Что такое свет его состовляющие. Введение

Вы считаете, что знаете ответ? Вы уверены? Вы вообще свет видели когда-нибудь?

Да знаю я, знаю. , иначе бы вы это сейчас не читали. Но видели ли вы когда-либо кусок света? Чтоб в углу тихо лежал, ну или там в воздухе хотя бы висел. Если все же допустить, что свет состоит из частиц или из волн, то какого они размера? Насколько близко нужно к ним подобраться, чтобы их увидеть?

Ответ для самых нетерпеливых

Много лет назад ученым, работавшим со светом, постоянно задавали этот вопрос. Что такое свет — волна или частица?

Такой вот ретро-троллинг. По крайней мере, задававшие вопрос так считали. Они не знали правильного ответа, да он их и не интересовал обычно. Их интересовало то, как ученые будут выкручиваться.

Ученые тоже не знали единственно верного ответа. Даже для таких серьезных людей вопрос был непростым. Он занимал умы лучших физиков в течение нескольких столетий, начиная с Декарта, Гука и Гюйгенса в XVII веке, заканчивая Альбертом Эйншейном и Максом Планком в XIX-XX веках. Привело все это к принципу неопределенности Гейзенберга и теории де Бройля — Бома. Как писал Эйнштейн в 1938 году: «Но что такое свет в действительности? Волна или ливень фотонов? По-видимому, нет никаких шансов последовательно описать световые явления, выбрав только какую-либо одну из двух возможных теорий. Положение таково, что мы должны применять иногда одну теорию, а иногда другую, а время от времени и ту и другую. Мы встретились с трудностью нового рода. Налицо две противоречивые картины реальности, но ни одна из них в отдельности не объясняет всех световых явлений, а совместно они их объясняют!»

Так что ученые обычно отвечали: «Да». Или: «И то и другое». Или, если их совсем уж доставали: «Да какая нахрен разница?!» И все эти ответы были правильными.

Рассматривая различные варианты применения света, иногда более продуктивным будет считать его состоящим из частиц — фотонов. Иначе как бы лазер смог разрезать металл или стекло? В других случаях свет лучше рассматривать как волну. Возможность измерения длин волн электромагнитного излучения (в том числе и света) подарила человечеству радио, телевидение, рентгеновские аппараты, приборы ночного видения — и это лишь малая часть. Если б свет не был волной, то как бы он раскладывался в спектр при преломлении, образуя , или фокусировался с помощью линзы?

Большой фотонный коллайдер

Стоп. Какой-такой фотонный? Все же знают, что он адронный !

Ну хорошо, Большой адронный коллайдер. Но появился он в этой статье все равно не случайно. Раз вы меня поправили, то наверняка знаете, что БАК сталкивает между собой летящие со огромной скоростью части ядер атомов — протоны, а совсем не фотоны — частицы света. По крайней мере, в экспериментах с CMS. CMS — это вовсе не то, что вы подумали, а Компактный мюонный соленоид — универсальный детектор элементарных частиц, с помощью которого как раз и наблюдают столкновения протонов. Но что интересно, столкновения фотонов на нем тоже наблюдают. Косвенно и в намного меньших масштабах, чем у протонов, но наблюдают. Даже планируется постройка и установка двух новых специальных сенсоров для этой цели.

Протоны, вы что, не видите — у меня обед!

Когда протоны летят с огромной скоростью по трубе ускорителя, они испускают фотоны. Эти фотоны не начинают жить самостоятельной жизнью, а продолжают следовать за своими родителями. И когда два пучка протонов направляют для столкновения в специальную камеру, некоторые фотоны также сталкиваются друг с другом. Это видно по реакции породивших их протонов — они продолжают лететь с прежней скоростью, но их траектория немного меняется.

Таким образом, фотоны, «кванты света», являются частицами или во всяком случае ведут себя как частицы. Если бы это было не так, мы бы не смогли наблюдать результаты их столкновений. Так БАК стал еще и БФК.

Но куда делись волны?

Теперь, когда мы увидели, что фотоны, кванты света, являются частицами, значит ли это, что они и есть свет? То есть свет — это просто куча частиц? Типа невообразимо мелких пылинок, которые заполняют всю вселенную, ну или не всю, а куда смогли добраться.

Но мы знаем, что является также и волной, так как подвержен рефракции (или преломлению), являющейся свойством волны. Он, как и всякая волна, имеет длину — расстояние между гребнями (или впадинами), которое может быть измерено. По значениям длин волн мы выделяем разные цвета света, инфракрасное, ультрафиолетовое, рентгеновское излучение, радиоволны — весь диапазон электромагнитного излучения. Все это распространяется посредством фотонов, но также является волнами.

Раздвоение личности фотона

Ученые даже придумали специальный термин для объяснения возмутительного поведения фотонов: «корпускулярно-волновой дуализм». Это означает, что любая элементарная частица или квантовый объект имеют все признаки как волн, так и частиц. Причем не только фотоны, заметьте, а любая частица.

У фотона есть и другие занятные особенности. Например, он не имеет массы и способен существовать, только двигаясь со скоростью света. Но об этом, пожалуй, как-нибудь в другой раз.

И, наконец, правильный ответ!

Что такое свет? Волна и частица. Сразу. Одновременно.

Бывает, свет ведет себя так, как должна вести себя частица. А бывает — волна-волной, не отличишь. А иногда он проявляет себя и так и этак — одновременно. Потому что он и то и другое.

«И сказал Бог: «Да будет свет!», и стал свет». Всем известны эти слова из Библии и всем понятно: жизнь без него невозможна. Но что такое свет по своей природе? Из чего состоит он и какие имеет свойства? Что такое видимый и невидимый свет? Об этих и некоторых других вопросах поговорим в статье.

О роли света

Большинство информации обычно воспринимается человеком через глаза. Все разнообразие цветов и форм, которые свойственны материальному миру, открывается ему. А воспринимать через зрение он может лишь то, что отражает определенный, так называемый видимый свет. Источники света могут быть естественными, например солнце, или искусственные, созданные электричеством. Благодаря такому освещению стало возможным работать, отдыхать - словом, вести полноценный образ жизни в любое время суток.

Естественно, такой важный жизненный аспект занимал умы многих людей, живших в разные эпохи. Рассмотрим, что такое свет, под разными углами зрения, то есть с позиций различных теорий, которых придерживаются сегодня ученые мужи.

Свет: определение (физика)

Аристотель, задавшийся этим вопросом, считал свет определенным действием, которое распространялось в среде. Другого мнения придерживался философ из Древнего Рима, Лукреций Кар. Он был уверен, что все существующее в мире состоит из самых мелких частиц — атомов. И свет также имеет такое строение.

В семнадцатом веке эти взгляды легли в основу двух теорий:

  • корпускулярной;
  • волновой.

Сегодня известно, что все тела распространяют инфракрасный свет. Источники света, испуская инфракрасные лучи, имеют большую длину волны, но слабее чем красные.

Теплом является излучение инфракрасного спектра, исходящее от движущихся молекул. Чем выше их скорость, тем больше излучение, и такой объект становится теплее.

Ультрафиолет

Как только открыли инфракрасное излучение, Вильгельм Риттер, немецкий физик, начал изучать противоположную сторону спектра. Длина волны здесь оказалась меньше, чем у фиолетового цвета. Он заметил, как хлористое серебро чернело за фиолетом. И это происходило быстрее, чем действовала длина волны видимого света. Выяснилось, что такое излучение происходит тогда, когда менялись электроны на внешних атомных оболочках. Стекло способно поглощать ультрафиолет, поэтому при исследованиях применялись кварцевые линзы.

Излучение поглощается кожей человека и животного, а также верхними растительными тканями. Небольшие дозы ультрафиолета могут благоприятно сказаться на самочувствии, укрепляя иммунитет и создавая витамин D. Но большие дозы могут вызвать ожоги кожи и повредить глаза, а чересчур большие оказывают даже канцерогенное действие.

Применение ультрафиолета

Заключение

Если учитывать ничтожно малый спектр видимого света, становится понятным, что и оптический диапазон человеком изучен очень скудно. Одной из причин такого подхода является повышенный интерес людей к тому, что видно глазу.

Но из-за этого понимание остается на низком уровне. Весь космос пронизан электромагнитными излучениями. Чаще люди их не только не видят, но и не чувствуют. Но если энергия этих спектров увеличивается, то они могут вызывать недомогания и даже становятся смертельно опасными.

При изучении невидимого спектра становятся понятными некоторые, как их называют, мистические явления. Например, шаровые молнии. Бывает, что они, словно ниоткуда, появляются и внезапно исчезают. На самом деле просто осуществляется переход от невидимого диапазона в видимый и обратно.

Если использовать при проведении фотосъемок неба во время грозы разные камеры, то иногда получается запечатлеть переход плазмоидов, их появление в молниях и изменения, происходящие в самих молниях.

Вокруг нас совершенно неизведанный нами мир, который имеет вид, отличный от того, что мы привыкли видеть. Известное утверждение «Пока своими глазами не увижу, не поверю» давно потеряло свою актуальность. Радио, телевидение, сотовая связь и тому подобное давно доказали, что если мы чего-то не видим, то это совсем не значит, что этого не существует.

Первые научные гипотезы о природе света были высказаны в 17 веке. К этому времени были обнаружены два замечательных свойства света – прямолинейность распространения в однородной среде и независимость распространения световых пучков, т.е. отсутствие влияния одного пучка света на распространение другого светового пучка.

И. Ньютон в 1672 г. высказал предположение о корпускулярной природе света. Против корпускулярной теории света выступали современники Ньютона – Р. Гук и Х. Гюйгенс, разработавшие волновую теорию света.

Скорость света. Первым большим успехом в изучении природы света было измерение скорости света.

Самый простой способ измерения скорости света заключается в измерении времени распространения светового сигнала на известное расстояние.

Однако попытки осуществления такого рода опытов оканчивались неудачей, никакого запаздывания света даже при расстоянии до зеркала в несколько километров обнаружить не удалось.

Впервые экспериментально скорость света была определена астрономическим методом. Датским ученым Олафом Ремером (1644-1710) в 1676г. он обнаружил, что при изменении расстояния между Землёй и планетой Юпитер вследствие их обращения вокруг Солнца происходит изменение периодичности появления спутника Юпитера Ио его тени. В том случае, когда Земля находится по другую сторону от Солнца по отношению к Юпитеру, спутник Ио появляется из-за Юпитера на 22минуты позже, чем это должно произойти по расчетам. Но спутники обращаются вокруг планет равномерно, - следовательно, это запаздывание кажущееся. Ремер догадался, что причиной запаздывания появления спутника Юпитера при увеличении расстояния между Землёй и Юпитером является конечность скорости света. Таким образом, он смог определить скорость света.

Определение света

Свет – это электромагнитное излучение, невидимое для глаза. Свет становится видимым при столкновении с поверхностью. Цвета образуются из волн разной длины. Все цвета вместе образуют белый свет. При преломлении светового луча в призме или капле воды весь спектр цветов становится видимым, например, радуга. Глаз воспринимает диапазон видимого света, 380 - 780 нм, за пределами которого находятся ультрафиолетовый (УФ) и инфракрасный (ИК) свет.

Возникновение теории о свете

В XVII веке возникло две теории света волновая и корпускулярная. Корпускулярную теорию предложил Ньютон, а волновую Гюйгенс. Согласно представлениям Гюйгенса свет волны, распространяющиеся в особой среде эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Если по одной из теорий нельзя было объяснить какое либо явление, то по другой это явление можно было объяснить. Именно по этому эти две теории так долго существовали параллельно друг другу.

Например: прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция и интерференция, что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

Корпускулярная теория

Эмиссионная (корпускулярная): свет состоит из мелких частиц (корпускул), излучаемых светящимся телом. В пользу этого мнения говорила прямолинейность распространения света, на которой основана геометрическая оптика, однако дифракция и интерференция плохо укладывались в эту теорию. От сюда происходит волновая теория.

Волновая теория

Волновая: свет представляет собой волну в невидимом мировом эфире. Оппонентов Ньютона (Гука, Гюйгенса) нередко называют сторонниками волновой теории, однако надо иметь в виду, что под волной они понимали не периодическое колебание, как в современной теории, а одиночный импульс; по этой причине их объяснения световых явлений были мало правдоподобны и не могли составить конкуренцию ньютоновским (Гюйгенс даже пытался опровергнуть дифракцию). Развитая волновая оптика появилась только в начале XIX века.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял» и охотно допускал, что свет может быть связан и с волнами в эфире. В трактате, представленном в Королевское общество в 1675 году, он пишет, что свет не может быть просто колебаниями эфира, так как тогда он, например, мог бы распространяться по изогнутой трубе, как это делает звук. Но, с другой стороны, он предлагает считать, что распространение света возбуждает колебания в эфире, что и порождает дифракцию и другие волновые эффекты. По существу, Ньютон, ясно сознавая достоинства и недостатки обоих подходов, выдвигает компромиссную, корпускулярно-волновую теорию света. В своих работах Ньютон детально описал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света: «Учение моё о преломлении света и цветах состоит единственно в установлении некоторых свойств света без всяких гипотез о его происхождении». Волновая оптика, когда она появилась, не отвергла модели Ньютона, а вобрала их в себя и расширила на новой основе.

Несмотря на свою нелюбовь к гипотезам, Ньютон поместил в конце «Оптики» список нерешённых проблем и возможных ответов на них. Впрочем, в эти годы он уже мог себе такое позволить – авторитет Ньютона после «Начал» стал непререкаемым, и докучать ему возражениями уже мало кто решался. Ряд гипотез оказались пророческими. В частности, Ньютон предсказал:

    отклонение света в поле тяготения;

    явление поляризации света;

    взаимопревращение света и вещества.

Без света мы не смогли бы видеть окружающий нас мир, и тем не менее нам не известно точно, что же такое свет!

Мы знаем, что свет — это одна из форм энергии. Можно измерить его скорость и мы знаем его характеристики. Нам также известно, что белый цвет — это не отдельный цвет, это соединение всех цветов. Это называется «спектр».

Мы знаем, что цвет — это не сам объект, а лучи света, которые от него исходят. Зеленая бумага выглядит зеленой, потому что она поглощает все другие цвета, кроме зеленого, который и воспринимает наш глаз. Синее стекло пропускает только синий цвет, все остальные поглощаются им.

Солнечный свет — это энергия. Тепло солнечных лучей, сфокусированных линзой, превращается в огонь. Свет и тепло отражаются белыми поверхностями и поглощаются черными. Вот почему белая одежда холоднее черной.

Какова же природа света? Первым, кто попытался серьезно заняться изучением света, был Исаак Ньютон. Он считал, что свет состоит из корпускул, которые наподобие пуль выстреливаются источником света. Но некоторые характеристики света не могли быть объяснимы этой теорией.

Другой ученый, Гюйгенс, предложил другое объяснение природы света. Он разработал «волновую» теорию света. Он считал, что свет образует импульсы, или волны, наподобие того, как камень, брошенный в пруд, создает волны.

Почти 150 лет ученые спорили, является ли свет волнами или корпускулами. Большинство ученых приняло волновую теорию. Но затем последовал новые открытия, которые поставили под сомнение эту теорию.

Нам известно, что свет — одна из форм существования энергии. Подобно тому, как это имеет место с некоторыми другими формами энергии — теплом, радиоволнами, рентгеновскими лучами,—можно измерить его скорость, частоту и длину волны. Во многих других отношениях он ведет себя так же, как и эти формы энергии.

Мы знаем скорость света, она составляет примерно 300 000 километров в секунду. Таким образом, за год лучи света (в вакууме) проходят около 9 461 000 000 000 километров. Такое расстояние астрономы называют световым годом, и оно является главной единицей измерения бескрайних просторов космоса.

Было создано множество теорий, пытающихся объяснить, что такое свет и как он существует. В XVII веке знаменитый английский ученый Исаак Ньютон сделал предположение, что свет состоит из маленьких частичек — «корпускул», нечто вроде крошечных пуль, вылетающих из источника света, как из дула автомата. Однако его «корпускулярная» теория света оказалась неспособной объяснить некоторые особенности его поведения.

Примерно в это же самое время другой ученый — Христиан Гюйгенс — развил волновую теорию света. Его идея заключалась в том, что отражающее излучающее свет тело создает вокруг себя колебания или волны, похожие на круги волн, расходящиеся по спокойной поверхности пруда, если в него уронить камень.

Споры между сторонниками этих двух теорий не замолкали на протяжении двух веков. По мере того, как становились известны определенные особенности света, идея корпускулярной природы света казалось начала отмирать.

Однако развитие науки продолжалось, и, в конце концов, ученые пришли к выводу, что природа света может быть объяснена только объединением двух теорий. Экспериментальные исследования показали, что каждая из них может быть справедлива. Начало объединенной теории положил французский физик Луи де Бройль, который ввел понятие волна-частица. Таким образом, точного и однозначного ответа на вопрос, что такое свет, просто не существует.

Книга «Вселенная. Руководство по эксплуатации» - идеальный путеводитель по самым важным - и, конечно, самым упоительным - вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?». Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Г. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина! Настоящий подарок для всех, кого интересует современная наука, - от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук!

Когда радиоволна достигает вашей антенны, она преобразуется в звуковую волну (которая создается движением мембран в динамиках), а звуковая волна бьет вас в лицо со скоростью примерно 340 метров в секунду. Это означает, что за редкими исключениями радиосигналу требуется меньше времени, чтобы добраться от передатчика радиостанции до вашего радиоприемника, чем звуковой волне - чтобы добраться от динамика до вашего уха.


Наконец, есть еще длина волны - расстояние между соседними максимумом и минимумом, а заодно и характеристика цвета и энергии волны. Видимый свет имеет длину волны немного меньше одной тысячной доли миллиметра. Волны с более низкой энергией, например радиоволны, имеют длину больше сантиметра. Волны с более высокой энергией, например рентгеновские лучи, имеют длину волны 10 -11 - 10 -8 метра, а у гамма-лучей энергия еще выше. Их лучше избегать, поскольку, дай им волю, они сразу же наградят всех, до кого дотянутся, сверхъестественными способностями .

Кажется, что эти две картинки - волна и частица - очень разные. С другой стороны, оказывается, обе предсказывают в точности одно и то же. Например, мы знаем, что если посветить на зеркало, то свет отразится от зеркала и будет воспринят глазом.

Отражение очень легко объясняется представлением о частицах. Если вы хоть немного похожи на нас, то распространенная игра «погонять мяч с ребятами» сводится для вас к бросанию теннисного мячика в дверь гаража. Вялая подача, громкий «бум» и неловкий отскок - и мячик снова у вас в руке. Если вы сосредоточитесь очень сильно, то, вероятно, вспомните, как вам объясняли про мячик: «Угол падения равен углу отражения». А может быть, и нет. Может быть, если вы сосредоточитесь очень сильно, вы услышите главную тему из «Индианы Джонса». Тогда поверьте нам на слово. Вы знаете все об отражении фотонов. Если вы замените теннисный мячик фотоном, а гаражную дверь - зеркалом, то прекрасно опишете свет.

Разумеется, волна отражается точно так же. Представьте себе устройство скрипки или концертного зала. Акустика как таковая определяется тем, что происходит со звуковой волной, когда она отражается от стен комнаты или другого пустого пространства. Причем в точности как в случае с частицей отражение света подчиняется волшебному соотношению - «угол падения равен углу отражения».

Представляется, что все эти споры о частицах и волнах не более чем софистика: ведь обе гипотезы объясняют отражение совершенно одинаково. Но не беспокойтесь - волны и частицы объясняют одинаково отнюдь не все явления.

Для нас (и для Гюйгенса) волна интересна и полезна тем, что две волны способны интерферировать друг с другом. Бросьте в спокойный пруд пару камешков - и вы поймете, что мы имеем в виду.

Физические феномены можно объяснять как угодно, но они не отвечают на важный вопрос: из чего состоит свет - из электромагнитных волн или из частиц? Этот спор тянулся сотни лет, до самого XX века, когда было объявлено, что победила дружба, - примерно как в конкурсе самодеятельности в детском саду. Чтобы понять, как это происходит, вернемся к нашему герою - мистеру Джекилу.

После утомительного дня, посвященного бросанию снежков и невинным шуткам со стражами правопорядка, доктор Джекил возвращается домой, где у него устроена лаборатория, чтобы предаться новым экспериментам. Поскольку там у него в распоряжении имеются более цивилизованные научные аппараты, он может провести опыт Юнга с двойной щелью как положено. То есть вместо заборов и снежков он берет экран с тонкой вертикальной щелью и светом из лазерного источника. За передним экраном стоит задний проекционный экран, на котором мы видим световые узоры. Ну, как вы думаете, что увидит доктор Джекил?

Тут и думать нечего. Он увидит на дальнем экране яркую вертикальную линию.

С другой стороны, если он прорежет в переднем экране две щели, картина несколько усложнится.

Тут доктор Джекил обнаруживает, что в нем пробудился зверь - мистер Хайд. Свет проходит сквозь обе щели, и волна из одной интерферирует с волной от другой, отчего на проекционном экране появляется сложный узор.

Вот как выглядел сверху аппарат с двумя щелями, согласно оригинальным заметкам Юнга.


Свет проходит сквозь щели А и В, достигает противоположного экрана и создает яркие пятна в точках С, D, Е и F (а также в точках выше и ниже, где Юнг обрывает схему). Знакомая картина? Как будто вы бросили камешки в пруд в точках А и В? Просто это более точная версия того, как выглядят интерферирующие между собой волны.

Даже если вы ничего не вынесете из этой дискуссии, вы должны знать, что множество ярких линий - верный признак того, что мы имеем дело с интерференцией. Чтобы интерферировать друг с другом, лучи света должны проходить и через правую, и через левую щели одновременно, а иначе у нас не получится сложного рисунка, который мы видим на противоположном экране.

В отличие от отражения, получить интерференцию от частиц никак не получается. Если взять в каждую руку по бильярдному шару и столкнуть их, то не получится мест, где шары интерферируют. Складываются и интерферируют только волны.

Итак, вот вам простое практическое руководство:

Две яркие линии = как частицы (Джекил);

Много ярких линий = как волны (Хайд).

<<< Назад
Вперед >>>