Все тела вращения список. "тела вращения"

Тела вращения. Цилиндр, конус, шар Выполнил: Попоудин Кирилл 6 В класс

Начало исследованию объемных тел положил древнегреческий математик Евклид. Главный труд Евклида – «Начала» (лат. Elementa) - посвящен построению геометрии и состоит из 13-ти книг, к которым присоединяют две книги о пяти правильных многогранниках.

Шар Шар - это пространственная фигура. Поверхность шара называют сферой. Слово «Сфера» произошло от греческого слова «Сфайра» которое переводится как «Мяч». Сфера – это оболочка шара. Сфера обладает очень интересным свойством - все её точки одинаково удалены от центра шара. Отрезок, соединяющий любую точку сферы с центром шара, называется радиусом шара. Отрезок, соединяющий две точки сферы и проходящий через центр шара, называется диаметром шара. Диаметр шара равен двум радиусам. Шар – это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара.

Свойства шара Шар является телом вращения, так же как конус и цилиндр. Шар получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Радиус сечения тем больше, чем ближе секущая плоскости к центру шара. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью, называется большим кругом, а сечение сферы – большой окружностью. Площадь поверхности шара можно найти по формулам: S = 4 πr2 S = πd2, Объём шара находится по формуле: V = 4 / 3 πr3, где r – радиус шара, d – диаметр шара.

Шар - это наиболее знакомая вам геометрическая фигура. Мяч, глобус- это сфера, а вот арбуз, апельсин. Солнце, Луна, Земля и остальные планеты имеют форму немного сплющенного шара. Примеры предметов имеющих форму шара.

Цилиндр Цилиндр – является телом вращения, так же как конус и шар, это пространственная или объёмная фигура, которая получается при вращении прямоугольника вокруг его стороны. Полученная цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра. Слово «Цилиндр» произошло от греческого слова «Кюлиндрос», означающего «Валик», «Каток». Высота цилиндра - это расстояние между основаниями, радиус цилиндра - радиус круга, является основанием цилиндра.

Свойства цилиндра Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Сечение цилиндра, параллельные его оси, являются прямоугольниками. Сечение цилиндра плоскостью, параллельной основаниям – круг, равный основаниям. Основания цилиндра равны и лежат в параллельных плоскостях. Образующие цилиндра равны и параллельны. Площадь поверхности цилиндра. Боковая поверхность цилиндра составлена из образующих. Полная поверхность цилиндра состоит из оснований и боковой поверхности. Sполн = 2Sосн + Sбок; Sосн = π ∙R2; Sбок = 2 π ∙R∙Н Sполн = 2 π R∙(R + Н)

На рубеже 18-19 веков мужчины многих стран носили твёрдые шляпы с небольшими полями, которые так и назывались цилиндрами из-за большого сходства с геометрической фигурой цилиндром. Примеры предметов имеющих форму шара.

Конус Круговой конус - это тело, состоящее из круга (основание конуса), точки, которая не лежит в плоскости этого круга (вершина конуса) и всех отрезков, которые соединяют вершину конуса с точками основания. Конус, как шар и цилиндр, является пространственной фигурой. Конус, в отличие от цилиндра, имеет вершину. Слово «Конус» произошло от греческого слова «Конос» означающего сосновую шишку. Элементы конуса Виды конусов Прямой и косой круговой конусы с равным основанием и высотой. Эти конусы имеют равный объём.

Свойства конуса Сечение конуса плоскостью, который проходит через вершину конуса – это равнобедренный треугольник, боковые стороны этого треугольника являются образующими конуса. Плоскость, которая параллельна основанию конуса и которая пересекает конус, отсекает от него конус меньшего размера. Оставшаяся часть является усеченным конусом. Когда основание конуса является многоугольником – это уже пирамида. Площадь боковой поверхности конуса определяют с помощью формулы: S= π R·l , Полная площадь поверхности конуса (то есть сумма площадей боковой поверхности и основания) определяют с помощью формулы: S= π R(l+R), где R - радиус основания конуса, l - длина образующей.

Предметы имеющие форму конуса. Воронка Дорожные конусы Остриё иглы Суховская башня Абажур в виде усеченного конуса Коническая крыша

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Пусть T - тело вращения, образованное вращением вокруг оси абсцисс криволинейной трапеции, расположенной в верхней полуплоскости и ограниченной осью абсцисс, прямыми x=a и x=b и графиком непрерывной функции y=f(x) .

Докажем, что это тело вращения кубируемо и его объем выражается формулой

V=\pi \int\limits_{a}^{b} f^2(x)\,dx= \pi \int\limits_{a}^{b}y^2\,dx\,.

Сначала докажем, что это тело вращения регулярно, если в качестве \Pi выберем плоскость Oyz , перпендикулярную оси вращения. Отметим, что сечение, находящееся на расстоянии x от плоскости Oyz , является кругом радиуса f(x) и его площадь S(x) равна \pi f^2(x) (рис. 46). Поэтому функция S(x) непрерывна в силу непрерывности f(x) . Далее, если S(x_1)\leqslant S(x_2) , то это значит, что . Но проекциями сечений на плоскость Oyz являются круги радиусов f(x_1) и f(x_2) с центром O , и из f(x_1)\leqslant f(x_2) вытекает, что круг радиуса f(x_1) содержится в круге радиуса f(x_2) .


Итак, тело вращения регулярно. Следовательно, оно кубируемо и его объем вычисляется по формуле

V=\pi \int\limits_{a}^{b} S(x)\,dx= \pi \int\limits_{a}^{b}f^2(x)\,dx\,.

Если бы криволинейная трапеция была ограничена и снизу и сверху кривыми y_1=f_1(x), y_2=f_2(x) , то

V= \pi \int\limits_{a}^{b}y_2^2\,dx- \pi \int\limits_{a}^{b}y_1^2\,dx= \pi\int\limits_{a}^{b}\Bigl(f_2^2(x)-f_1^2(x)\Bigr)dx\,.

Формулой (3) можно воспользоваться и для вычисления объема тела вращения в случае, когда граница вращающейся фигуры задана параметрическими уравнениями. В этом случае приходится пользоваться заменой переменной под знаком определенного интеграла.

В некоторых случаях оказывается удобным разлагать тела вращения не на прямые круговые цилиндры, а на фигуры иного вида.

Например, найдем объем тела, получаемого при вращении криволинейной трапеции вокруг оси ординат . Сначала найдем объем, получаемый при вращении прямоугольника с высотой y#, в основании которого лежит отрезок . Этот объем равен разности объемов двух прямых круговых цилиндров

\Delta V_k= \pi y_k x_{k+1}^2- \pi y_k x_k^2= \pi y_k \bigl(x_{k+1}+x_k\bigr) \bigl(x_{k+1}-x_k\bigr).

Но теперь ясно, что искомый объем оценивается сверху и снизу следующим образом:

2\pi \sum_{k=0}^{n-1} m_kx_k\Delta x_k \leqslant V\leqslant 2\pi \sum_{k=0}^{n-1} M_kx_k\Delta x_k\,.

Отсюда легко следует формула объёма тела вращения вокруг оси ординат :

V=2\pi \int\limits_{a}^{b} xy\,dx\,.

Пример 4. Найдем объем шара радиуса R .

Решение. Не теряя общности, будем рассматривать круг радиуса R с центром в начале координат. Этот круг, вращаясь вокруг оси Ox , образует шар. Уравнение окружности имеет вид x^2+y^2=R^2 , поэтому y^2=R^2-x^2 . Учитывая симметрию круга относительно оси ординат, найдем сначала половину искомого объема

\frac{1}{2}V= \pi\int\limits_{0}^{R}y^2\,dx= \pi\int\limits_{0}^{R} (R^2-x^2)\,dx= \left.{\pi\!\left(R^2x- \frac{x^3}{3}\right)}\right|_{0}^{R}= \pi\!\left(R^3- \frac{R^3}{3}\right)= \frac{2}{3}\pi R^3.

Следовательно, объем всего шара равен \frac{4}{3}\pi R^3 .


Пример 5. Вычислить объем конуса, высота которого h и радиус основания r .

Решение. Выберем систему координат так, чтобы ось Ox совпала с высотой h (рис. 47), а вершину конуса примем за начало координат. Тогда уравнение прямой OA запишется в виде y=\frac{r}{h}\,x .

Пользуясь формулой (3), получим:

V=\pi \int\limits_{0}^{h} y^2\,dx= \pi \int\limits_{0}^{h} \frac{r^2}{h^2}\,x^2\,dx= \left.{\frac{\pi r^2}{h^2}\cdot \frac{x^3}{3}}\right|_{0}^{h}= \frac{\pi}{3}\,r^2h\,.

Пример 6. Найдем объем тела, полученного при вращении вокруг оси абсцисс астроиды \begin{cases}x=a\cos^3t\,\\ y=a\sin^3t\,.\end{cases} (рис. 48).


Решение. Построим астроиду. Рассмотрим половину верхней части астроиды, расположенной симметрично относительно оси ординат. Используя формулу (3) и меняя переменную под знаком определенного интеграла, найдем для новой переменной t пределы интегрирования.

Если x=a\cos^3t=0 , то t=\frac{\pi}{2} , а если x=a\cos^3t=a , то t=0 . Учитывая, что y^2=a^2\sin^6t и dx=-3a\cos^2t\sin{t}\,dt , получаем:

V=\pi \int\limits_{a}^{b} y^2\,dx= \pi \int\limits_{\pi/2}^{0} a^2\sin^6t \bigl(-3a\cos^2t\sin{t}\bigr)\,dt= \ldots= \frac{16\pi}{105}\,a^3.

Объем всего тела, образованного вращением астроиды, будет \frac{32\pi}{105}\,a^3 .

Пример 7. Найдем объем тела, получаемого при вращении вокруг оси ординат криволинейной трапеции, ограниченной осью абсцисс и первой аркой циклоиды \begin{cases}x=a(t-\sin{t}),\\ y=a(1-\cos{t}).\end{cases} .

Решение. Воспользуемся формулой (4): V=2\pi \int\limits_{a}^{b}xy\,dx , и заменим переменную под знаком интеграла, учитывая, что первая арка циклоиды образуется при изменении переменной t от 0 до 2\pi . Таким образом,

\begin{aligned}V&= 2\pi \int\limits_{0}^{2\pi} a(t-\sin{t})a(1-\cos{t})a(1-\cos{t})\,dt= 2\pi a^3 \int\limits_{0}^{2\pi} (t-\sin{t})(1-\cos{t})^2\,dt=\\ &= 2\pi a^3 \int\limits_{0}^{2\pi}\bigl(t-\sin{t}- 2t\cos{t}+ 2\sin{t}\cos{t}+ t\cos^2t- \sin{t}\cos^2t\bigr)\,dt=\\ &= \left.{2\pi a^3\!\left(\frac{t^2}{2}+ \cos{t}- 2t\sin{t}- 2\cos{t}+ \sin^2t+ \frac{t^2}{4}+ \frac{t}{4}\sin2t+ \frac{1}{8}\cos2t+ \frac{1}{3}\cos^3t\right)}\right|_{0}^{2\pi}=\\ &= 2\pi a^3\!\left(2\pi^2+1-2+\pi^2+\frac{1}{8}+ \frac{1}{3}-1+2- \frac{1}{8}- \frac{1}{3}\right)= 6\pi^3a^3. \end{aligned}

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Тела вращения

Работу выполнили студентки 1ДО группы: Вилачева Мария

Коркина Елена


Тела вращения

  • Телами вращения называются объемные тела, возникающие при вращении плоской геометрической фигуры, ограниченная кривой, вокруг оси, лежащий в той же плоскости.

Цилиндр.

Эллиптический цилиндр

Правильный круглый цилиндр

Цили́ндр (греч. kýlindros, валик, каток) - геометрическое тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра , а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра .


Примеры тел, имеющих форму цилиндра:

  • Сквозное отверстие в стене, сделанное дрелью, является цилиндром: его основание – круг с диаметром, равным диаметру сверла, высота – толщина стены.

Связанные определения.

  • Цилиндр называется прямым , если его образующие перпендикулярны плоскостям оснований.
  • Радиусом цилиндра называется радиус его основания.
  • Высотой цилиндра называется расстояние между его плоскостями.
  • Осью цилиндра называется прямая, проходящая через центр оснований. Она параллельна образующим.
  • Осевое сечение сечение цилиндра плоскостью, проходящей через его ось.

Свойства

  • Основания цилиндра равны.
  • У цилиндра основания лежат в параллельных плоскостях.
  • У цилиндра образующие параллельны и равны.
  • Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Основные формулы

  • V = π r 2 h - объём прямого кругового цилиндра
  • S = 2π rh - Площадь боковой поверхности цилиндра
  • (где r - радиус основания, h - высота).

Площадь полной поверхности цилиндра

складывается из площади боковой поверхности и площади оснований. Для прямого кругового цилиндра:

S = 2π rh + 2π r 2 .


Конус

Ко́нус - тело , которое состоит из круга – основания конуса , точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Прямой круговой конус


  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
  • Объединение образующих конуса называется образующей (или боковой) поверхностью конуса .
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

  • Конус называется прямым , если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
  • Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением .

  • Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.
  • Сечение конуса плоскостью, параллельной основанию, отсекает от него конус, подобный данному.
  • Площадь полной поверхности конуса равна

S ппк = S бп + S осн


  • Площадь боковой поверхности конуса равна

S = πRl

где R - радиус основания, l - длина образующей.

  • Объем кругового конуса равен

V=⅓πR 2 H


Шар и сфера

Шар - геометрическое тело, ограниченное поверхностью, все точки которой отстоят на равном расстоянии от центра. Это расстояние называется радиусом шара . Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара , а его оба конца - полюсами шара . Поверхность шара называется сферой .


Примеры тел, имеющих форму шара или сферы:

  • Купол здания может иметь форму части сферы, отсеченной плоскостью.
  • Земля имеет форму, близкую к шару.
  • Мячи для игры в футбол, теннис имеют форму шара.

Связанные определения

  • Если секущая плоскость проходит через центр шара, то сечение шара называется большим кругом . Другие плоские сечения шара называются малыми кругами
  • Любой отрезок, соединяющий центр шара с точкой шаровой поверхности (сферы), называется радиусом .
  • Отрезок, соединяющий две точки шаровой поверхности и проходящей через центр шара, называется диаметром .

  • Концы любого диаметра называются диаметрально противоположными точками шара.
  • Плоскость, проходящая через центр шара, называется диаметральной плоскостью .

Свойства

  • Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии .

Основные формулы

Площадь сферы радиуса R вычисляется по формуле

Цилиндром (точнее, круговым цилиндром) называется тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями

цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра. На рисунке 156 изображен цилиндр. Круги с центрами О и являются его основаниями, его образующие.

Можно доказать, что основания цилиндра равны и лежат в параллельных плоскостях, что у цилиндра образующие - параллельны и равны. Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. На рисунке 155, б изображен наклонный цилиндр, а на рисунке 155, а - прямой.

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром. Его можно рассматривать как тело, полученное при вращении прямоугольника вокруг одной из сторон как оси (рис. 156).

Радиусом цилиндра называется радиус его основания. Высотой цилиндра назаывается расстояние между плоскостями оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением. Плоскость, проходящая через образующую прямого цилиндра и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью цилиндра.

На рисунке 157 сечение проходит через ось цилиндра ОО и т. е. является осевым сечением.

Плоскость, перпендикулярная оси цилиндра» пересекает его боковую поверхность по окружности, равной окружности основания.

Призмой, вписанной в цилиндр, называется такая призма, основания которой - равные многоугольники, вписанные в основания цилиндра. Ее боковые ребра являются образующими цилиндра. Призма называется описанной около цилиндра, если ее основания - равные многоугольники, описанные около оснований цилиндра. Плоскости ее граней касаются боковой поверхности цилиндра.

На рисунке 158 изображена призма вписанная в цилиндр. На рисунке 159 призма описана около цилиндра.

Пример. В цилиндр вписать правильную четырехугольную призму.

Решение. 1) Впишем в основание цилиндра квадрат ABCD (рис. 158).

2) Проведем образующие

3) Через соседние пары этих образующих проведем плоскости, которые пересекают верхнее основание по хордам

4) Призма искомая (по определениям правильной и вписанной призмы).

53. Конус.

Конусом (точнее, круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности. На рисунке 160, а изображен круговой конус. S - вершина конуса, круг с центром в точке О - основание конуса, SA, SB и SC - образующие конуса.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. На рисунке 160, б изображен наклонный конус, а на рисунке 160, а - прямой. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси (рис. 161).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением. Плоскость, проходящая через образующую конуса и перпендикулярная осевому сечению, проведенному через эту образующую, называется касательной плоскостью конуса.

На рисунке 162 изображено сечение конуса, проходящее через его ось - осевое сечение конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Плоскость, перпендикулярная осн конуса, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом (рис. 163).

Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса. Пирамида называется описанной около конуса, если ее основанием является многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса. Плоскости боковых граней описанной пирамиды являются касательными плоскостями конуса.

На рисунке 164 изображена пирамида, вписанная в конус, а на рисунке 165 изображен конус, вписанный в пирамиду, т. е. пирамида, описанная около конуса.

54. Шар.

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем

данного, от данной точки. Эта точка называется центром шара, а данное расстояние - радиусом шара. На рисунке 166 изображен шар с центром в точке радиусом В. Заметим, что точки принадлежат данному шару. Граница шара называется шаровой поверхностью или сферой. На рисунке 166 точки А, В и D принадлежат сфере, а, например, точка М ей не принадлежит. Таким образом, точками сфер» являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара о точкой шаровой поверхности также называется радиусом. Отрезок, соединяющий две течки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его два метра как оси (рис. 167).

Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Если шар с центром О и радиусом R пересечен плоскостью то в сечении по Т. 3.5 получается круг радиуса . центром К. Радиус сечения шара плоскостью можно вычислить по формуле

Из формулы видно, что плоскости, равноудаленные от центра, пересекают шар равным кругам. Радкус сечения тем] больше, чем ближе секущая плоскость к центру шара, т. е.чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого» круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью. На рисунке 168 плоскость а является диаметральной плоскостью, круг радиуса К является большим кругом шара, а соответствующая окружность - большой окружностью.

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания (рис. 169).

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Прямая, проходящая через точку А шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной (рис. 169).

Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная

между двумя параллельными плоскостями, пересекающими шар (рис. 170).

Шаровой сектор получается из шарового сегмента и коиуса следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется (рис. 171).