Космология критическая плотность вещества. Расчёт критических, теплофизических свойств и молекулярной массы веществ, Учебно-методическое пособие

ПРОГНОЗИРОВАНИЕ КРИТИЧЕСКОГО ОБЪЕМА

где v - парциальные вклады, значения которых, выраженные в кубических см3 /моль, приведены в табл. 5.2. Расчет достаточно прост и не требует дополнительного комментария.

ПРОГНОЗИРОВАНИЕ АЦЕНТРИЧЕСКОГО ФАКТОРА

Фактор ацентричности  был предложен в 1955 г. Питцером в качестве коррелирующего параметра, характеризующего ацентричность, или несферичность молекулы. Анализируя зависимость приведенного давления насыщенного пара различных веществ от приведенной температуры, Питцер с сотрудниками установили, что для аргона, криптона, ксенона, азота, кислорода, окиси углерода, метана и некоторых других веществ эта зависимость описывается практически одним уравнением. Однако расширение этого списка соединениями других классов дает серию практически прямых линий, наклоны которых различаются. Питцер и др. приняли приведенное давление насыщенного пара при определенной приведенной температуре в качестве характеристики вещества. При этих температурах приведенное давление инертных газов, выбранных в качестве простого вещества, составляет примерно 0,1. На основании этого наблюдения было сформулировано определение нового параметра - ацентрического фактора  как описывающего отклонение значения приведенного давления пара для определенного вещества от приведенного давления пара вещества сравнения в следующем виде:

(при Tr =0,7),(5.18)

где - давление насыщенного пара вещества при приведенной температуре Tr =0,7.

По определению Питцера ацентрический фактор является “мерой отклонения функций межмолекулярного потенциала от функций межмолекулярного потенциала сферических молекул вещества сравнения”. Значение  = 0 соответствует сферической симметрии в разреженном газе. Отклонения от поведения, характерного для простого вещества, очевидны, если > 0. Для одноатомных газов ацентрический фактор близок к нулю. Для метана он еще очень мал. Однако для углеводородов с высокой молекулярной массой значение возрастает и резко увеличивается с ростом полярности молекул.

Диапазон варьирования ацентрического фактора - от нуля до единицы. В настоящее время ацентрический фактор широко используется в качестве параметра, который в известной степени характеризует сложность строения молекулы в отношении как ее геометрии, так и полярности. В соответствии с рекомендациями применимость корреляций, включающих фактор ацентричности, должна ограничиваться нормальными газами и жидкостями, их не следует использовать для прогнозирования свойств сильно полярных или ассоциированных жидкостей.

Здесь следует заметить, что опыт нашей работы позволяет заключить, что приведенное выше ограничение является излишне категоричным. При соблюдении определенных условий корреляции с могут использоваться и применительно к названным группам органических веществ.

Значения ацентрического фактора для многих веществ вычислены на основе лучших экспериментальных данных по упругостям паров, Tc и Pc соединений и содержатся в Приложении.

При отсутствии сведений об для его прогнозирования могут использоваться:

· уравнение Эдмистера

;(5.19)

· уравнение Ли-Кеслера

· уравнение Амброуза-Уолтона

,(5.21)

где - критическое давление, выраженное в физических атмосферах;

 = - приведенная нормальная температура кипения вещества;

- нормальная температура кипения вещества в градусах Кельвина;

- критическая температура в градусах Кельвина.

f (0) , f (1) – определены в описании метода Амброуза-Уолтона (раздел 7.3)

Завершая рассмотрение материала по критическим свойствам и критериям подобия, остановимся еще на одном важном и общем вопросе. Он касается критериев подобия. В настоящее время их предложено довольно много, мы познакомились с одним из них - ацентрическим фактором. В разд. 7 рассматривается еще один критерий подобия - и коэффициент Риделя. Оба критерия применяются весьма широко. Тем не менее универсальных подходов к выбору того или иного критерия подобия пока не создано, а значит, работы в этом направлении будут продолжены. Мы считаем целесообразным повторить те требования, которые перечислены Уэйлесом в его монографии и относятся к дополнительным параметрам или критериям подобия:

· Эти параметры должны соотноситься с молекулярной структурой и электростатическими свойствами молекулы.

· Их можно определить при минимальном количестве экспериментальных данных.

· Критические свойства не должны оказывать непосредственное воздействие на их значения.

· При оценке этих параметров надо избегать использования данных о P-V-T , так как в противном случае теряется смысл приведенного уравнения.

Дополнительные параметры должны быть функцией температуры, предпочтительно приведенной.

Можно соглашаться или нет с перечисленными требованиями, но совершенно очевидно, что всему их комплексу не отвечает ни ацентрический фактор, ни критерий Риделя. Мало того, нам представляется ясным, что одной из причин успеха в их применении является именно согласованность их величин с критическими параметрами и P-T данными. В качестве носителя связи с P-T данными выступает температура кипения при одном из давлений, чаще при атмосферном.

Таким образом, развитие методов прогнозирования потребует, вероятно, и уточнения требований к критериям подобия.

6. ПРОГНОЗИРОВАНИЕ плотности газа и жидкости

Перед тем как перейти к прогнозированию, следует напомнить, что в зависимости от принятых температуры и давления вещество может находиться либо в насыщенном, либо в ненасыщенном состоянии. Давление над насыщенной жидкостью равно давлению ее насыщенного пара при данной температуре . Давление над ненасыщенной, переохлажденной или сжатой жидкостью больше давления ее насыщенного пара при избранной для расчета температуре. Для каждой из названных областей P-V-T пространства существуют самостоятельные подходы к прогнозированию плотности.

Прогнозирование плотности индивидуальных веществ с использованием коэффициента сжимаемости

Пример 6.1

Для изобутилбензола, имеющего критическую температуру 650 К, критическое давление 31 атм и ацентрический фактор 0,378, рассчитать с использованием таблиц Ли-Кеслера (табл. 4.6, 4.7):

· коэффициент сжимаемости при 500, 657 и 1170 К и давлении 1-300 атм,

· плотность при 500, 657 и 1170 К и давлении 1-300 атм;

дать графические зависимости:

· коэффициента сжимаемости от давления при указанных температурах,

· плотности от давления при указанных температурах.

Решение

Используем разложение Питцера (уравн. 4.34) и табл. 4.6, 4.7 для коэффициента сжимаемости.

1. Вычислим значения приведенных температур:

500/600 =0,769; = 657/650 =1,01; = 1170/650 =1,80.

2. Вычислим значения приведенных давлений:

1/31 =0,03226; = 300/31 =9,677.

Поскольку диапазон интересующих приведенных давлений совпадает с диапазоном , рассмотренных Ли-Кеслером, используем информацию о и для дискретных значений , представленных в табл. 4.6, 4.7.

Каждое из значений и получено линейной интерполяцией по температуре. Так, при 500 К (= 0,769) и = 0,010 для имеем

(0,9935-0,9922)/(0,80-0,75)·(0,769-0,75)+0,9922 = 0,9927.


Прогнозирование плотности насыщенных жидкости и пара с использованием уравнений состояния вещества

Нахождение условий насыщения из уравнений состояния представляет собой достаточно сложную задачу, решение которой зачастую невозможно без привлечения вычислительной техники и специального программного обеспечения. Для простых уравнений состояния, таких как уравнение Ван-дер-Ваальса, эта задача может быть решена путем несложных вычислений. Однако необходимо помнить, что на практике при помощи уравнения Ван-дер-Ваальса можно лишь качественно оценить состояние насыщения. Для более точного представления насыщения разработаны другие уравнения состояния и специальные методы.

В данном пособии на примере уравнения Ван-дер-Ваальса рассмотрен подход к нахождению давления насыщения и объемов насыщения жидкости и пара (точки, принадлежащие бинодали), а также условий, определяющих метастабильные состояния вещества (точки экстремумов изотермы).

Пример 6.3

Для изобутилбензола при температурах 400, 500, 600 и 640 К, используя уравнение Ван-дер-Ваальса, рассчитать давление пара и объемы насыщения жидкости и пара. Определить также области метастабильных состояний пара и жидкости при указанных температурах. Критическая температура равна 650 К, критическое давление - 31 атм.

Решение

1. Запишем принцип Максвелла:

Площадь = .(6.1)

Выразим из уравнения Ван-дер-Ваальса значение давления и подставим его в подинтегральное выражение. Получим

. (6.2)

В данном случае имеется возможность найти аналитическое решение определенного интеграла

.(6.3)

Теперь задача сводится к отысканию значения Psat , при котором выражение 6.3 обратится в тождество. При его нахождении нам потребуется неоднократно определять значения объемов жидкости и пара для заданного P, т.е. находить решения (корни) кубического уравнения.

2. Перепишем уравнение Ван-дер-Ваальса в виде полинома по объему

.(6.4)

Корни данного уравнения можно найти, воспользовавшись формулами Кардано. Для этого перейдем к приведенному виду кубического уравнения, выполнив следующие преобразования. Обозначим коэффициенты в уравнении (6.4) через

; ;

и сделаем замену неизвестного V на Y:

тогда уравнение (6.4) примет приведенный вид

,(6.5)

где ; .

Число действительных решений кубического уравнения зависит от знака дискриминанта

.(6.6)

Если D > 0, то уравнение имеет одно действительное решение; если D < 0, то - три действительных решения; и если D = 0, то уравнение имеет либо два действительных решения, одно из которых двукратное, либо одно действительное трехкратное решение (последнее в случае p = q = 0).

В данном примере рассматривается область P-V-T пространства, где сосуществуют пар и жидкость. Для этой области уравнение Ван-дер-Ваальса имеет три действительных решения (дискриминант уравнения (6.5) меньше нуля). При использовании формул Кардано в оригинальном виде корни уравнения выражаются через комплексные величины. Избежать этого можно, если ввести следующие обозначения:

, .(6.7)

Тогда решениями приведенного уравнения (6.5) будут

;(6.8)

от которых заменой

(6.11)

снова можно перейти к решениям кубического уравнения (6.4).

3. Вычислим характеристические константы уравнения Ван-дер-Ваальса. Для удобства вычислений примем следующие единицы измерения: V - л/моль, P - атм, Т - К. Тогда R = 0,08206 л·атм/(моль·К);

a = 27·0,082062·6502/(64·31)=38,72 л·атм;

b = 0,08206·650/(8·31)=0,2151 л.

4. Давление насыщения находится методом последовательных приближений. В качестве первого приближения при Т = 400 К примем давление насыщения равным 10 атм.

5. Рассчитаем значения коэффициентов уравнения (6.4):

= –(0,2151+0,08206·400/10) = – 3,4975;

38,72/10 = 3,872;

= – (38,72·0,2151/10) = – 0,8329.

= /3 = – 0,2055;

= 2·(–3,4975)3/27–(–3,4975·3,872)/3+(–0,8329)=0,5121;

= (–0,2055/3)3+(0,5121/2)2 = 0,0652.

Значение дискриминанта (D) получилось положительным, что говорит о единственном действительном решении уравнения (6.5). Следовательно, значение давления выбрано неверно.

7. Предположим, что давление насыщения равно 1 атм. Повторим вычисления в пунктах 5 и 6.

= –(0,2151+0,08206·400/1) = –33,04;

38,72/1 = 38,72;

= –(38,72·0,2151/1) = –8,329;

=/3 = –325,2;

= 2·(–33,04)3/27 –(–33,04·38,72)/3+(–8,329) = –2254;

= (–325,2/3)3+(–2254/2)2 = –3632.

8. Найдем эти решения, но прежде вычислим вспомогательные величины и

= [–(–325,2)3/27]1/2 = 1129;

= –(–2254)/(2·1129) = 0,9982;

= arccos (0,9982) = 0,0600 радиан;

= 2·(1129)1/3·cos(0,0600/3) = 20,82;

2·(1129)1/3 cos(0,0600/3 + 2·3,14/3) = –10,75;

2·(1129)1/3 cos (0,0600/3 + 4·3,14/3) = –10,09.

9. Перейдем к решениям уравнения (6.4), воспользовавшись (6.11).

= 20,82 –(–33,04/3) = 31,8 л/моль;

= –10,75 –(–33,04/3) = 0,263 л/моль;

= –10,09 –(–33,04/3) = 0,923 л/моль.

При 400 К и 1 атм объем пара (V1 ) составляет 31,8 л/моль, объем жидкости (V2 ) – 0,263 л/моль. V3 = 0,923 – третий корень уравнения, не имеющий физического смысла.

10. Вычислим значение левой части выражения (6.3), для этого имеются все необходимые величины:

= 0,08206·400 ln[(31,8–0,2151)/

/(0,263– 0,2151)] + 38,72·(1/31,8–1/0,263)–1·(31,8–0,263) = 35,53.

При избранном давлении (1 атм) выражение (6.3) в тождество не обращается, т.е. левая и правая части не равны друг другу. Необходимо принять другое значение давления насыщения.

В пунктах 5-10 вычисления производились с округлением промежуточных величин на каждом шаге вычислений до значений, записанных в формулах. Далее приводятся результаты вычислений с точностью в 16 десятичных разрядов, и округление выполнено только при представлении окончательных величин.

11. Примем Psat = 3 атм. Повторим вычисления в пунктах 5-10. При 400 К и 3 атм объем пара составляет 9,878 л/моль, объем жидкости – 0,282 л/моль. Левая часть выражения (6.3) равна = 1,0515. Тождество не выполняется, но степень отклонения от него существенно уменьшилась.

12. Подбор давления насыщения следует продолжить. Теперь имеется два значения для левой части выражения (6.3) при соответствующих давлениях. Используя эти величины, можно оценить значение давления для следующего расчета путем линейной интерполяции.

= 1–(1–3)/(35,53–1,0515)·35,53 = 3,061 атм.

13. Повторим вычисления (пункты 5-12) для Psat = 3,061 атм. Получим:

= 9,658 л/моль; = 0,282 л/моль; = 0,473. Новое значение давления – 3,111 атм.

После 5 итераций, исключая расчет при Psat = 10 атм, имеем:

T = 400 K; P sat= 3,112 атм; = 9,480 л/моль; = 0,282 л/моль; = 8,7·10-5. Полученные значения давления и объемов жидкости и пара соответствуют условиям насыщения.

14. Результаты расчета для других температур приведены в табл. 6.3.

Таблица 6.3

15. Область метастабильных (пересыщенных) состояний пара и жидкости занимает пространство между бинодалью и спинодалью. Точки на изотермах, принадлежащие бинодали, определены выше, и их значения приведены в табл. 6.3.

Для определения конфигурации спинодали воспользуемся соотношением

,

т.е. условиями экстремальности для соответствующих точек изотермы. Далее продифференцируем уравнение Ван-дер-Ваальса по объему (при Т = const) и преобразуем полученное выражение к полиному по V. Получим кубическое уравнение (6.12), корни которого могут быть найдены изложенным выше способом (п.п. 5-9):

16. Для 400 К имеем следующие значения коэффициентов уравнения (6.12):

= – = –2,3593;

1,0149;

= – = –0,1092.

Коэффициенты приведенного кубического уравнения (6.5) соответственно равны:

= /3 = –0,8405;

= 2·(–2,3593)3/27 –(–2,3593·1,0149)/3 + (–0,1092) = –0,2838;

= (–0,8405/3)3 + (–0,2838/2)2 = –0,0019.

Значение D отрицательное, следовательно, уравнение имеет три действительных решения.

17. Найдем значения корней уравнения (6.12) при 400 К. Для этого выполним последовательно следующие вычисления:

= [–(–0,8405)3/27]1/2 = 0,1483;

= –(–0,2838)/(2·0,1483) = 0,9568;

= arccos (0,9568) = 0,2950 радиан;

= 2·(0,1483)1/3 cos(0,2950/3) = 1,0535;

2·(0,1483)1/3 cos(0,2950/3 + 2·3,14/3) = –0,6159;

2·(0,1483)1/3 cos(0,2950/3 + 4·3,14/3) = –0,4388;

= 1,0535 –(–2,3593/3) = 1,840 л/моль;

= –0,6159 –(–2,3593/3) = 0,171 л/моль;

= –0,4388 –(–2,3593/3) = 0,348 л/моль.

Наибольший корень = 1,840 л/моль соответствует максимуму на изотерме 400 К и ограничивает метастабильные состояния пара слева. Корень , равный 0,171 л/моль, не имеет физического толкования, поскольку его значение меньше параметра b в уравнении Ван-дер-Ваальса. И, наконец, корень соответствует минимуму на изотерме 400 К и отделяет слева область пересыщенной жидкости от абсолютно неустойчивых состояний.

18. Давление в системе при соответствующем объеме пересыщенного пара () и пересыщенной жидкости () находится из уравнения Ван-дер-Ваальса подстановкой в него требуемых значений температуры и объема.

= (0,08206·400)/(1,840–0,215)–38,72/1,8402 = 8,763 атм;

= (0,08206·400)/(0,348–0,215)–38,72/0,3482 = –72,928 атм.

19. Результаты расчета для прочих температур приведены в табл. 6.4.

КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ - значение плотности вещества во Вселенной ,определяемое выражением где Н - постоянная Хаббла (см. Хаббла закон), G - постоянная тяготения Ньютона. В однородных изотропных моделях Вселенной (см. Космологические модели равной нулю космологической постоянной величина r с является критич. значением , отделяющим модель замкнутой Вселенной где r - реальная ср. плотность всех видов материи) от модели открытой Вселенной

В случае тяготение материи достаточно велико, оно сильно замедляет расширение Вселенной, и в будущем её расширение должно смениться сжатием. Трёхмерное пространство в рассматриваемых моделях при имеет положит. кривизну, замкнуто, объём его конечен.

При тяготение недостаточно для того, чтобы остановить расширение, и Вселенная в этих условиях неограниченно расширяется в будущем. Трёхмерное пространство в рассматриваемых моделях имеет отрицат. кривизну, объём его бесконечен (в простейшей топологии).

Постоянная Хаббла H известна из астрономич. наблюдений со значит. неопределённостью: Н - (50-100) км/(с*Мпк). Отсюда возникает неопределённость в значении К. п. В. r c = (5*10 -30 -2*10 -29) г/см 3 . С др. стороны, наблюдения показывают, что усреднённая плотность вещества входящего в состав галактик, по-видимому, существенно меньше К. п. В. Однако, возможно, во Вселенной имеются труднонаблюдаемые формы материи, т. н. скрытые массы. Кол-во


ПРОГНОЗИРОВАНИЕ КРИТИЧЕСКОГО ОБЪЕМА

где  v - парциальные вклады, значения которых, выраженные в кубических см 3 /моль, приведены в табл. 5.2. Расчет достаточно прост и не требует дополнительного комментария.

ПРОГНОЗИРОВАНИЕ АЦЕНТРИЧЕСКОГО ФАКТОРА

Фактор ацентричности  был предложен в 1955 г. Питцером в качестве коррелирующего параметра, характеризующего ацентричность, или несферичность молекулы. Анализируя зависимость приведенного давления насыщенного пара различных веществ от приведенной температуры, Питцер с сотрудниками установили, что для аргона, криптона, ксенона, азота, кислорода, окиси углерода, метана и некоторых других веществ эта зависимость описывается практически одним уравнением. Однако расширение этого списка соединениями других классов дает серию практически прямых линий, наклоны которых различаются. Питцер и др. приняли приведенное давление насыщенного пара при определенной приведенной температуре в качестве характеристики вещества. При этих температурах приведенное давление инертных газов, выбранных в качестве простого вещества, составляет примерно 0,1. На основании этого наблюдения было сформулировано определение нового параметра - ацентрического фактора  как описывающего отклонение значения приведенного давления пара для определенного вещества от приведенного давления пара вещества сравнения в следующем виде:

(при T r =0,7),(5.18)

где - давление насыщенного пара вещества при приведенной температуре T r =0,7.

По определению Питцера ацентрический фактор является “мерой отклонения функций межмолекулярного потенциала от функций межмолекулярного потенциала сферических молекул вещества сравнения”. Значение  = 0 соответствует сферической симметрии в разреженном газе. Отклонения от поведения, характерного для простого вещества, очевидны, если > 0. Для одноатомных газов ацентрический фактор близок к нулю. Для метана он еще очень мал. Однако для углеводородов с высокой молекулярной массой значение возрастает и резко увеличивается с ростом полярности молекул.

Диапазон варьирования ацентрического фактора - от нуля до единицы. В настоящее время ацентрический фактор широко используется в качестве параметра, который в известной степени характеризует сложность строения молекулы в отношении как ее геометрии, так и полярности. В соответствии с рекомендациями применимость корреляций, включающих фактор ацентричности, должна ограничиваться нормальными газами и жидкостями, их не следует использовать для прогнозирования свойств сильно полярных или ассоциированных жидкостей.

Здесь следует заметить, что опыт нашей работы позволяет заключить, что приведенное выше ограничение является излишне категоричным. При соблюдении определенных условий корреляции с могут использоваться и применительно к названным группам органических веществ.

Значения ацентрического фактора для многих веществ вычислены на основе лучших экспериментальных данных по упругостям паров, T c и P c соединений и содержатся в Приложении.

При отсутствии сведений об для его прогнозирования могут использоваться:

    уравнение Эдмистера

;(5.19)

    уравнение Ли-Кеслера

    уравнение Амброуза-Уолтона

,(5.21)

где - критическое давление, выраженное в физических атмосферах;

 = - приведенная нормальная температура кипения вещества;

Нормальная температура кипения вещества в градусах Кельвина;

Критическая температура в градусах Кельвина.

f (0) , f (1) – определены в описании метода Амброуза-Уолтона (раздел 7.3)

Завершая рассмотрение материала по критическим свойствам и критериям подобия, остановимся еще на одном важном и общем вопросе. Он касается критериев подобия. В настоящее время их предложено довольно много, мы познакомились с одним из них - ацентрическим фактором. В разд. 7 рассматривается еще один критерий подобия - и коэффициент Риделя. Оба критерия применяются весьма широко. Тем не менее универсальных подходов к выбору того или иного критерия подобия пока не создано, а значит, работы в этом направлении будут продолжены. Мы считаем целесообразным повторить те требования, которые перечислены Уэйлесом в его монографии и относятся к дополнительным параметрам или критериям подобия:

    Эти параметры должны соотноситься с молекулярной структурой и электростатическими свойствами молекулы.

    Их можно определить при минимальном количестве экспериментальных данных.

    Критические свойства не должны оказывать непосредственное воздействие на их значения.

    При оценке этих параметров надо избегать использования данных о P-V-T , так как в противном случае теряется смысл приведенного уравнения.

Дополнительные параметры должны быть функцией температуры, предпочтительно приведенной.

Можно соглашаться или нет с перечисленными требованиями, но совершенно очевидно, что всему их комплексу не отвечает ни ацентрический фактор, ни критерий Риделя. Мало того, нам представляется ясным, что одной из причин успеха в их применении является именно согласованность их величин с критическими параметрами и P-T данными. В качестве носителя связи с P-T данными выступает температура кипения при одном из давлений, чаще при атмосферном.

Таким образом, развитие методов прогнозирования потребует, вероятно, и уточнения требований к критериям подобия.

6. ПРОГНОЗИРОВАНИЕ плотности газа и жидкости

Перед тем как перейти к прогнозированию, следует напомнить, что в зависимости от принятых температуры и давления вещество может находиться либо в насыщенном, либо в ненасыщенном состоянии. Давление над насыщенной жидкостью равно давлению ее насыщенного пара при данной температуре . Давление над ненасыщенной, переохлажденной или сжатой жидкостью больше давления ее насыщенного пара при избранной для расчета температуре. Для каждой из названных областей P-V-T пространства существуют самостоятельные подходы к прогнозированию плотности.

Прогнозирование плотности индивидуальных веществ с использованием коэффициента сжимаемости

Пример 6.1

Для изобутилбензола, имеющего критическую температуру 650 К, критическое давление 31 атм и ацентрический фактор 0,378, рассчитать с использованием таблиц Ли-Кеслера (табл. 4.6, 4.7):

    коэффициент сжимаемости при 500, 657 и 1170 К и давлении 1-300 атм,

    плотность при 500, 657 и 1170 К и давлении 1-300 атм;

дать графические зависимости:

    коэффициента сжимаемости от давления при указанных температурах,

    плотности от давления при указанных температурах.

Решение

Используем разложение Питцера (уравн. 4.34) и табл. 4.6, 4.7 для коэффициента сжимаемости.

    Вычислим значения приведенных температур:

500/600 =0,769; = 657/650 =1,01; = 1170/650 =1,80.

    Вычислим значения приведенных давлений:

1/31 =0,03226; = 300/31 =9,677.

Поскольку диапазон интересующих приведенных давлений совпадает с диапазоном, рассмотренных Ли-Кеслером, используем информацию о и для дискретных значений, представленных в табл. 4.6, 4.7.

Каждое из значений и получено линейной интерполяцией по температуре. Так, при 500 К (= 0,769) и = 0,010 для имеем

(0,9935-0,9922)/(0,80-0,75)·(0,769-0,75)+0,9922 = 0,9927.

Прогнозирование плотности насыщенных жидкости и пара с использованием уравнений состо яния вещества

Нахождение условий насыщения из уравнений состояния представляет собой достаточно сложную задачу, решение которой зачастую невозможно без привлечения вычислительной техники и специального программного обеспечения. Для простых уравнений состояния, таких как уравнение Ван-дер-Ваальса, эта задача может быть решена путем несложных вычислений. Однако необходимо помнить, что на практике при помощи уравнения Ван-дер-Ваальса можно лишь качественно оценить состояние насыщения. Для более точного представления насыщения разработаны другие уравнения состояния и специальные методы.

В данном пособии на примере уравнения Ван-дер-Ваальса рассмотрен подход к нахождению давления насыщения и объемов насыщения жидкости и пара (точки, принадлежащие бинодали), а также условий, определяющих метастабильные состояния вещества (точки экстремумов изотермы).

Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука, так или иначе, изучает Вселенную, точнее, тем или иные её стороны. Существует научная дисциплина, объектом исследования которой служит сама Вселенная. Это особая отрасль астрономии, так называемая космология.

Космология - учение о Вселенной в целом, включающее в себя теорию всей охваченной астрономическими наблюдениями области как части Вселенной.

С развитием науки, все полнее раскрывающей физические процессы, происходящие в окружающем нас мире, большинство ученых постепенно перешло к материалистическим представлениям о бесконечности Вселенной. Здесь огромное значение имело открытие И. Ньютоном (1643 - 1727) закона всемирного тяготения, опубликованного в 1687 г. Одним из важных следствий этого закона явилось утверждение, что в конечной Вселенной все ее вещество за ограниченный промежуток времени должно стянуться в единую тесную систему, тогда как в бесконечной Вселенной вещество под действием тяготения собирается в некоторых ограниченных объемах (по тогдашним представлениям - в звездах), равномерно заполняющих Вселенную.

Большое значение для развития современных представлений о строении и развитии Вселенной имеет общая теория относительности, созданная А.Эйнштейном (1879 - 1955). Она обобщает теорию тяготения Ньютона на большие массы и скорости движения, сравнимые со скоростью света. Действительно, в галактиках сосредоточена колоссальная масса вещества, а скорости далеких галактик и квазаров сравнимы со скоростью света.

Одним из значительных следствий общей теории относительности является вывод о непрерывном движении вещества во Вселенной - нестационарности Вселенной. Этот вывод был получен в 20-х годах нашего столетия советским математиком А.А.Фридманом (1888 - 1925). Он показал, что в зависимости от средней плотности вещество Вселенная должна либо расширяться, либо сжиматься. При расширении Вселенной скорость разбегания галактик должна быть пропорциональна расстоянию до них - вывод, подтвержденный Хабблом открытием красного смещения в спектрах галактик.

Критическое значение средней плотности вещества, от которой зависит характер его движения,

где G - гравитационная постоянная, а Н=75 км/с*Мпк - постоянная Хаббла. Подставляя нужные значения, получаем, что критическое значение средней плотности вещества P k = 10 -29 г/см 3 .

Если средняя плотность вещества во Вселенной больше критической, то в будущем расширение Вселенной сменится сжатием, а при средней плотности равной или меньшей критической расширение не прекратится. Ясно одно, что со временем расширение привело к значительному уменьшению плотности вещества, и на определенном этапе расширения стали формироваться галактики и звезды.

Вернемся теперь к проблеме средней плотности вещества во Вселенной. Как уже отмечалось, сравнительно несложно учесть "легко наблюдаемое вещество", т. е. вещество, входящее в видимые галактики. Достаточно надежное определение этой величины было сделано в 1958 г. голландским астрономом Оортом. Практическое определение усредненной плотности вещества, входящего в галактики, производится в два приема.

Прежде всего подсчитывается число галактик разных светимостей, приходящихся на единицу объема, и вычисляется средняя светимость единицы объема Вселенной. Согласно Оорту она оказывается равной

Здесь , обозначает светимость Солнца, равную = 4*10 33 эрг / сек.

После этого для всех типов галактик вычисляется отношение их массы М к светимости L. Так, для эллиптических галактик отношение раз превышает отношение массы Солнца к его светимости .Для спиральных галактик это отношение M / L меняется от нескольких единиц до примерно 20 . С учетом процентного содержания разных типов галактик среднее значение M / L оказывается равным


Произведение (16) и (17) дают усредненную плотность вещества, входящего в галактики,

Эта величина заметно меньше критической плотности (16). Их отношение, обозначаемое обычно буквой Ω, равно


Если во Вселенной нет заметных количеств другой материи, усредненная плотность которой много больше ρ гал, то Вселенная всегда будет расширяться.

Однако есть серьезные основания подозревать, что в пространстве между галактиками может быть много трудно наблюдаемых форм материи, получивших название "скрытой массы".

Одним из поводов для такого подозрения являются результаты измерений масс скоплений галактик. Измерения проводятся следующим образом.

Правильные скопления имеют симметричную форму, плотность галактик в них плавно спадает от центра к краю и поэтому есть все основания считать, что скопления находятся в равновесном состоянии, когда кинетическая энергия движений галактик уравновешена силой взаимного тяготения всех масс, входящих в скопление.

В этом случае справедлива теорема вириала, утверждающая, что кинетическая энергия всех членов скопления равна по абсолютной величине половине потенциальной энергии тяготения масс скопления (включая, конечно, и невидимые массы). Эта теорема позволяет вычислить полную массу скопления, если известны относительные скорости галактик в скоплении и размер скопления. Относительная скорость галактик в скоплении вычисляется по разности их красных смещений, а размер определяется по угловому размеру скопления на небе и расстоянию от нас. Такое определение, выполненное для уже упоминавшегося нами скопления Coma, приводит к массе порядка 2*10 15 M , что соответствует отношению масса - светимость M / L для всего скопления (по данным Эйбла)


Полученное отношение во много раз больше, чем M / L , даже для эллиптических галактик, у которых M / L наибольшее (сейчас данные пересматриваются). Если эти выводы правильны, то масса скопления много больше суммы масс галактик, в нее входящих. Такие же результаты получаются при рассмотрении других скоплений и групп галактик. Так возникла проблема "скрытой массы". Сразу же оговоримся, что проблема определения массы скоплений с помощью теоремы вириала - сложная задача и здесь возможны ошибки. Основной источник ошибок связан с тем, что скорости галактик измеряются с погрешностями, а это ведет к завышению дисперсии скоростей и, следовательно, к завышению массы скопления. Кроме того, возможна случайная проекция "чужих" галактик на скопление. Учет их также ведет к завышению массы. Однако тщательный анализ показывает, что "свалить" всю вину за получение парадоксально большой массы в скоплениях на подобные ошибки крайне трудно. Полученные выводы заставляют со всей серьезностью отнестись к поискам "скрытой массы", причем не только в скоплениях галактик, но и между скоплениями. В какой форме может существовать скрытая масса? Может быть, это межгалактический газ? * . Ведь объем пространства между галактиками гораздо больше объема пространства, приходящегося на галактики. Поэтому межгалактический газ, концентрация которого хотя и много меньше, чем у газа внутри галактик, может в результате все же давать гигантские массы.

* (Анализом наблюдений, связанным с поисками межгалактического газа, занимались многие астрофизики. Мы отметим здесь работы советских ученых В. Л. Гинзбурга, Я. Б. Зельдовича, И. С. Шкловского, А. Г. Дорошкевича, В. Г. Курта, Л. М. Озерного, Р. А. Сюняева и др. )

Прежде всего напомним, что газ во Вселенной в основном состоит из водорода. Следовательно, чтобы установить наличие газа в межгалактическом пространстве, в первую очередь надо искать водород. В зависимости от физических условий газ может быть в нейтральном и ионизованном состояниях.

Начнем с оценки возможного количества нейтрального водорода.

Если свет от далекого источника идет через газ с нейтральными атомами водорода, то происходит поглощение (говоря точнее, резонансное рассеяние) излучения атомами в спектральной линии L α с длиной волны λ = 1215 Å. Это ведет к ослаблению света от источника на данной длине волны. В качестве источников используются далекие квазары. Атомы водорода расположены на всем огромном пути от квазара и имеют поэтому разную скорость удаления от нас вследствие расширения Вселенной по закону Хаббла (v = HR). Разные скорости поглощающих атомов ведут к тому, что из-за эффекта Доплера линия поглощения в спектре растягивается в полосу. Тщательные поиски этого эффекта в спектрах квазаров с z > 2 не привели к успеху, полосы поглощения не обнаружено. Отсюда делается вывод, что средняя плотность числа нейтральных атомов в межгалактическом газе ничтожна: n HI

Аналогичные соображений применимы и для молекулярного водорода (поглощение в лаймановской полосе молекулярного водорода). Наблюдения приводят к выводу, что и плотность молекулярного водорода в межгалактическом газе пренебрежимо мала.

Таким образом, межгалактический газ, если он и есть, должен быть ионизованным, а значит, и сильно нагретым. Как показывает анализ, для этого необходимы температуры больше миллиона градусов. Не следует удивляться, что несмотря на такую температуру этот газ практически невидим. Дело в том, что плотность его очень мала, газ прозрачен, излучает мало видимого света. Но все же эта ионизованная высокотемпературная плазма испускает достаточно много ультрафиолетового излучения и мягких рентгеновских лучей.

Горячий газ можно искать по ультрафиолетовому излучению. Однако этот метод оказался не очень чувствительным.

Интересный метод был предложен советским астрофизиком Р. А. Сюняевым. Он основан на следующих соображениях. Ультрафиолетовый поток излучения от горячего межгалактического газа должен ионизовать водород на периферии галактик. Но радиоастрономические способы наблюдений позволили обнаружить нейтральный водород на окраинах нашей и других галактик. Расчет показывает, что если бы плотность горячего межгалактического газа равнялась критической ρ H И = 10 -29 г / см 3 , то поток ультрафиолетового излучения от него полностью бы ионизовал водород на периферии галактик, в противоречии с наблюдениями. Следовательно,


Эта величина много больше ргал. Таким образом, к сожалению, рассматриваемый метод все же недостаточно чувствителен, чтобы исключить возможность существования большого количества горячего межгалактического газа. Вопрос о количестве такого газа, о том, больше ли его усредненная плотность, чем усредненная плотность вещества, входящего в галактики, остается открытым.

Обратимся теперь к газу в скоплениях галактик. Радионаблюдения показывают, что нейтрального водорода в скоплениях ничтожно мало. Однако с помощью рентгеновских телескопов, установленных на спутниках, был обнаружен горячий ионизованный газ в богатых скоплениях галактик. Оказалось, что этот газ нагрет до Т ≈ 10 8 К. Его полная масса может доходить до 10 13 М . Цифра внушительная, но мы видели выше, что полная масса скопления Coma, определенная по теореме вириала, гораздо больше - превышает 10 15 M д. Таким образом, наличие горячего газа в скоплениях никак не исчерпывает проблемы скрытой массы.

Несколько лет назад у этой пресловутой проблемы выявился еще один аспект.

В последнее время появляется все больше сторонников идеи о том, что галактики могут быть окружены огромными массивными коронами слабо светящихся объектов, которые по их свечению обнаружить крайне трудно. Это могут быть, например, звезды низкой светимости. Масса этих звезд в коронах не влияет заметно на динамику внутренних частей галактик * , которые хорошо наблюдаются, и поэтому наблюдения этих внутренних частей дают только их массу и ничего не говорят о массах корон. Но масса короны должна влиять на движение карликовых галактик - спутников основной галактики. Именно по этому влиянию и пытаются обнаружить в настоящее время короны галактик. Возможно, что учет этих корон существенно изменит оценку масс галактик в скоплениях и решит проблему "скрытой массы". Однако в настоящее время вопрос о коронах галактик еще не решен.

* (Вспомним, что сферическая оболочка не создает гравитационного поля во внутренней полости (см. § 2 гл. 1). )

Нам остается еще разобрать вопрос об экзотических кандидатах на роль скрытой массы, таких как космические лучи, нейтрино, гравитационные волны, а также и другие виды физической материи.

Наблюдения показывают, что плотность массы, соответствующая космическим лучам, не более 10 -35 г / см 3 , т. е. очень мала.

Что касается нейтрино и гравитационных волн, то тут дело обстоит сложнее. Взаимодействие этих видов физической материи с обычным веществом крайне слабое и поэтому, если бы Вселенная была заполнена нейтрино или гравитационными волнами с плотностью массы (соответствующей плотности энергии по формуле Эйнштейна е = ρс 2) даже больше ρ крит, то все равно прямые физические методы не позволили бы их обнаружить. Есть косвенные соображения о малой вероятности большого количества этих экзотических форм материи. С некоторыми соображениями мы познакомимся в дальнейшем.

Итак, подытоживая сказанное, мы видим, что вопрос о среднем значении плотности вещества р во Вселенной пока не решен. В § 4 гл. 2 мы еще раз вернемся к этому вопросу и рассмотрим способ определения ρ, не зависящий от конкретной природы физической материи, а использующий тот факт, что любая масса создает поле тяготения. Правда, и этот универсальный метод не привел пока к успеху.

Здесь же в заключение приведем мнение большинства специалистов о наиболее вероятном значении средней плотности всех видов материи во Вселенной, полученном на основе всех способов наблюдений.

Это наиболее вероятное значение есть


Истина в науке не устанавливается подсчетом большинства голосов специалистов, но читателю полезно знать, что по мнению этих самых специалистов плотность материи во Вселенной не превышает критического значения и Вселенной предстоит неограниченное расширение.