Коэффициент теплоотдачи при кипении воды. Режимы кипения жидкости

Кипение –процесс интенсивного образования пара внутри объема жидкости при температуре насыщения или вышеэтой температуры. При кипении поглощается теплота фазового перехода, поэтому для осуществления стационарного процесса кипения необходим повод теплоты (см. формулу (5.4)).Различают поверхностное и объемное кипение. Объемное кипение жидкости встречается достаточно редко (например, при резком уменьшении давления) и, в этом случае, температура жидкости становится больше температуры насыщения при данном давлении. В нашем курсе будем рассматривать только теплообмен при кипении на твердых поверхностях или поверхностное кипение. Процесс кипения зависит от граничных условий теплообмена, давления среды, физических свойств жидкости, пара и твердой стенки, состояния твердой поверхности, геометрии системы, режима движения жидкости и т.д. Поэтому разработать математическую модель процесса кипения не представляется возможным и все сведения о механизме кипения получены опытным путем. При этом используется следующая классификация видов кипения:

По роду или режиму кипения – пузырьковое или пленочное;


По типу конвекции – при свободной (в большом объеме) или при вынужденной;

По расположению поверхности кипения – у вертикальной, наклонной или горизонтальной поверхности;

По характеру – неразвитое, неустойчивое, развитое.

В процессе теплоотдачи в кипящей жидкости формируется температурное поле (рис.5.6 ,б). При этом жидкость оказывается перегретой выше температуры насыщения, соответствующей давлению в жидкости.

При кипении на твердых поверхностях можно выделить две области с разным по характеру изменением температурного поля: тепловой пограничный слой и тепловое ядро в жидкости.

Тепловой пограничный слой –весьма тонкий слой жидкости,прилегающий непосредственно к поверхности стенки,впределах которого сосредоточено практически все изменение температуры жидкости: от температуры поверхности до температуры в ядре потока (см. рис.5.6).Тепловое ядро жидкости – вся остальная жидкость за пределами теплового пограничного слоя.В зависимости от конкретных условий теплообмена перегрев жидкости вблизи стенки

или перегрев стенки может составлять величину 5 ÷ 35 °C. Дело в том, что паровые пузырьки зарождаются не в любой точке поверхности теплообмена, а только в, так называемых, центрах парообразования – микровпадинах (трещинах, кавернах и т.п.), в которых сила поверхностного натяжения жидкости минимальна.



Рис.5.6. Пример распределения температуры в объеме кипящей воды (T w =111,8 0 C, p н =1 бар):

а – картина процесса кипения; б – распределение температуры; 1 – поверхность теплообмена (стенка); 2 – насыщенный водяной пар; 3 – поверхность воды; 4 – всплывающие паровые пузыри; 5 – внешняя граница пограничного слоя; T пов.ж – температура поверхности жидкости; T w – температура поверхности теплообмена (стенки); T н – температура насыщения жидкости при заданном давлении; p н – давление насыщения; δ пс – толщина пограничного слоя; Q –тепловой поток от стенки к воде; G п – массовый расход пара

Для того чтобы паровой пузырь образовался в микровпадине, необходимо, чтобы ее размеры были больше некоторого минимального или критического радиуса пузырька:


, (5.25)

где – сила поверхностного натяжения жидкости при температуре насыщения, Н/м; – перепад давления между паром в пузыре (p п) и окружающей его жидкостью (p н). Перепад давления рассчитывают по формуле

, (5.26)

в которой r– скрытая теплота парообразования,Дж/кг; p н – давление насыщения пара, Па; – перепад температур между стенкой и жидкостью, ºC (K); R г – газовая постоянная, Дж/(кг·К); T н – температура насыщения, К.


Заметим, что с увеличением перегрева стенки и ростом давления насыщения p н критически радиус

парового пузыря уменьшается и впадины меньших размеров

могут служить центрами парообразования, что в итоге приводит к интенсификации кипения.

Кризисы кипения.

Первый кризис кипения связан с переходом режима от пузырькового к пленочному. При этом происходит резкое падение теплоотдачи и рост температуры теплоотдающей поверхности (см. рисунок). Максимальный удельный тепловой поток при пузырьковом кипении называют первым кризисом кипения qкр1. Его значение очень важно для правильного проектирования и безаварийной эксплуатации современных эффективных теплообменных аппаратов. Коэффициент теплоотдачи в момент начала кризиса кипения (Вт/м2×К):


(4.1)

где Dtкр1 – критический температурный напор, К;

Для воды при атмосферном давлении qкр1 = 1,2 × 106 Вт/м2; Dtкр1 = 20 ¸ 30 К. Наибольшие значения критический тепловой поток имеет при Рн = (0,3…0,4) Ркр, для воды это Рн = 0,35× 221 @ 77 бар, где Ркр @ 221 бар.

Кривая кипения воды при Р = 1 бар:

о – удельный тепловой поток q, Вт/м2;

D – коэффициент теплоотдачи a, Вт/м2×К

Гидродинамическая трактовка кризиса кипения основана на предположении, что кризис вызывается динамической неустойчивостью двухфазного кипящего слоя, определяемой соотношением сил тяжести, поверхностного натяжения и динамического напора потока. Тогда критический тепловой поток (Вт/м2):

Эта зависимость справедлива для кипения в большом объеме при условии свободного движения жидкости.

Второй кризис кипения происходит в начале обратного перехода от пленочного режима кипения к пузырьковому. Как видно из рисунка, это

происходит при минимальной тепловой нагрузке.

При этом паровая пленка внезапно разрушается и температура поверхности резко снижается. Эта минимальная тепловая нагрузка при пленочном кипении называется второй критической плотностью теплового потока qкр2, соответствующий ей температурный напор Dtкр2 отвечает минимальной точке на кривой кипения рисунка.

Величина qкр2 существенно меньше qкр1 и для воды при Р = 1 бар составляет qкр2 » 3,5×104 Вт/м2. В работе высказано предположение о том, что критическая скорость кипения пропорциональна скорости всплывания больших деформированных пузырей, откуда [Вт/м2]:

Это простое соотношение достаточно хорошо соответствует экспериментальным данным.

Кипение - процесс парообразования, сопровождающийся бурным выделением пузырьков пара; это один из наиболее сложных процессов, обеспечивающих наибольшую интенсивность теплообмена. Особенности процесса рассмотрим сначала на примере кипения в большом объеме, хотя такое кипение не очень часто встречается в технике.

Если рассматривать отдельный пузырек пара внутри кипящей жидкости, можно отметить, что со стороны жидкости на пар действует не только сила давления р н, но и дополнительная сила, создаваемая поверхностным натяжением жидкости

где R - радиус пузырька; с - коэффициент поверхностного натяжения жидкости. Таким образом, существование и рост пузырька возможны только тогда, когда жидкость имеет температуру, несколько большую, чем температура насыщения, т.е. перегрета настолько, чтобы уравновесить величину Ар =а/2 R. В таком случае при испарении объем пузырька будет расти, а давление в нем - постепенно приближаться к р н.

Экспериментальные исследования полностью подтверждают эти рассуждения. На рис. 2.61 показаны образование, отрыв и всплытие пузырьков пара и изменение температуры внутри кипящей жидкости. Из рисунка видно, что заметный перегрев имеет место только в пристенном слое жидкости, где сильно проявляется влияние ее теплопроводности и где находится зона возникновения пузырьков. В основном же объеме жидкости в результате активного перемешивания температура жидкости практически одинакова и степень перегрева незначительна.

Наибольший перегрев возникает в зоне непосредственного контакта жидкости с горячей стенкой: At - t c - / н; здесь At - q/a, и величина этого перегрева зависит от передаваемого теплового потока q.

При небольших q или в начале кипения, когда перегрев жидкости еще небольшой, возникающие пузырьки пара очень малы и силы поверхностного натяжения не позволяют им расти, поскольку перегрев жидкости недостаточен. В результате возникает так называемое пристенное кипение, когда образующиеся пузырьки пара здесь же конденсируются и до поверхности практически не доходят.

В тех местах поверхности, где имеются микротрещины, микронеровности, царапины или пузырьки выделившегося растворенно-

Р и с. 2.61. Кипение в большом объеме и зависимость t =J{h)

го воздуха, перегрев жидкости будет большим и возникнут регулярные центры парообразования. С увеличением тепловой нагрузки q число таких центров и перегрев жидкости растут и начинается обычное кипение. Форма пузырька зависит от того, смачивает или не смачивает (это бывает реже) жидкость поверхность теплоотдачи (рис. 2.62). С течением времени объем пузырька растет, и когда подъемные силы станут больше сил сцепления, произойдут отрыв и всплытие пузырька. На его месте образуется, растет и вновь отрывается новый пузырек.

Образование, рост и отрыв пузырьков приводят к значительной турбулизации слоя жидкости, непосредственно соприкасающегося со стенкой. Именно этим объясняется очень высокая интенсивность теплоотдачи при кипении. Ведь во всех остальных случаях возле стенки всегда находится неподвижный слой жидких комков, а здесь и этот слой находится в движении.

С увеличением q увеличиваются перегрев жидкости и число центров парообразования, возрастают интенсивность кипения и величина а. При некоторой критической нагрузке q Kp число центров парообразования возрастает настолько, что пузырьки пара как бы отгораживают жидкость от стенки. Образуется нестабильная пленка пара, через которую теплота передается в основном теплопроводностью. При этом величина а резко уменьшается, так как пар имеет малую теплопроводность. Такое кипение называют пленочным, а переход к нему - кризисом кипения. На рис. 2.63 приведена так называемая кривая кипения, показывающая, как изменяется величина ос при изменении q. Из рисунка видно, что переход к пленочному кипению, происходящий при нагрузке q KpX , сопровождается резким уменьшением а. Обратный же переход от пленочного кипения к пузырьковому происходит при другой, гораздо меньшей нагрузке q Kp2 .

Кризис кипения - явление нежелательное и очень опасное, так как приводит к перегреву материала стенки и уменьшению ее механической прочности. Действительно, записав известную формулу

Рис. 2.62.

видим, что при практически неизменной величине q резкое уменьшение а возможно лишь при таком же увеличении разницы t c - t H , т. е. при увеличении t c . С увеличением t c прочность стенки уменьшается, и она может не выдержать действующих на нее механических напряжений. Кризис кипения явился причиной многих трагических аварий в теплоэнергетике, включая и Чернобыльскую катастрофу. Поэтому при проектировании парогенерирующего оборудования назначают рабочую тепловую нагрузку q так, чтобы она не превышала величины q Kp2 . Это возможно, если перегрев жидкости невелик и температура ее не превышает температуры предельного перегрева / пп, поскольку полный контакт жидкости со стенкой возможен только при t c / пп. Величина / пп для разных жидкостей определена экспериментально и приведена в справочниках . Известны и критериальные уравнения, позволяющие рассчитать величину q Kp2 .

Рис. 2.63.

Величину коэффициента теплоотдачи при пузырьковом кипении воды обычно рассчитывают по эмпирической формуле

где р н - давление насыщения, МПа; q - плотность теплового потока при кипении, Вт/м 2 .

Для расчета кипения других жидкостей предложены следующие критериальные уравнения:

Здесь - коэффициент поверхностного натяжения конденсата; р" и р" - плотности жидкости соответственно на линии насыщения и сухого насыщенного пара. Все остальные физические константы определяют для жидкости по температуре / н.

Различают теплоотдачу при кипении жидкости в условиях свободной конвекции и теплоотдачу при кипении в условиях вынужденного движения жидкости в трубах. При кипении большого объема жидкости на горизон-тальной поверхности в условиях свободной конвекции большая часть жидкости по высоте имеет температуру, которая только на 0,4¸0,8 о С превышает температуру насыщения (кипения) Т S . Жидкость перегревается относительно температуры насыщения в тонком слое вблизи стенки. Перегрев возможен потому, что здесь нет постоянной поверхности раздела жидкости и пара. Процесс парообразования может происходить только после возникновения паровых пузырьков. Такие пузырьки возникают в центрах парообразования. Центрами парообразования могут служить шероховатости поверхности нагрева, а также пузырьки воздуха или газа, выделяющегося из жидкости или твердой стенки при нагреве. Вероятность возникновения паровых пузырьков увеличивается с ростом степени перегрева жидкости. Поэтому паровые пузырь-ки должны возникать, прежде всего, на поверхности нагрева или вблизи от нее. При значительном перегреве паровые пузырьки могут возникать и внутри жидкости. Пар имеет меньшую теплопроводность, чем жидкость, поэтому вблизи пузырька перегрев жидкости, на поверхности нагрева, увеличивается. Размеры пузырька быстро растут, и под действием подъемной силы он отрывается от стенки и поднимается к свободной поверхности жидкости.

Диаметр парового пузырька в момент отрыва от твердой поверхности зависит от разности плотностей жидкости и насыщенного пара при температуре кипения , от коэффициента поверхностного натяжения жидкости s и от краевого угла q, характеризующего смачиваемость поверхности жидкостью. Этот диаметр определяют по формуле

(6.1)

где g – ускорение свободного падения.

Паровые пузырьки, проходя через жидкость, перемешивают ее, что интенсифицирует теплообмен. Поэтому частота отрыва пузырьков и число действующих центров парообразования определяют интенсивность теплообмена при кипении. Исследование процесса кипения воды показывает, что около 95 % пара образуется во время движения пузырей и только 5 % – во время пребывания их на поверхности нагрева.

Величина температурного напора DТ=Т С -Т Ж @ Т C -T S определяет механизм парообразования и интенсивность теплообмена. Впервые зависимость плотности теплового потока от температурного напора при кипении воды опытным путем получил японский ученый Нукияма. Эта зависимость (кривая Нукиямы), а также зависимость коэффициента теплоотдачи от того же напора изображены на рис. 6.1.

Как видно на рис. 6.1, в зоне А при небольших температурных напорах количество отделяющихся от поверхности нагрева пузырьков невелико, и они не способны еще существенно перемешать жид-кость. В этих условиях теплоот-дача определяется только свобод-ной конвекцией жидкости, и коэффициент теплоотдачи слабо увеличивается с ростом DТ, такой режим называют конвективным. Для воды при давлении 1 бар (760 мм рт. ст.) конвективный режим наблюдается до DТ@5 0 С, а плотность теплового потока достигает около 6000 вт/м 2 . В зоне В при увеличении температурного напора растет число действующих центров парообразования несколько увеличивается частота отрыва пузырьков. Они интенсивно перемешивают жидкость и наступает режим развитого пузырькового кипения, при котором коэффициент теплоотдачи и плотность теплового потока резко возрастают. Режим, отвечающий максимальной плотности теплового потока, называют первым критическим. Этому режиму, например, для воды, кипящей при атмосферном давлении, отвечает критический температурный напор равен DТ КР1 =25 0 С, критический коэффициент теплоотдачи a КР1 =5,8×10 4 вт/м 2 ×град и критическая плотность теплового потока q КР1 =1,45 ×10 6 вт/м 2 , т. е. при этих условиях плотность теплового потока больше, чем в начале развитого пузырькового кипения в 250 раз. Зона С может быть реализована в опытах только при граничных условиях первого рода, когда на поверхности задается температура или температурный напор DТ. Например, при нагреве поверхности газовой горелкой с регулируемой температурой пламени. В этом случае число центров парообразования становится большим, паровые пузырьки объединяются в пленку, которая покрывает отдельные участки поверхности теплообмена, отделяя на этих участках поверхность от жидкости слоем пара, что приводит к уменьшению плотности теплового потока. Пленки пара непрерывно разрушаются и уходят от поверхности нагрева в виде больших пузырей.. При увеличении температурного напора DТ поверхность этих пленок увеличивается, коэффициент теплоотдачи и плотность теплового потока уменьшаются вследствие тепловой изоляции поверхности нагрева от жидкости пленкой малотеплопроводного пара. Такое кипение называют переходным. Наконец, при некотором температурном напоре DТ КР2 отдельные пленки пара объединяются, покрывая всю поверхность теплообмена пленкой пара. При этом плотность теплового потока достигает своего минимального значения, которое называют второй критической нагрузкой q КР2 . При этом коэффициент теплоотдачи в 20–30 раз меньше его максимального значения. Когда пленка пара покрывает всю поверхность нагрева (зона D), условия теплообмена стабилизируются и при увеличении температурного напора DТ коэффициент теплоотдачи остается почти неизменным. Плотность теплового потока при этом увеличивается пропорционально DТ. Такое кипение называют пленочным.

При задании на поверхности теплообмена плотности теплового потока (т.е. граничных условий второго рода), например, электрообогрев поверхности, тепловыделяющие элементы кипящих ядерных реакторов зону С переходного кипения реализовать не удается. Увеличение плотности потока тепла больше, чем первая критическая плотность теплового потока q КР1 , приводит к скачкообразному переходу кипения в область пленочного режима. При этом резко возрастает DТ и, следовательно, температура стенки, что, возможно, ее разрушение. Поэтому в эксплуатации подобных установок желательно реализовать температурные напоры несколько меньше критических, но близкие к ним, для получения высокой интенсивности теплообмена. Для увеличения зоны температурных напоров вблизи критической тепловой нагрузки и, следовательно, уменьшения опасности «срыва» в пленочный режим кипения, что особенно опасно в случае ядерных кипящих реакторов, предложено поверхность теплообмена оребрять . Это увеличивает плотность теплового потока в основании ребра в 7– 8раз, по сравнению с q кр1 , и увеличивает зону температурных напоров DТ кр ~ в 10 раз.

Для расчета коэффициента теплоотдачи при пузырьковом кипении жидкостей на не оребренных поверхностях используют уравнение подобия С.С. Кутателадзе и В.М. Боришанского

(6.2)

Ими же получена формула для первой критической тепловой нагрузки

(6.3)

где q – плотность теплового потока;

p – давление;

r – теплота парообразования.

За определяющую температуру в этих уравнениях принята температура кипения жидкости.

Для конкретных жидкостей расчетные формулы существенно упрощаются. Например, для воды при абсолютном давлении p=1,01¸27,5 бар

(6.4)

Для этилового спирта при абсолютном давлении p=1,01¸7,85 бар

(6.5)

В этих формулах плотность теплового потока измеряется q – вт/м 2 , а давление p – бар. Эти формулы справедливы только для жидкостей, смачивающих твердые поверхности. При больших давлениях интенсивность теплообмена повышается, так как увеличивается число центров парообразования и частота отрыва пузырьков. Форма и размеры поверхности практически не влияют на коэффициент теплоотдачи при кипении. Высота слоя жидкости также не влияет на интенсивность теплоотдачи, если она больше 20¸30 мм. Материал и состояние поверхности теплообмена влияют на теплоотдачу только в начальный период ее работы. По истечении некоторого времени работы поверхность приобретает «собственную» шероховатость, которая зависит от природы жидкости.

Первая критическая плотность теплового потока зависит от шероховатости и ориентации поверхности нагрева. Шероховатость повышает плотность теплового потока, а для вертикальной стенки критическая нагрузка больше, чем для горизонтальной.

Теплоотдача при кипении в условиях вынужденного движения жидкости в трубах имеет ряд особенностей, обусловленных изменением температуры стенки и жидкости вдоль трубы. Температура кипения жидкости по длине трубы уменьшается благодаря уменьшению давления из-за гидравлического сопротивления.

По условиям теплообмена трубу по длине условно можно подразделить на три участка. Во входном участке температура стенки трубы меньше температуры насыщения. Протекая через этот участок, жидкость подогревается, и теплообмен не сопровождается кипением. Это обычная теплоотдача при вынужденной конвекции жидкости. На втором участке трубы температура стенки превышает температуру насыщения. Но ядро потока жидкости не достигло еще этой температуры. Пузырьки пара, отделяющиеся от поверхности теплообмена, частично или полностью конденсируются в центральной части потока. Это участок кипения недогретой жидкости. К началу третьего участка центральная часть потока достигает температуры насыщения. На этом участке имеет место развитое пузырьковое кипение. Паросодержание на этом участке может достигать большой величины. По трубе здесь движется двухфазный поток. Увеличение паросодержания сопровождается ростом скорости потока и градиента давления вдоль трубы. При кипении воды влияние паросодержания на коэффициент теплоотдачи можно учесть по формуле

(6.6)

где Di – разность энтальпий на входе и выходе из трубы.

Зависимость коэффициента теплоотдачи при кипении от скорости потока жидкости определяется величиной тепловой нагрузки. Коэффициент теплоотдачи при небольшой тепловой нагрузке целиком определяется условиями движения жидкости и практически не зависит от величины плотности теплового потока. При очень больших плотностях теплового потока влиянием условий движения жидкости на теплоотдачу можно пренебречь, так как коэффициент теплоотдачи целиком определяется процессом кипения. Однако существует область режимов, где влияния движения жидкости и процесса кипения на теплообмен сопоставимы, и коэффициент теплоотдачи зависит от обоих факторов. Опытные данные по теплоотдаче кипящих жидкостей, движущихся по трубам, при паросодержании, не превышающим 70 %, Д. А. Лабунцов обработал в виде зависимости

(6.7)

где a – коэффициент теплоотдачи кипящей жидкости с учетом ее вынужденного движения;

a w – коэффициент теплоотдачи однофазной не кипящей жидкости при ее скорости w;

a q – коэффициент теплоотдачи при развитом пузырьковом кипении.

Оказалось, что при a q / a w < 0,5 процесс кипения не влияет на теплообмен, и поэтому можно принять a = a w . При a q / a w > 2 интенсивность теплообмена определяется только кипением, и поэтому в расчетах полагают a = a q . Для области, где коэффициент теплоотдачи зависит от скорости потока жидкости и тепловой нагрузки (a q /a w = 0,5¸2) рекомендуется следующая интерполяционная формула

(6.8)

При кипении коэффициент теплоотдачи зависит от содержания растворенных в жидкости газов. Пузырьки газа служат центрами парообразования и поэтому интенсифицируют теплообмен. Рассмотренные выше уравнения относятся к дегазированной жидкости. При содержании газа 0,06¸0,3 см 3 / л коэффициент теплоотдачи увеличивается на 20¸60 % по сравнению с кипением дегазированной жидкости. Критическая плотность теплового потока q КР1 также зависит от скорости потока жидкости, причем эта зависимость имеет место даже в случаях, при которых коэффициент теплоотдачи от скорости не зависит. Вынужденное движение жидкости вдоль поверхности нагрева затрудняет образование паровой пленки. Поэтому с увеличением скорости течения жидкости критическая тепловая нагрузка возрастает. При кипении недогретой жидкости критическая плотность теплового потока больше, чем при кипении жидкости, имеющей температуру насыщения. В этом случае поступление недогретой жидкости из ядра потока в пристеночный слой способствует разрушению паровой пленки. Влияние недогрева жидкости до температуры насыщения на критическую плотность теплового потока q КР1 можно оценить по эмпирической формуле

(6.9)

где – критическая плотность теплового потока при кипении недогретой жидкости;

J = T S – Т Ж;

Т Ж – средняя температура жидкости;

с – теплоемкость жидкости.

На величину критической плотность теплового потока q КР1 влияет пульсация скорости потока жидкости. За счет этих пульсаций скорости, как показывают опыты, критическая плотность теплового потока может уменьшиться в два раза.


Похожая информация.


Кипением называется парообразование, характеризующееся воз­никновением новых свободных поверхностей раздела жидкой и паро­вой фаз внутри жидкости, нагретой выше температуры насыщения.

Характерной особенностью процесса кипения является образова­ние пузырьков пара. Различают кипение жидкости поверх­ностное и объемное .

Поверхностное кипение возникает тогда, когда температура жидкости выше температуры насыщения при данном давлении, а температура поверхности теплообмена выше темпе­ратуры кипящей жидкости. Образование пузырьков пара происходит непосредственно на поверхности теплообмена.

Объемное кипение может происходить при значительном перегреве жидкости от­носительно температуры насыщения при данном давлении. Пузыри пара возникают во всем объеме.

Наиболее распространено поверхностное кипение.

Как показывают наблюдения, пузырьки пара зарождаются только на обогреваемой поверхности в перегретом пограничном слое жидко­сти и только в отдельных точках этой поверхности, называемых цент­рами парообразования , которымияв­ляются неровности самой стенки, частицы накипи и выделяющиеся из жидкости пузырьки газа. Количество образующихся пузырьков пара будет тем больше, чем больше центров парообразования, чем больше перегрет пограничный слой, чем больше температурный напор или чем больше тепловая нагрузка поверхности нагрева.

При достижении определенных размеров пузырьки пара отрыва­ются от поверхности и всплывают вверх, а на их месте возникают новые пузырьки. Величина пузырьков пара в значительной степени зависит от смачивающей способности жидкости. Если жид­кость хорошо смачивает поверхность теплообмена, то пузырек пара легко отрывается. Если кипящая жидкость не смачивает поверхность, то пузырек пара имеет толстую ножку, и отрывается только часть пузырька, а ножка остается на по­верхности.

Рост пузырьков до от­рыва от обогреваемой поверхности и движение ихпосле отрыва вызывают ин­тенсивную циркуляцию и перемешивание жидкости в пограничном слое, вследствие чего резко возрастает интенсивность теплоотдачи от поверхности к жидкости. Такой режим называется пу­зырьковым кипением .

С возрастанием температурного напора или с увеличением плотно­сти теплового потока число центров парообразования непрерывно уве­личивается и, наконец, их становится так много, что отдельные пузырь­ки пара сливаются в сплошной паровой слой, который периодически в некоторых местах разрывается, и образовавшийся пар прорывается в объем кипящей жидкости. Такой режим кипения называется пле­ночным. Сплошной паровой слой ввиду малой теплопроводности пара пред­ставляет большое термическое сопротивление. Теп­лоотдача от стенки к жидкости резко падает, а температурный напор значительно возрастает. Коэффициент теплоотдачи при этом сни­жается и если количество передаваемой теплоты q остается неизмен­ным, то, как следует из уравнения q =a(t с t ж) ,при постоянной температуре жидкости должно произойти значительное увеличение температуры стенки t c . Увеличение температуры поверхности может привести к пережогу стенки и к аварии аппарата.



Как показывают исследования, при кипении жидкости в большом объеме в условиях свободного движения коэффициент теплоотдачи зависит от физических свойств жидкости, температурного напора и давления. На рисунке показан график изменения коэффициента теплоотдачи воды при кипении и зависимость плотности теплового потока от Dt . При малых температурных напорах значение коэф­фициента теплоотдачи определяется условиями свободной конвекции однофазной жидкости (участок АВ ). При увеличении Dt коэффициент теп­лоотдачи быстро возрастает и проис­ходит интенсивное пузырьковое ки­пение. В точке К наступает изменение режима кипения. Пузырьковое кипе­ние переходит в пленочное и при дальнейшем повышении Dt коэффи­циент теплоотдачи резко падает. Этот переход сопровождается таким интенсивным образованием пузырьков, что они не успевают отрываться и обра­зуют сплошную паровую пленку, ко­торая изолирует жидкость от стенки, а кипение переходит в пленочное. Величины Dt ,aи q ,соответствующие моменту перехода пузырько­вого режима кипения в пленочный, называются критическими.

Для расчета коэффициента теплоотдачи при пузырьковом кипении воды (при давлении р = 0,02-8 МПа) рекомендуются простые расчетные формулы:

a = 3,15р 0,15 q 0,7 ; a = 46Dt 2,33 р 0,5 ,

где Dt = t с – t ж – температурный напор; р – давление пара, бар; q – плотность теплового потока, Вт/м 2 .