dass der Ausdruck einmal mit sich selbst multipliziert wird, das heißt, laut Definition ist dies die te Potenz der Zahl:

Tatsächlich kann dies als "Einklammern des Indikators" bezeichnet werden. Aber Sie können dies niemals vollständig tun:

Erinnern wir uns an die Formeln für die abgekürzte Multiplikation: Wie oft wollten wir schreiben?

Aber das ist nicht wahr, wirklich.

Abschluss mit negativer Basis

Bis zu diesem Punkt haben wir nur besprochen, was der Exponent sein sollte.

Aber was soll die Basis sein?

In Grad von natürlicher Indikator die Grundlage kann sein irgendeine Nummer. Tatsächlich können wir jede Zahl miteinander multiplizieren, egal ob sie positiv, negativ oder gerade ist.

Lassen Sie uns darüber nachdenken, welche Zeichen ("" oder "") Grad positiver und negativer Zahlen haben werden?

Wird die Zahl beispielsweise positiv oder negativ sein? SONDERN? ? Mit dem ersten ist alles klar: Egal wie viele positive Zahlen wir miteinander multiplizieren, das Ergebnis wird positiv sein.

Aber die negativen sind ein wenig interessanter. Schließlich erinnern wir uns an eine einfache Regel aus der 6. Klasse: „Minus mal Minus ergibt Plus.“ Das heißt, bzw. Aber wenn wir mit multiplizieren, stellt sich heraus.

Bestimmen Sie selbst, welches Vorzeichen die folgenden Ausdrücke haben:

1) 2) 3)
4) 5) 6)

Hast du es geschafft?

Hier die Antworten: In den ersten vier Beispielen ist hoffentlich alles klar? Wir schauen uns einfach die Basis und den Exponenten an und wenden die entsprechende Regel an.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In Beispiel 5) ist auch nicht alles so beängstigend, wie es scheint: Es spielt keine Rolle, wie die Basis gleich ist - der Grad ist gleichmäßig, was bedeutet, dass das Ergebnis immer positiv sein wird.

Nun, außer wenn die Basis Null ist. Die Basis ist nicht die gleiche, oder? Offensichtlich nicht, da (weil).

Beispiel 6) ist nicht mehr so ​​einfach!

6 Praxisbeispiele

Analyse der Lösung 6 Beispiele

Wenn wir den achten Grad nicht beachten, was sehen wir hier? Werfen wir einen Blick auf das Programm der 7. Klasse. Also denk daran? Das ist die abgekürzte Multiplikationsformel, nämlich die Differenz von Quadraten! Wir bekommen:

Wir schauen uns den Nenner genau an. Es sieht sehr nach einem der Zählerfaktoren aus, aber was ist falsch? Falsche Reihenfolge der Begriffe. Wenn sie ausgetauscht würden, könnte die Regel gelten.

Aber wie macht man das? Es stellt sich heraus, dass es sehr einfach ist: Hier hilft uns der gerade Grad des Nenners.

Die Begriffe haben auf magische Weise die Plätze gewechselt. Dieses "Phänomen" gilt für jeden Ausdruck in gleichem Maße: Wir können die Zeichen in Klammern frei ändern.

Aber es ist wichtig, sich daran zu erinnern: Alle Vorzeichen ändern sich gleichzeitig!

Kommen wir zurück zum Beispiel:

Und nochmal die Formel:

ganz wir nennen die natürlichen Zahlen, ihre Gegensätze (also mit dem Vorzeichen "") und die Zahl.

positive ganze Zahl, und es ist nicht anders als natürlich, dann sieht alles genauso aus wie im vorigen Abschnitt.

Schauen wir uns nun neue Fälle an. Beginnen wir mit einem Indikator gleich.

Jede Zahl hoch null ist gleich eins:

Wie immer fragen wir uns: Warum ist das so?

Betrachten Sie etwas Macht mit einer Basis. Nimm zum Beispiel und multipliziere mit:

Also multiplizierten wir die Zahl mit und bekamen dasselbe wie es war -. Mit welcher Zahl muss multipliziert werden, damit sich nichts ändert? Das ist richtig, auf. Meint.

Wir können dasselbe mit einer beliebigen Zahl tun:

Wiederholen wir die Regel:

Jede Zahl hoch null ist gleich eins.

Aber von vielen Regeln gibt es Ausnahmen. Und hier ist es auch da - das ist eine Zahl (als Basis).

Einerseits muss sie beliebig gleich sein – egal wie sehr man Null mit sich selbst multipliziert, man bekommt immer noch Null, das ist klar. Aber andererseits muss sie, wie jede Zahl bis zum Nullgrad, gleich sein. Also, was ist die Wahrheit davon? Die Mathematiker beschlossen, sich nicht einzumischen und weigerten sich, Null mit Null zu potenzieren. Das heißt, jetzt können wir nicht nur durch Null dividieren, sondern auch mit Null potenzieren.

Gehen wir weiter. Zu den ganzen Zahlen gehören neben natürlichen Zahlen und Zahlen auch negative Zahlen. Um zu verstehen, was ein negativer Grad ist, machen wir dasselbe wie beim letzten Mal: ​​Wir multiplizieren eine normale Zahl mit derselben in einem negativen Grad:

Von hier aus ist es bereits einfach, das Gewünschte auszudrücken:

Nun erweitern wir die resultierende Regel beliebig:

Also formulieren wir die Regel:

Eine Zahl zu einer negativen Potenz ist die Umkehrung derselben Zahl zu einer positiven Potenz. Aber zur selben Zeit Basis darf nicht null sein:(weil es unmöglich ist, zu teilen).

Fassen wir zusammen:

I. Ausdruck ist nicht in Groß-/Kleinschreibung definiert. Wenn, dann.

II. Jede Zahl hoch null ist gleich eins: .

III. Eine Zahl, die nicht gleich Null zu einer negativen Potenz ist, ist die Umkehrung derselben Zahl zu einer positiven Potenz: .

Aufgaben zur selbstständigen Lösung:

Nun, wie üblich, Beispiele für eine unabhängige Lösung:

Aufgabenanalyse zur eigenständigen Lösung:

Ich weiß, ich weiß, die Zahlen sind beängstigend, aber bei der Prüfung muss man auf alles gefasst sein! Löse diese Beispiele oder analysiere ihre Lösung, wenn du es nicht lösen konntest und du wirst lernen, wie du sie in der Prüfung leicht bewältigen kannst!

Erweitern wir den Bereich der als Exponent „geeigneten“ Zahlen weiter.

Jetzt bedenke Rationale Zahlen. Welche Zahlen nennt man rational?

Antwort: alles, was als Bruch dargestellt werden kann, wobei und außerdem ganze Zahlen sind.

Zu verstehen, was ist "Bruchgrad" Betrachten wir einen Bruch:

Lassen Sie uns beide Seiten der Gleichung potenzieren:

Erinnere dich jetzt an die Regel „Grad zu Grad“:

Welche Zahl muss potenziert werden, um zu erhalten?

Diese Formulierung ist die Definition der Wurzel des 1. Grades.

Ich möchte Sie daran erinnern: Die Wurzel der Potenz einer Zahl () ist eine Zahl, die, wenn sie potenziert wird, gleich ist.

Das heißt, die Wurzel des . Grades ist die Umkehroperation der Potenzierung: .

Es stellt sich heraus, dass. Offensichtlich kann dieser Spezialfall erweitert werden: .

Fügen Sie nun den Zähler hinzu: Was ist das? Die Antwort ist mit der Power-to-Power-Regel leicht zu bekommen:

Aber kann die Basis eine beliebige Zahl sein? Schließlich kann die Wurzel nicht aus allen Zahlen gezogen werden.

Keiner!

Denke an die Regel: Jede gerade Potenzierte Zahl ist eine positive Zahl. Das heißt, es ist unmöglich, Wurzeln mit geradem Grad aus negativen Zahlen zu ziehen!

Und das bedeutet, dass solche Zahlen nicht mit einem geraden Nenner auf eine gebrochene Potenz erhoben werden können, dh der Ausdruck macht keinen Sinn.

Was ist mit dem Ausdruck?

Aber hier taucht ein Problem auf.

Die Zahl kann beispielsweise als andere, gekürzte Brüche oder dargestellt werden.

Und es stellt sich heraus, dass es existiert, aber nicht existiert, und dies sind nur zwei verschiedene Datensätze mit derselben Nummer.

Oder ein anderes Beispiel: einmal, dann kannst du es aufschreiben. Aber sobald wir den Indikator anders schreiben, bekommen wir wieder Ärger: (das heißt, wir haben ein völlig anderes Ergebnis!).

Um solche Paradoxien zu vermeiden, bedenken Sie nur positiver Basisexponent mit gebrochenem Exponenten.

Also wenn:

  • - natürliche Zahl;
  • - ganze Zahl;

Beispiele:

Potenzen mit rationalem Exponenten sind sehr nützlich, um Ausdrücke mit Wurzeln umzuwandeln, zum Beispiel:

5 Praxisbeispiele

Analyse von 5 Beispielen für die Ausbildung

Nun, jetzt - das Schwierigste. Jetzt werden wir analysieren Grad mit einem irrationalen Exponenten.

Alle Regeln und Eigenschaften von Graden sind hier genau die gleichen wie für Grade mit einem rationalen Exponenten, mit Ausnahme von

Tatsächlich sind irrationale Zahlen per Definition Zahlen, die nicht als Bruch dargestellt werden können, wobei und ganze Zahlen sind (das heißt, irrationale Zahlen sind alle reelle Zahlen außer rationalen).

Beim Studium von Abschlüssen mit einem natürlichen, ganzzahligen und rationalen Indikator haben wir uns jedes Mal ein bestimmtes „Bild“, eine „Analogie“ oder eine Beschreibung in vertrauteren Begriffen ausgedacht.

Ein natürlicher Exponent ist beispielsweise eine Zahl, die mehrmals mit sich selbst multipliziert wird;

...Null Leistung- dies ist sozusagen eine einmal mit sich selbst multiplizierte Zahl, das heißt, sie hat noch nicht begonnen, sich zu multiplizieren, was bedeutet, dass die Zahl selbst noch nicht einmal aufgetreten ist - daher ist das Ergebnis nur eine gewisse „Vorbereitung von eine Zahl“, nämlich eine Zahl;

...negativer ganzzahliger Exponent- es ist, als hätte ein gewisser „umgekehrter Prozess“ stattgefunden, das heißt, die Zahl wurde nicht mit sich selbst multipliziert, sondern dividiert.

Übrigens wird in der Wissenschaft oft ein Grad mit einem komplexen Exponenten verwendet, das heißt, ein Exponent ist nicht einmal eine reelle Zahl.

Aber in der Schule denken wir nicht über solche Schwierigkeiten nach, Sie haben die Möglichkeit, diese neuen Konzepte am Institut zu verstehen.

WO WIR SICHER SIND, DASS SIE GEHEN WERDEN! (wenn du lernst, wie man solche Beispiele löst :))

Zum Beispiel:

Entscheide dich selbst:

Analyse von Lösungen:

1. Beginnen wir mit der bereits üblichen Regel zur Anhebung eines Abschlusses auf einen Abschluss:

Sehen Sie sich jetzt die Partitur an. Erinnert er dich an etwas? Wir erinnern uns an die Formel zur abgekürzten Multiplikation der Differenz von Quadraten:

In diesem Fall,

Es stellt sich heraus, dass:

Antworten: .

2. Wir bringen Brüche in Exponenten auf die gleiche Form: entweder beide dezimal oder beide gewöhnlich. Wir bekommen zum Beispiel:

Antwort: 16

3. Nichts Besonderes, wir wenden die üblichen Eigenschaften von Graden an:

FORTGESCHRITTENES LEVEL

Definition von Grad

Der Grad ist ein Ausdruck der Form: , wobei:

  • Basis des Abschlusses;
  • - Exponent.

Grad mit natürlichem Exponenten (n = 1, 2, 3,...)

Eine Zahl mit der natürlichen Potenz n zu potenzieren bedeutet, die Zahl mit sich selbst zu multiplizieren:

Potenz mit ganzzahligem Exponenten (0, ±1, ±2,...)

Wenn der Exponent ist positive ganze Zahl Anzahl:

Erektion auf Nullleistung:

Der Ausdruck ist unbestimmt, weil einerseits bis zu jedem Grad dies ist und andererseits jede Zahl bis zum ten Grad dies ist.

Wenn der Exponent ist Ganzzahl negativ Anzahl:

(weil es unmöglich ist, zu teilen).

Noch einmal zu Nullen: Der Ausdruck ist im Fall nicht definiert. Wenn, dann.

Beispiele:

Grad mit rationalem Exponenten

  • - natürliche Zahl;
  • - ganze Zahl;

Beispiele:

Grad Eigenschaften

Um das Lösen von Problemen zu erleichtern, versuchen wir zu verstehen: Woher kommen diese Eigenschaften? Beweisen wir sie.

Mal sehen: was ist und?

A-Priorat:

Auf der rechten Seite dieses Ausdrucks erhält man also das folgende Produkt:

Aber per Definition ist dies eine Potenz einer Zahl mit einem Exponenten, das heißt:

Q.E.D.

Beispiel : Den Ausdruck vereinfachen.

Entscheidung : .

Beispiel : Den Ausdruck vereinfachen.

Entscheidung : Es ist wichtig, das in unserer Regel zu beachten Notwendig müssen auf der gleichen Grundlage stehen. Daher kombinieren wir die Grade mit der Basis, bleiben aber ein separater Faktor:

Noch ein wichtiger Hinweis: Diese Regel - nur für Potenzprodukte!

Das darf ich auf keinen Fall schreiben.

Wenden wir uns wie bei der vorherigen Eigenschaft der Definition des Grades zu:

Ordnen wir es so um:

Es stellt sich heraus, dass der Ausdruck einmal mit sich selbst multipliziert wird, das heißt, laut Definition ist dies die -te Potenz der Zahl:

Tatsächlich kann dies als "Einklammern des Indikators" bezeichnet werden. Aber das schaffst du nie im Ganzen:!

Erinnern wir uns an die Formeln für die abgekürzte Multiplikation: Wie oft wollten wir schreiben? Aber das ist nicht wahr, wirklich.

Macht mit negativer Basis.

Bis zu diesem Punkt haben wir nur diskutiert, was sein sollte Indikator Grad. Aber was soll die Basis sein? In Grad von natürlich Indikator die Grundlage kann sein irgendeine Nummer .

Tatsächlich können wir jede Zahl miteinander multiplizieren, egal ob sie positiv, negativ oder gerade ist. Lassen Sie uns darüber nachdenken, welche Zeichen ("" oder "") Grad positiver und negativer Zahlen haben werden?

Wird die Zahl beispielsweise positiv oder negativ sein? SONDERN? ?

Mit dem ersten ist alles klar: Egal wie viele positive Zahlen wir miteinander multiplizieren, das Ergebnis wird positiv sein.

Aber die negativen sind ein wenig interessanter. Schließlich erinnern wir uns an eine einfache Regel aus der 6. Klasse: „Minus mal Minus ergibt Plus.“ Das heißt, bzw. Aber wenn wir mit () multiplizieren, erhalten wir -.

Und so weiter bis ins Unendliche: Bei jeder weiteren Multiplikation ändert sich das Vorzeichen. Sie können diese einfachen Regeln formulieren:

  1. sogar Grad, - Zahl positiv.
  2. Negative Zahl erhöht auf seltsam Grad, - Zahl Negativ.
  3. Eine positive Zahl zu jeder Potenz ist eine positive Zahl.
  4. Null hoch jede Potenz ist gleich Null.

Bestimmen Sie selbst, welches Vorzeichen die folgenden Ausdrücke haben:

1. 2. 3.
4. 5. 6.

Hast du es geschafft? Hier sind die Antworten:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In den ersten vier Beispielen ist hoffentlich alles klar? Wir schauen uns einfach die Basis und den Exponenten an und wenden die entsprechende Regel an.

In Beispiel 5) ist auch nicht alles so beängstigend, wie es scheint: Es spielt keine Rolle, wie die Basis gleich ist - der Grad ist gleichmäßig, was bedeutet, dass das Ergebnis immer positiv sein wird. Nun, außer wenn die Basis Null ist. Die Basis ist nicht die gleiche, oder? Offensichtlich nicht, da (weil).

Beispiel 6) ist nicht mehr so ​​einfach. Hier müssen Sie herausfinden, was weniger ist: oder? Wenn Sie sich das merken, wird klar, dass die Basis kleiner als Null ist. Das heißt, wir wenden Regel 2 an: Das Ergebnis wird negativ sein.

Und wieder verwenden wir die Definition von Grad:

Alles ist wie immer - wir schreiben die Definition von Graden auf und teilen sie ineinander, teilen sie in Paare und erhalten:

Lassen Sie uns vor der Analyse der letzten Regel einige Beispiele lösen.

Berechnen Sie die Werte von Ausdrücken:

Lösungen :

Wenn wir den achten Grad nicht beachten, was sehen wir hier? Werfen wir einen Blick auf das Programm der 7. Klasse. Also denk daran? Das ist die abgekürzte Multiplikationsformel, nämlich die Differenz von Quadraten!

Wir bekommen:

Wir schauen uns den Nenner genau an. Es sieht sehr nach einem der Zählerfaktoren aus, aber was ist falsch? Falsche Reihenfolge der Begriffe. Wenn sie umgekehrt wären, könnte Regel 3 angewendet werden, aber wie macht man das? Es stellt sich heraus, dass es sehr einfach ist: Hier hilft uns der gerade Grad des Nenners.

Wenn Sie es mit multiplizieren, ändert sich nichts, oder? Aber jetzt sieht es so aus:

Die Begriffe haben auf magische Weise die Plätze gewechselt. Dieses "Phänomen" gilt für jeden Ausdruck in gleichem Maße: Wir können die Zeichen in Klammern frei ändern. Aber es ist wichtig, sich daran zu erinnern: alle Zeichen ändern sich gleichzeitig! Es kann nicht durch Änderung ersetzt werden, nur ein beanstandetes Minus an uns!

Kommen wir zurück zum Beispiel:

Und nochmal die Formel:

Also jetzt die letzte Regel:

Wie werden wir es beweisen? Natürlich, wie immer: Erweitern wir das Konzept des Abschlusses und vereinfachen es:

Nun, lassen Sie uns jetzt die Klammern öffnen. Wie viele Buchstaben werden es sein? mal durch Multiplikatoren - wie sieht es aus? Dies ist nichts anderes als die Definition einer Operation Multiplikation: Insgesamt stellte sich heraus, dass es Multiplikatoren gab. Das heißt, es ist per Definition eine Potenz einer Zahl mit einem Exponenten:

Beispiel:

Grad mit irrationalem Exponenten

Neben Informationen zu den Abschlüssen für das Durchschnittsniveau werden wir den Abschluss mit einem irrationalen Indikator analysieren. Alle Regeln und Eigenschaften von Graden sind hier genau die gleichen wie für einen Grad mit einem rationalen Exponenten, mit der Ausnahme, dass irrationale Zahlen per Definition Zahlen sind, die nicht als Bruch dargestellt werden können, wobei und ganze Zahlen sind (d.h , irrationale Zahlen sind alle reelle Zahlen außer rationale).

Beim Studium von Abschlüssen mit einem natürlichen, ganzzahligen und rationalen Indikator haben wir uns jedes Mal ein bestimmtes „Bild“, eine „Analogie“ oder eine Beschreibung in vertrauteren Begriffen ausgedacht. Ein natürlicher Exponent ist beispielsweise eine Zahl, die mehrmals mit sich selbst multipliziert wird; eine Zahl bis zum Grad null ist sozusagen eine einmal mit sich selbst multiplizierte Zahl, das heißt, sie hat noch nicht begonnen, sich zu multiplizieren, was bedeutet, dass die Zahl selbst noch nicht einmal aufgetreten ist - daher ist das Ergebnis nur a bestimmte „Vorbereitung einer Nummer“, nämlich eine Nummer; ein Grad mit einem ganzzahligen negativen Indikator - es ist, als ob ein gewisser „umgekehrter Prozess“ stattgefunden hätte, dh die Zahl wurde nicht mit sich selbst multipliziert, sondern geteilt.

Es ist äußerst schwierig, sich einen Grad mit einem irrationalen Exponenten vorzustellen (ebenso wie es schwierig ist, sich einen 4-dimensionalen Raum vorzustellen). Vielmehr ist es ein rein mathematisches Objekt, das Mathematiker geschaffen haben, um das Konzept eines Grades auf den gesamten Zahlenraum auszudehnen.

Übrigens wird in der Wissenschaft oft ein Grad mit einem komplexen Exponenten verwendet, das heißt, ein Exponent ist nicht einmal eine reelle Zahl. Aber in der Schule denken wir nicht über solche Schwierigkeiten nach, Sie haben die Möglichkeit, diese neuen Konzepte am Institut zu verstehen.

Was machen wir also, wenn wir einen irrationalen Exponenten sehen? Wir versuchen unser Bestes, um es loszuwerden! :)

Zum Beispiel:

Entscheide dich selbst:

1) 2) 3)

Antworten:

  1. Erinnere dich an die Quadratdifferenz-Formel. Antworten: .
  2. Wir bringen Brüche in dieselbe Form: entweder beide Dezimalzahlen oder beide gewöhnliche. Wir erhalten zum Beispiel: .
  3. Nichts Besonderes, wir wenden die üblichen Eigenschaften von Graden an:

ABSCHNITT ZUSAMMENFASSUNG UND GRUNDFORMEL

Grad heißt ein Ausdruck der Form: , wobei:

Grad mit ganzzahligem Exponenten

Grad, dessen Exponent eine natürliche Zahl ist (d. h. ganzzahlig und positiv).

Grad mit rationalem Exponenten

Grad, dessen Indikator negative und Bruchzahlen sind.

Grad mit irrationalem Exponenten

Exponent, dessen Exponent ein unendlicher Dezimalbruch oder eine Wurzel ist.

Grad Eigenschaften

Merkmale von Abschlüssen.

  • Negative Zahl erhöht auf sogar Grad, - Zahl positiv.
  • Negative Zahl erhöht auf seltsam Grad, - Zahl Negativ.
  • Eine positive Zahl zu jeder Potenz ist eine positive Zahl.
  • Null ist gleich jeder Potenz.
  • Jede Zahl hoch null ist gleich.

JETZT HAST DU EIN WORT...

Wie gefällt Ihnen der Artikel? Lassen Sie mich in den Kommentaren unten wissen, ob es Ihnen gefallen hat oder nicht.

Erzählen Sie uns von Ihren Erfahrungen mit den Power-Eigenschaften.

Vielleicht haben Sie Fragen. Oder Vorschläge.

Schreiben Sie in die Kommentare.

Und viel Erfolg bei deinen Prüfungen!