Где применяют целлюлозу. Большая энциклопедия нефти и газа

Химические свойства целлюлозы.

1. Из повседневной жизни известно, что целлюлоза хорошо горит.

2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.

3. В числе органических продуктов разложения древесины – метиловый спирт, уксусная кислота, ацетон.

4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С 6 H 10 O 5) n + nН 2 О = nС 6 H 12 O 6 .

7. Структурные звенья целлюлозы (С 6 H 10 O 5) n содержат гидроксильные группы.

8. За счет этих групп целлюлоза может давать простые и сложные эфиры.

9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO 3 → n + 3n H 2 O.

Общее свойство нитратов целлюлозы – их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, – сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы – диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

1. Благодаря своей механической прочности в составе древесины используется в строительстве.

2. Из нее изготавливают разного рода столярные изделия.

3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.

4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.

70. Получение ацетатного волокна

Характерные особенности ацетатного волокна.

1. С давних времен человек широко использует природные волокнистые материалы для изготовления одежды и различных изделий домашнего обихода.

2. Одни из этих материалов имеют растительное происхождение и состоят из целлюлозы, например лен, хлопок, другие – животного происхождения, состоят из белков – шерсть, шелк.

3. По мере увеличения потребностей населения и развивающейся техники в тканях стал возникать недостаток волокнистых материалов. Возникла необходимость получать волокна искусственным путем.

Так как они характеризуются упорядоченным, ориентированным вдоль оси волокна расположением цепных макромолекул, то появилась идея превратить природный полимер неупорядоченной структуры путем той или иной обработки в материал с упорядоченным расположением молекул.

4. В качестве исходного природного полимера для получения искусственных волокон берется целлюлоза, выделенная из древесины, или хлопковый пух, остающийся на семенах хлопчатника после того, как с него снимут волокна.

5. Чтобы линейные молекулы полимера расположить вдоль оси образуемого волокна, необходимо их отделить друг от друга, сделать подвижными, способными к перемещению.

Этого можно достичь расплавлением полимера или его растворением.

Расплавить целлюлозу невозможно: при нагревании она разрушается.

6. Целлюлозу необходимо обработать уксусным ангидридом в присутствии серной кислоты (уксусный ангидрид – более сильное этерифицирующее средство, чем уксусная кислота).

7. Продукт этерификации – триацетат целлюлозы – растворяется в смеси дихлорметана СН 2 Сl 2 и этилового спирта.

8. Образуется вязкий раствор, в котором молекулы полимера уже могут перемещаться и принимать тот или иной нужный порядок.

9. С целью получения волокон раствор полимера продавливается через фильеры – металлические колпачки с многочисленными отверстиями.

Тонкие струи раствора опускаются в вертикальную шахту высотой примерно 3 м, через которую проходит нагретый воздух.

10. Под действием теплоты растворитель испаряется, и триацетат целлюлозы образует тонкие длинные волоконца, которые скручиваются затем в нити и идут на дальнейшую переработку.

11. При прохождении через отверстия фильеры макромолекулы, как бревна при сплаве по узкой реке, начинают выстраиваться вдоль струи раствора.

12. В процессе дальнейшей обработки расположение макромолекул в них становится еще более упорядоченным.

Это приводит к большой прочности волоконец и образуемых ими нитей.

Всю жизнь нас окружает огромное количество предметов - картонные коробки, офсетная бумага, целлофановые пакеты, одежда из вискозы, бамбуковые полотенца и многое другое. Но мало кто знает, что при их изготовлении активно применяется целлюлоза. Что же это за поистине волшебное вещество, без которого не обходится практически ни одно современное промышленное предприятие? В этой статье мы расскажем про свойства целлюлозы, её применение в различных сферах, а также из чего её добывают, и какова ее химическая формула. Начнём, пожалуй, с истоков.

Обнаружение вещества

Формула целлюлозы была открыта французским химиком Ансельмом Пайеном в ходе экспериментов по разделению древесины на составляющие. Обработав ее азотной кислотой, учёный обнаружил, что в ходе химической реакции формируется волокнистое вещество, схожее с хлопком. После тщательного анализа полученного материала Пайеном была получена химическая формула целлюлозы - C 6 H 10 O 5 . Описание процесса было опубликовано в 1838 году, а своё научное название вещество получило в 1839-м.

Дары природы

Сейчас доподлинно известно, что практически все мягкие части растений и животных содержат в себе некоторое количество целлюлозы. Например, растениям это вещество необходимо для нормального роста и развития, а точнее - для творения оболочек новообразующихся клеток. По составу относится к полисахаридам.

В промышленности, как правило, натуральную целлюлозу добывают из хвойных и лиственных деревьев - в сухой древесине содержится до 60% этого вещества, а также путём переработки отходов хлопководства, в которых содержится около 90% целлюлозы.

Известно, что если нагреть древесину в вакууме, то есть без доступа воздуха, произойдёт термическое разложение целлюлозы, благодаря чему образуется ацетон, метиловый спирт, вода, уксусная кислота и древесный уголь.

Несмотря на богатую флору планеты, лесов уже не хватает на то, чтобы производить необходимое для промышленности количество химических волокон - применение целлюлозы слишком обширно. Поэтому её всё чаще добывают из соломы, тростника, стеблей кукурузы, бамбука и камыша.

Синтетическую целлюлозу при помощи различных технологических процессов получают из угля, нефти, природного газа и сланца.

Из леса - в цеха

Давайте рассмотрим добычу технической целлюлозы из древесины - это сложный, интересный и длительный процесс. Первым делом на производство привозят древесину, распиливают её на крупные фрагменты и удаляют кору.

Затем очищенные бруски перерабатывают в щепки и сортируют, после чего вываривают в щелоке. Полученную таким образом целлюлозу отделяют от щелочи, затем высушивают, разрезают и упаковывают для отправки.

Химия и физика

Какие же химические и физические секреты таят в себе свойства целлюлозы кроме того, что это - полисахарид? В первую очередь, это вещество белого цвета. Легко воспламеняется и хорошо горит. Растворяется в комплексных соединениях воды с гидроксидами некоторых металлов (меди, никеля), с аминами, а также в серной и ортофосфорной кислотах, концентрированном растворе хлорида цинка.

В доступных бытовых растворителях и обычной воде целлюлоза не растворяется. Это происходит потому, что длинные нитевидные молекулы этого вещества связаны в своеобразные пучки и расположены параллельно друг к другу. Вдобавок, вся эта "конструкция" усилена водородными связями, из-за чего молекулы слабого растворителя или воды просто не могут проникнуть внутрь и разрушить это прочное сплетение.

Тончайшие нити, длина которых колеблется от 3 до 35 миллиметров, соединенные в пучки, - так можно схематически представить строение целлюлозы. Длинные волокна используются в текстильной промышленности, короткие - в производстве, например, бумаги и картона.

Целлюлоза не плавится и не превращается в пар, однако начинает разрушаться при нагреве выше 150 градусов Цельсия, выделяя при этом низкомолекулярные соединения - водород, метан и монооксид углерода (угарный газ). При температуре 350 о C и выше целлюлоза обугливается.

Перемены к лучшему

Вот так в химических символах описывается целлюлоза, структурная формула которой наглядно показывает длинноцепную полимерную молекулу, состоящую из повторяющихся глюкозидных остатков. Обратите внимание на "n", указывающее их большое количество.

К слову, формула целлюлозы, выведенная Ансельмом Пайеном, претерпела некоторые изменения. В 1934 году английский химик-органик, лауреат Нобелевской премии Уолтер Норман Хоуорс изучал свойства крахмала, лактозы и других сахаров, включая целлюлозу. Обнаружив способность этого вещества к гидролизу, он внёс свои коррективы в изыскания Пайена, и формула целлюлозы была дополнена значением "n", обозначив присутствие гликозидных остатков. На данный момент она выглядит так: (C 5 H 10 O 5) n .

Эфиры целлюлозы

Важно, что молекула целлюлозы содержат в себе гидроксильные группы, которые могут алкилироваться и ацилироваться, образуя при этом различные эфиры. Это ещё одно из важнейших свойств, которыми обладает целлюлоза. Структурная формула различных соединений может выглядеть так:

Эфиры целлюлозы бывают простыми и сложными. Простые - это метил-, оксипропил-, карбоксиметил-, этил-, метилгидроксипропил- и цианэтилцеллюлоза. Сложные - это нитраты, сульфаты и ацетаты целлюлозы, а также ацетопропионаты, ацетилфталилцеллюлоза и ацетобутираты. Все эти эфиры производятся практически во всех странах мира сотнями тысяч тонн в год.

От фотоплёнки до зубной пасты

Для чего же они нужны? Как правило, эфиры целлюлозы широко применяются для производства искуственных волокон, различных пластмасс, всевозможных плёнок (включая фотографические), лаков, красок, а также используются в военной промышленности для изготовления твёрдого ракетного топлива, бездымного пороха и взрывчатки.

Помимо этого, эфиры целлюлозы входят в состав штукатурных и гипсо-цементных смесей, красителей для тканей, зубных паст, различных клеев, синтетических моющих средств, парфюмерии и косметики. Одним словом, если бы в далёком 1838 году не была открыта формула целлюлозы, современные люди не обладали бы многими благами цивилизации.

Почти близнецы

Мало кто из обычных людей знает, что у целлюлозы есть своего рода двойник. Формула целлюлозы и крахмала идентична, однако это два совершенно разных вещества. В чём же разница? Несмотря на то что оба этих вещества - природные полимеры, степень полимеризации у крахмала намного меньше, нежели у целлюлозы. А если углубиться дальше и сравнить структуры этих веществ, можно обнаружить, что макромолекулы целлюлозы располагаются линейно и только в одном направлении, образуя таким образом волокна, в то время как микрочастицы крахмала выглядят несколько иначе.

Сферы применения

Одним из лучших наглядных образцов практически чистой целлюлозы является обычная медицинская вата. Как известно, её получают из тщательно очищенного хлопка.

Второй, не менее используемый продукт из целлюлозы - бумага. На самом деле она - тончайший слой целлюлозных волокон, тщательно спрессованных и склеенных между собой.

Кроме того, из целлюлозы производят вискозное полотно, которое под умелыми руками мастеров волшебным образом превращается в красивые одежды, обивку для мягкой мебели и различные декоративные драпировки. Также вискоза применяется для изготовления технических ремней, фильтров и шинных кордов.

Не забудем и о целлофане, который получают из вискозы. Без него трудно представить супермаркеты, магазины, тароупаковочные отделы почтовых отделений. Целлофан - повсюду: им обёрнуты конфеты, в него упакованы крупы и хлебобулочные изделия, а также таблетки, колготки и любая аппаратура, начиная от мобильного телефона и заканчивая пультом дистанционного управления для телевизора.

Помимо этого чистая микрокристаллическая целлюлоза входит в состав таблеток для снижения веса. Попадая в желудок, они разбухают и создают чувство насыщения. Количество еды, употребляемой за день, существенно сокращается, соответственно, падает вес.

Как видите, открытие целлюлозы произвело настоящую революцию не только в химической промышленности, но и в медицине.

Прежде всего, необходимо пояснить, что же именно представляет собой целлюлоза и каковы в общих чертах ее свойства.

Целлюлоза (от лат. cellula - букв, комнатка, здесь — клетка) - клетчатка, вещество клеточных стенок растений, представляет собой полимер класса углеводов - полисахарид, молекулы которого построены из остатков молекул моносахарида глюкозы (см. схему 1).


СХЕМА 1 Строение молекулы целлюлозы

Каждый остаток молекулы глюкозы - или, для краткости, глгокозный остаток - повернут относительно соседнего на 180° и связан с ним кислородным мостиком -О-, или, как принято говорить в данном случае, глюкозидной связью через атом кислорода. Вся молекула целлюлозы представляет, таким образом, как бы гигантскую цепочку. Отдельные звенья этой цепочки имеют форму шестиугольников, или - в терминах химии -6-членных циклов. В молекуле глюкозы (и ее остатке) этот 6-членный цикл построен из пяти атомов углерода С и одного атома кислорода О. Такие циклы называются пирановыми. Из шести атомов 6-членного пиранового цикла на изображенной выше схеме 1, в вершине одного из углов показан только атом кислорода О - гетероатом (от греч. етeроs; - другой, отличающийся от остальных). В вершинах остальных пяти углов располагается по атому углерода С (эти «обычные» для органики атомы углерода, в отличие от гетероатома, в формулах циклических соединений изображать не принято).

Каждый 6-членный цикл имеет форму не плоского шестиугольника, а изогнутого в пространстве, наподобие кресла (см. схему 2), - отсюда и название этой формы, или пространственной конформации, наиболее устойчивой для молекулы целлюлозы.


СХЕМА 2 Форма кресла

На схемах 1 и 2 стороны шестиугольников, расположенные к нам ближе, выделены жирной чертой. На схеме 1 видно также, что каждый глюкозный остаток содержит 3 гидроксильные группы -ОН (их называют гидроксигруппами или просто гидроксилами). Для наглядности эти группы -ОН заключены в пунктирную рамку.

Гидроксильные группы способны образовывать прочные межмолекулярные водородные связи с атомом водорода Н в качестве мостика, поэтому энергия связей между молекулами целлюлозы высока и целлюлоза как материал обладает значительной прочностью и жесткостью. Кроме того, группы -ОН способствуют поглощению водяных паров и придают целлюлозе свойства многоатомных спиртов (так называют спирты, содержащие несколько групп -ОН). При набухании целлюлозы водородные связи между ее молекулами разрушаются, цепочки молекул раздвигаются молекулами воды (или молекулами поглощенного реагента), и образуются новые связи - между молекулами целлюлозы и воды (или реагента).

В обычных условиях целлюлоза - твердое вещество плотностью 1,54-1,56 г/см3 , нерастворимое в обычных растворителях - воде, спирте, диэтиловом эфире, бензоле, хлороформе и др. В натуральных волокнах целлюлоза имеет аморфно-кристаллическое строение со степенью кристалличности около 70%.

В химических реакциях с целлюлозой участвуют обычно три группы -ОН. Остальные элементы, из которых построена молекула целлюлозы, вступают в реакцию при более сильных воздействиях - при повышенной температуре, при действии концентрированных кислот, щелочей, окислителей.

Так, например, при нагревании до температуры 130°С свойства целлюлозы изменяются лишь незначительно. Но при 150-160°С начинается процесс медленного разрушения - деструкции целлюлозы, а при температуре выше 160°С этот процесс происходит уже быстро и сопровождается разрывом глюкозидных связей (по атому кислорода), более глубоким разложением молекул и обугливанием целлюлозы.

По-разному действуют на целлюлозу кислоты. При обработке хлопковой целлюлозы смесью концентрированных азотной и серной кислот в реакцию вступают гидроксильные группы -ОН, и в результате получаются азотнокислые эфиры целлюлозы - так называемая нитроцеллюлоза, которая, в зависимости от содержания нитрогрупп в молекуле, обладает различными свойствами. Наиболее известны из нитроцеллюлоз пироксилин, применяемый для производства пороха, и целлулоид - пластмассы на основе нитроцеллюлозы с некоторыми добавками.

Другой тип химического взаимодействия имеет место при обработке целлюлозы соляной или серной кислотой. Под действием этих минеральных кислот происходит постепенная деструкция молекул целлюлозы с разрывом глюкозидных связей, сопровождающаяся гидролизом, т.е. обменной реакцией с участием молекул воды (см. схему 3).



СХЕМА 3 Гидролиз целлюлозы
На этой схеме изображены те же три звена полимерной цепочки целлюлозы, т.е. те же три остатка молекул целлюлозы, что и на схеме 1, только 6-членные пирановые циклы представлены не в форме "кресел", а в форме плоских шестиугольников. Такое условное обозначение циклических структур также общепринято в химии.

Полный гидролиз, проводимый при кипячении с минеральными кислотами, приводит к получению глюкозы. Продуктом частичного гидролиза целлюлозы является так называемая гидроцеллюлоза, она обладает меньшей механической прочностью по сравнению с обычной целлюлозой, так как показатели механической прочности падают с уменьшением длины цепочки полимерной молекулы.

Совершенно другой эффект наблюдается в том случае, если целлюлозу обработать непродолжительное время концентрированной серной или соляной кислотой. Происходит пергаментация: поверхность бумаги или хлопчатобумажной ткани набухает, и этот поверхностный слой, представляющий собой частично разрушенную и подвергнувшуюся гидролизу целлюлозу, придает бумаге или ткани после высушивания особый лоск и повышенную прочность. Это явление впервые было замечено в 1846 г. французскими исследователями Ж.Пумару и Л.Фипойе.

Слабые (0,5%-ные) растворы минеральных и органических кислот при температуре примерно до 70°С, если после их нанесения следует промывка, не оказывают разрушающего действия на целлюлозу.

К щелочам (разбавленным растворам) целлюлоза устойчива. Растворы едкого натра в концентрации 2-3,5% применяют при щелочной варке тряпья, идущего на изготовление бумаги. При этом из целлюлозы удаляются не только загрязнения, но и продукты деструкции полимерных молекул целлюлозы, имеющие более короткие цепи. В отличие от целлюлозы, эти продукты деструкции растворимы в щелочных растворах.

Своеобразно действуют на целлюлозу концентрированные растворы щелочей на холоде - при комнатной и более низких температурах. Этот процесс, открытый в 1844 г. английским исследователем Дж. Мерсером и получивший название мерсеризации, широко применяется для облагораживания хлопчатобумажных тканей. Волокна обрабатывают в натянутом состоянии при температуре 20°С 17,5%-ным раствором едкого натра. Молекулы целлюлозы присоединяют щелочь, образуется так называемая щелочная целлюлоза, и этот процесс сопровождается сильным набуханием целлюлозы. После промывки щелочь удаляется, а волокна приобретают мягкость, шелковистый блеск, становятся более прочными и восприимчивыми к красителям и влаге.

При высоких температурах в присутствии кислорода воздуха концентрированные растворы щелочей вызывают деструкцию целлюлозы с разрывом глюкозидных связей.

Окислители, применяемые для отбелки целлюлозных волокон в текстильном производстве, а также для получения бумаг с высокой степенью белизны, действуют на целлюлозу разрушающе, окисляя гидроксильные группы и разрывая глюкозидные связи. Поэтому в производственных условиях все параметры процесса отбеливания строго контролируются.

Когда мы говорили о строении молекулы целлюлозы, мы имели в виду ее идеальную модель, состоящую только из многочисленных остатков молекулы глюкозы. Мы не уточняли, сколько этих глюкозных остатков содержится в цепочке молекулы (или, как принято называть гигантские молекулы, - в макромолекуле) целлюлозы. Но в действительности, т.е. в любом природном растительном сырье, существуют большие или меньшие отклонения от описанной идеальной модели. Макромолекула целлюлозы может содержать некоторое количество остатков молекул других моносахаридов - гексоз (т.е. содержащих 6 атомов углерода, как и глюкоза, которая также относится к гексозам) и пентоз (моносахаридов с 5-ю атомами углерода в молекуле). Макромолекула природной целлюлозы может содержать также и остатки уроновых кислот - так называют карбоновые кислоты класса моносахаридов, остаток глюкуроновой кислоты, например, отличается от остатка глюкозы тем, что содержит вместо группы -СН 2 ОН карбоксильную группу -СООН, характерную для карбоновых кислот.

Количество глюкозных остатков, содержащихся в макромолекуле целлюлозы, или так называемая степень полимеризации, обозначаемая индексом n, также различна для разных видов целлюлозного сырья и колеблется в широких пределах. Так, в хлопке n составляет в среднем 5 000 - 12 000, а в льне, пеньке и рами 20 000 - 30 000. Таким образом, молекулярная масса целлюлозы может достигать 5 млн. кислородных единиц. Чем выше n, тем прочнее целлюлоза. Для целлюлозы, получаемой из древесины, n значительно ниже - в пределах 2500 - 3000, что обусловливает и меньшую прочность волокон древесной целлюлозы.

Однако если рассматривать целлюлозу как материал, полученный из какого-либо одного вида растительного сырья - хлопка, льна, конопли или древесины и т.д., то и в этом случае молекулы целлюлозы будут иметь неодинаковую длину, неодинаковую степень полимеризации, т.е. в этой целлюлозе будут присутствовать более длинные и более короткие молекулы. Высокомолекулярную часть любой технической целлюлозы принято называть а-целлюлозой - так условно обозначают ту часть целлюлозы, которая состоит из молекул, содержащих 200 и более глюкозных остатков. Особенностью этой части целлюлозы является нерастворимость в 17,5%-ном растворе едкого натра при 20°С (таковы, как уже упоминалось, параметры процесса мерсеризации - первого этапа производства вискозного волокна).

Растворимая в этих условиях часть технической целлюлозы называется гемицеллюлозой. Она в свою очередь состоит из фракции b-целлюлозы, содержащей от 200 до 50 глюкозных остатков, и у-целлюлозы - наиболее низкомолекулярной фракции, с n менее 50. Название «гемицеллюлоза», так же как и «а-целлюлоза», условно: в состав гемицеллюлоз входит не только целлюлоза сравнительно низкой молекулярной массы, но и другие полисахариды, молекулы которых построены из остатков других гексоз и пентоз, т.е. другие гексозаны и пентозаны (см., например, содержание пентозанов в табл. 1). Общее их свойство - невысокая степень полимеризации n, менее 200, и как следствие - растворимость в 17,5%-ном растворе едкого натра.

Качество целлюлозы определяется не только содержанием a-целлюлозы, но и содержанием гемицеллюлоз. Известно, что при повышенном содержании a-целлюлозы волокнистый материал отличается обычно более высокой механической прочностью, химической и термической стойкостью, стабильностью белизны и долговечностью. Но для получения прочного полотна бумаги необходимо, чтобы в технической целлюлозе присутствовали и гемицеллюлозные спутники, так как чистая а-целлюлоза не склонна к фибриллированию (расщеплению волокон в продольном направлении с образованием тончайших волоконец - фибрилл) и в процессе размола волокон легко рубится. Гемицеллюлоза облегчает фибриллирование, что в свою очередь улучшает сцепление волокон в бумажном листе без чрезмерного уменьшения их длины при размоле.

Когда мы говорили о том, что понятие «а-целлюлоза» тоже условно, мы имели в виду, что и а-целлюлоза не является индивидуальным химическим соединением. Этот термин обозначает суммарное количество веществ, находящихся в технической целлюлозе и нерастворимых в щелочи при мерсеризации. Действительное же содержание высокомолекулярной целлюлозы в a-целлюлозе всегда меньше, так как примеси (лигнин, зола, жиры, воски, а также пентозаны и пектиновые вещества, химически связанные с целлюлозой) не полностью растворяются при мерсеризации. Поэтому без параллельного определения количества этих примесей содержание а-целлюлозы не может характеризовать чистоту целлюлозы, о ней можно судить лишь при наличии этих необходимых дополнительных данных.

Продолжая изложение первоначальных сведений о строении и свойствах спутников целлюлозы, вернемся к табл. 1.

В табл. 1 были приведены вещества, встречающиеся наряду с целлюлозой в растительных волокнах. Первыми после целлюлозы указаны пектиновые вещества и пентозаны. Пектиновые вещества - это полимеры класса углеводов, которые, так же как целлюлоза, имеют цепочечное строение, но построены из остатков уроновой кислоты, точнее - галактуроновой кислоты. Полигалактуроновая кислота называется пектовой кислотой, а ее метиловые эфиры - пектинами (см. схему 4).



СХЕМА 4 Участок цепи макромолекулы пектина

Это, разумеется, только схема, так как пектины разных растений различаются по молекулярной массе, содержанию групп -ОСН3 (так называемых метокси-, или метоксильных, групп, или просто - метоксилов) и их распределению по цепи макромолекулы. Пектины, содержащиеся в клеточном соке растений, растворимы в воде и способны образовывать в присутствии сахара и органических кислот плотные гели. Однако пектиновые вещества существуют в растениях главным образом в виде нерастворимого протопектина - полимера разветвленного строения, в котором линейные участки макромолекулы пектина связаны поперечными мостиками. Протопектин содержится в стенках растительной клетки и межклеточном цементирующем материале, выполняя роль опорных элементов. Вообще пектиновые вещества являются резервным материалом, из которого путем ряда превращений образуется целлюлоза и формируется клеточная стенка. Так, например, в начальной стадии роста хлопкового волокна содержание пектиновых веществ в нем достигает 6%, а ко времени вскрытия коробочки постепенно убывает примерно до 0,8%. Параллельно увеличивается содержание целлюлозы в волокне, повышается его прочность, повышается степень полимеризации целлюлозы.

Пектиновые вещества довольно стойки к кислотам, но под действием щелочей при нагревании разрушаются, и это обстоятельство используется для очистки целлюлозы от пектиновых веществ (путем варки, например, хлопкового пуха с раствором едкого натра). Легко разрушаются пектиновые вещества и под действием окислителей.

Пентозаны - это полисахариды, построенные из остатков пентоз - обычно арабинозы и ксилозы. Соответственно эти пентозаны называются арабанами и ксиланами. Они имеют линейное (цепочечное) или слабо разветвленное строение и в растениях обычно сопутствуют пектиновым веществам (арабаны) или входят в состав гемицеллюлоз (ксиланы). Пентозаны бесцветны, аморфны. Арабаны хорошо растворимы в воде, ксиланы в воде не растворяются.

Следующим важнейшим спутником целлюлозы является лигнин - полимер разветвленного строения, вызывающий одревеснение растений. Как видно из табл. 1, лигнин отсутствует в хлопковом волокне, но в остальных волокнах - льняном, пеньковом, рами и особенно джутовом - он содержится в меньших или больших количествах. Он заполняет главным образом пространства между клетками растения, но проникает и в поверхностные слои волокон, играя роль инкрустирующего вещества, скрепляющего целлюлозные волокна. Особенно много лигнина содержится в древесине - до 30%. По своей природе лигнин уже не относится к классу полисахаридов (как целлюлоза, пектиновые вещества и пентозаны), а представляет собой полимер на основе производных многоатомных фенолов, т.е. относится к так называемым жирноароматическим соединениям. Существенное его отличие от целлюлозы заключается и в том, что макромолекула лигнина имеет нерегулярное строение, т.е. полимерную молекулу составляют не одинаковые остатки мономерных молекул, а разнообразные структурные элементы. Однако последние имеют между собой то общее, что состоят из ароматического ядра (которое образовано в свою очередь 6-ю атомами углерода С) и боковой пропановой цепочки (из 3-х атомов углерода С), этот общий для всех лигнинов структурный элемент называют фенилпропановым звеном (см. схему 5).


СХЕМА 5 Фенилпропановое звено

Таким образом, лигнин принадлежит к группе природных соединений, имеющих общую формулу (С 6 С 3)х. Лигнин не является индивидуальным химическим соединением со строго определенным составом и свойствами. Лигнины различного происхождения заметно отличаются друг от друга, и даже лигнины, полученные из одного вида растительного сырья, но разными способами, иногда очень сильно различаются по элементарному составу, содержанию тех или иных заместителей (так называют группы, соединенные с бензольным ядром или боковой пропановой цепочкой), растворимости и другим свойствам.

Высокая реакционная способность лигнина и неодинаковость его строения затрудняют исследование его структуры и свойств, но тем не менее установлено, что в состав всех лигнинов входят фенилпропановые звенья, представляющие собой производные гваякола (т.е. монометилового эфира пирокатехина, см. схему 6).



СХЕМА 6 Производное гваякола

Выявлены и некоторые отличия в строении и свойствах лигнинов однолетних растений и злаков, с одной стороны, и древесины - с другой. Например, лигнины трав и злаков (к ним относятся лен и пенька, на которых мы останавливаемся более подробно) сравнительно хорошо растворяются в щелочах, тогда как лигнины древесины -трудно. Это обусловливает более жесткие параметры процесса удаления лигнина (делигнификации) из древесины методом натронной варки древесины (как-то: более высокие температуры и давления) по сравнению с процессом удаления лигнина из молодых побегов и трав методом варки в щелоке - методом, который был известен в Китае еще в начале первого тысячелетия нашей эры и который широко использовался под названием мацерации или бучения в Европе при переработке тряпья и разного рода отходов (льняных, пеньковых) в бумагу.

Мы уже говорили о высокой реакционной способности лигнина, т.е. о его способности вступать в многочисленные химические реакции, что объясняется присутствием в макромолекуле лигнина большого количества реакционноспособных функциональных групп, т.е. способных вступать в те или иные химические превращения, присущие определенному классу химических соединений. Особенно это относится к спиртовым гидроксилам -ОН, находящимся у атомов углерода в боковой пропановой цепочке, по этим группам -ОН происходит, например, сульфирование лигнина при сульфитной варке древесины - еще одном способе ее делигнификации.

Вследствие большой реакционной способности лигнина легко происходит и его окисление, в особенности в щелочной среде, с образованием карбоксильных групп -СООН. А при действии хлорирующих и белящих агентов лигнин легко хлорируется, причем атом хлора Сl вступает как в ароматическое ядро, так и в боковую пропановую цепочку, в присутствии влаги одновременно с хлорированием происходит и окисление макромолекулы лигнина, и получаемый хлорлигнин содержит также карбоксильные группы. Хлорированный и окисленный лигнин легче вымывается из целлюлозы. Все эти реакции широко используются в целлюлозно-бумажной промышленности для очистки целлюлозных материалов от примеси лигнина, который является очень неблагоприятным компонентом технической целлюлозы.

Почему присутствие лигнина нежелательно? Прежде всего потому, что лигнин имеет разветвленную, часто трехмерную, пространственную структуру и поэтому не обладает волокнообразующими свойствами, т. е. из него не могут быть получены нити. Он придает целлюлозным волокнам жесткость, ломкость, снижает способность целлюлозы набухать, окрашиваться и взаимодействовать с реагентами, применяемыми при различных процессах обработки волокон. При приготовлении бумажной массы лигнин затрудняет размол и фибриллирование волокон, ухудшает их взаимное сцепление. Кроме того, сам по себе он окрашен в желто-коричневый цвет, а при старении бумаги к тому же еще и усиливает ее пожелтение.

Наши рассуждения о строении и свойствах спутников целлюлозы могут показаться, на первый взгляд, излишними. Действительно, уместны ли здесь даже краткие описания строения и свойств лигнина, если реставратор-график имеет дело не с природными волокнами, а с бумагой, т.е. материалом, изготовленным из очищенных от лигнина волокон? Это, разумеется, так, но только в том случае, если речь идет о тряпичной бумаге, изготовленной из хлопчатобумажного сырья. В хлопке лигнина нет. Практически нет его и в тряпичной бумаге из льна или пеньки - он был почти полностью удален в процессе бучения тряпья.

Однако в бумаге, полученной из древесины, и в особенности в сортах газетной бумаги, в которых наполнителем служит древесная масса, лигнин содержится в достаточно больших количествах, и это обстоятельство следует иметь в виду реставратору, работающему с самыми разными, в том числе и низкосортными бумагами.


Целлюлоза (C 6 H 10 O 5) n – природный полимер, полисахарид, состоящий из остатков β-глюкозы, молекулы имеют линейное строение. В каждом остатке молекулы глюкозы содержатся три гидроксильные группы, поэтому она проявляет свойства многоатомного спирта.

Физические свойства

Целлюлоза – волокнистое вещество, нерастворимое ни в воде, ни в обычных органических растворителях, гигроскопична. Обладает большой механической и химической прочностью.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Химические свойства

1. Целлюлоза – полисахирид, подвергается гидролизу с образованием глюкозы:

(C 6 H 10 O 5) n + nН 2 О → nС 6 Н 12 О 6

2. Целлюлоза – многоатомный спирт, вступает в реакции этерификации с образованием сложных эфиров

(С 6 Н 7 О 2 (ОН) 3) n + 3nCH 3 COOH → 3nH 2 O + (С 6 Н 7 О 2 (ОCOCH 3) 3) n

триацетат целлюлозы

Ацетаты целлюлозы – искусственные полимеры, применяются в производстве ацетатного шёлка, плёнки (киноплёнки), лаков.

Применение

Применение целлюлозы весьма разнообразно. Из неё получают бумагу, ткани, лаки, плёнки, взрывчатые вещества, искусственный шёлк (ацетатный, вискозный), пластмассы (целлулоид), глюкозу и многое другое.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO3 → n + 3n H2O.

Применение целлюлозы.

Получение ацетатного волокна

68. Целлюлоза, ее физические свойства

Нахождение в природе. Физические свойства.

1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.

2. Отсюда происходит и ее название (от лат. «целлула» – клетка).

3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.

4. Волокна хлопка содержат до 98 % целлюлозы.

5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.

6. Бумага, хлопчатобумажные ткани – это изделия из целлюлозы.

7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.

8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

1) целлюлоза, как и крахмал, является природным полимером;

2) эти вещества имеют даже одинаковые по составу структурные звенья – остатки молекул глюкозы, одну и ту же молекулярную формулу (С6H10O5)n;

3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;

4) основное различие между крахмалом и целлюлозой – в структуре их молекул.

Нахождение целлюлозы в природе.

1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.

2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.

Каковы химические и физические свойства целлюлозы

В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.

4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;

2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

69. Химические свойства целлюлозы и ее применение

1. Из повседневной жизни известно, что целлюлоза хорошо горит.

2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.

3. В числе органических продуктов разложения древесины – метиловый спирт, уксусная кислота, ацетон.

4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.

5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I).

69. Химические свойства целлюлозы и ее применение

То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.

6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С6H10O5)n + nН2О = nС6H12O6.

7. Структурные звенья целлюлозы (С6H10O5)n содержат гидроксильные группы.

8. За счет этих групп целлюлоза может давать простые и сложные эфиры.

9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.

2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например: n + 3nHNO3 -> n + 3n H2O.

Общее свойство нитратов целлюлозы – их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, – сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы – диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

1. Благодаря своей механической прочности в составе древесины используется в строительстве.

2. Из нее изготавливают разного рода столярные изделия.

3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.

4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.

О.А. Носкова, М.С. Федосеев

Химия древесины

И синтетических полимеров

ЧАСТЬ 2

Утверждено

Редакционно-издательским советом университета

в качестве конспекта лекций

Издательство

Пермского государственного технического университета

Рецензенты:

канд. техн. наук Д.Р. Нагимов

(ЗАО «Карбокам»);

канд. техн. наук, проф. Ф.Х. Хакимова

(Пермский государственный технический университет)

Носкова, О.А.

Н84 Химия древесины и синтетических полимеров: конспект лекций: в 2 ч. / О.А. Носкова, М.С. Федосеев. – Пермь: Изд-во Перм. гос. техн. ун-та, 2007. – Ч. 2. – 53 с.

ISBN 978-5-88151-795-3

Приведены сведения, касающиеся химического строения и свойств основных компонентов древесины (целлюлозы, гемицеллюлоз, лигнина и экстрактивных веществ). Рассмотрены химические реакции этих компонентов, которые протекают при химической переработке древесины или при химической модификации целлюлозы. Также приведены общие сведения о варочных процессах.

Предназначен для студентов специальности 240406 «Технология химической переработки древесины».

УДК 630*813. + 541.6 + 547.458.8

ISBN 978-5-88151-795-3 © ГОУ ВПО

«Пермский государственный

технический университет», 2007

Введение……………………………………………………………………… ……5
1. Химия целлюлозы……………………………………………………….. …….6
1.1. Химическое строение целлюлозы………………………………….. .…..6
1.2. Химические реакции целлюлозы…………………………………….. .……8
1.3. Действие растворов щелочей на целлюлозу………………………… …..10
1.3.1. Щелочная целлюлоза…………………………………………. .…10
1.3.2. Набухание и растворимость технической целлюлозы в растворах щелочей………………………………………………… .…11
1.4. Окисление целлюлозы……………………………………………….. .…13
1.4.1. Общие сведения об окислении целлюлозы. Оксицеллюлоза… .…13
1.4.2. Основные направления окислительных реакций…………… .…14
1.4.3. Свойства оксицеллюлозы………………………………………

Химические свойства целлюлозы.

.…15
1.5. Сложные эфиры целлюлозы…………………………………………. .…15
1.5.1. Общие сведения о получении сложных эфиров целлюлозы.. .…15
1.5.2. Нитраты целлюлозы…………………………………………… .…16
1.5.3. Ксантогенаты целлюлозы…………………………………….. .…17
1.5.4. Ацетаты целлюлозы…………………………………………… .…19
1.6. Простые эфиры целлюлозы…………………………………………… .…20
2. Химия гемицеллюлоз…………………………………………………… .…21
2.1. Общие понятия о гемицеллюлозах и их свойствах…………………. .…21
.2.2. Пентозаны…………………………………………………………….. .…22
2.3. Гексозаны……………………………………………………………… …..23
2.4. Уроновые кислоты……………………………………………………. .…25
2.5. Пектиновые вещества………………………………………………… .…25
2.6. Гидролиз полисахаридов…………………………………………….. .…26
2.6.1. Общие понятия о гидролизе полисахаридов…………………. .…26
2.6.2. Гидролиз полисахаридов древесины разбавленными минеральными кислотами……………………………………………….. …27
2.6.3. Гидролиз полисахаридов древесины концентрированными минеральными кислотами………………………………………………. …28
3. Химия лигнина…………………………………………………………….. …29
3.1. Структурные единицы лигнина………………………………………. …29
3.2. Методы выделения лигнина…………………………………………… …30
3.3. Химическое строение лигнина………………………………………… …32
3.3.1. Функциональные группы лигнина………………….……………..32
3.3.2. Основные типы связей между структурными единицами лигнина…………………………………………………………………….35
3.4. Химические связи лигнина с полисахаридами……………………….. ..36
3.5. Химические реакции лигнина………………………………………….. ….39
3.5.1. Общая характеристика химических реакций лигнина……….. ..39
3.5.2. Реакции элементарных звеньев………………………………… ..40
3.5.3. Макромолекулярные реакции………………………………….. ..42
4. Экстрактивные вещества………………………………………………… ..47
4.1. Общие сведения………………………………………………………… ..47
4.2. Классификация экстрактивных веществ……………………………… ..48
4.3. Гидрофобные экстрактивные вещества………………………………. ..48
4.4. Гидрофильные экстрактивные вещества……………………………… ..50
5. Общие понятия о варочных процессах…………………………………. ..51
Библиографический список…………………………………………………. ..53

Введение

Химия древесины – это раздел технической химии, изучающий химический состав древесины; химизм образования, строения и химические свойства веществ, составляющих мертвую древесную ткань; методы выделения и анализа этих веществ, а также химическую сущность природных и технологических процессов переработки древесины и ее отдельных компонентов.

В первой части конспекта лекций «Химия древесины и синтетических полимеров», изданной в 2002 г., рассмотрены вопросы, касающиеся анатомии древесины, строения клеточной оболочки, химического состава древесины, физических и физико-химических свойств древесины.

Во второй части конспекта лекций «Химия древесины и синтетических полимеров» рассмотрены вопросы, касающиеся химического строения и свойств основных компонентов древесины (целлюлозы, гемицеллюлоз, лигнина).

В конспекте лекций приведены общие сведения о варочных процессах, т.е. о получении технической целлюлозы, которая используется в производстве бумаги и картона. В результате химических превращений технической целлюлозы получают ее производные – простые и сложные эфиры, из которых производят искусственные волокна (вискозные, ацетатные), пленки (кино-, фото-, упаковочные пленки), пластмассы, лаки, клеи. В этой части конспекта также кратко рассмотрены получение и свойства эфиров целлюлозы, которые нашли широкое применение в промышленности.

Химия целлюлозы

Химическое строение целлюлозы

Целлюлоза – один из важнейших природных полимеров. Это основ-ной компонент растительных тканей. Природная целлюлоза содержится в больших количествах в хлопке, льне и других волокнистых растениях, из которых получают природные текстильные целлюлозные волокна. Хлопковые волокна представляют собой почти чистую целлюлозу (95–99 %). Более важным источ-ником промышленного получения целлюло-зы (технической целлюлозы) служат древесные растения. В древесине различных пород деревьев массовая доля целлюлозы составляет в сред-нем 40–50 %.

Целлюлоза – полисахарид, макромолекулы которого построены из остатков D -глюкозы (звеньев β-D -ангидроглюкопиранозы), соеди-ненных β-гликозидными связями 1–4:

Целлюлоза представляет собой линейный гомополимер (гомополи-сахарид), относящийся к гетероцепным полимерам (полиацеталям). Это стереорегулярный полимер, в цепи которого стереоповторяющимся звеном служит остаток целлобиозы. Суммарную формулу целлюлозы можно представить (С6Н10О5)п или [С6Н7О2 (ОН)3]п . В каждом мономерном звене содержатся три спиртовых гидроксильных группы, из которых одна первичная –СН2ОН и две (у С2 и С3) вторичные –СНОН–.

Концевые звенья отличаются от остальных звеньев цепи. Одно кон-цевое звено (условно правое – нередуцирующее) имеет дополнительный свободный вторичный спиртовый гидроксил (у С4). Другое концевое звено (условно левое – редуцирующее) содержит свободный гликозидный (полуацетальный) гидрок-сил (у С1) и, следовательно, может существовать в двух таутомерных формах – циклической (цолуацетальной) и открытой (альдегидной) :

Концевая альдегидная группа придает целлюлозе редуцирующую (восстанавливающую) способность. Например, целлюлоза может вос-станавливать медь из Сu2+ в Сu+:

Количество восстановленной меди (медное число ) служит качественной характеристикой длины цепей целлюлозы и показывает ее степень окислительной и гидролитической деструкции.

Природная целлюлоза имеет высокую степень полимеризации (СП): древесная – 5000–10000 и выше, хлопковая – 14000–20000. При выделении из растительных тканей целлюлоза несколько разрушается. Техническая древесная целлюлоза имеет СП около 1000–2000. СП целлюлозы определяют главным образом вискозиметрическим методом, используя в качест-ве растворителей некоторые комплексные основания: медноаммиачный реактив(ОН)2, куприэтилендиамин (ОН)2, кадмийэтилендиамин (кадоксен) (ОН)2 и др.

Выделенная из растений целлюлоза всегда полидисперсна, т.е. содер-жит макромолекулы различной длины. Степень полидисперсности целлю-лозы (молекулярную неоднородность) определяют методами фракцио-нирования, т.е. разделения образца целлюлозы на фракции с определенной молекулярной массой. Свойства образца целлюлозы (механическая прочность, растворимость) зависят от средней СП и степени полидисперс-ности.

12345678910Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 1100 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Структура, свойства, функции полисахаридов (гомо- и гетерополисахариды).

ПОЛИСАХАРИДЫ – это высокомолекулярные вещества (полимеры) , состоящие из большого количества моносахаридов. По составу их делят на гомополисахариды и гетерополисахариды.

Гомополисахариды – полимеры, состоящие из моносахаридов одного вида . Например, гликоген, крахмал построены только из молекул α-глюкозы (α-D-глюкопиранозы), мономером клетчатки (целлюлозы) так же является β-глюкоза.

Крахмал. Это резервный полисахарид растений. Мономером крахмала является α-глюкоза . Остатки глюкозы в молекуле крахмала на линейных участках связаны между собой α-1,4-гликозидными , а в точках ветвления – α-1,6-гликозидными связями .

Крахмал представляет собой смесь двух гомополисахаридов: линейного – амилозы (10-30%) и разветвленного – амилопектина (70-90%).

Гликоген. Это основной резервный полисахарид тканей человека и животных. Молекула гликогена имеет примерно в 2 раза более разветвленное строение, чем амилопектин крахмала. Мономером гликогена является α-глюкоза . В молекуле гликогена остатки глюкозы на линейных участках связаны между собой α-1,4-гликозидными , а в точках ветвления – α-1,6-гликозидными связями .

Клетчатка. Это наиболее распространенный структурный растительный гомополисахарид. В линейной молекуле клетчатки мономеры β-глюкозы соединены между собой β-1,4-гликозидными связями . Клетчатка не усваивается в организме человека, но, ввиду своей жесткости, раздражает слизистую желудочно-кишечного тракта, тем самым, усиливает перистальтику и стимулирует выделение пищеварительных соков, способствует формированию каловых масс.

Пектиновые вещества - полисахариды, мономером которых является D-галактуроновая кислота , остатки которой соединены α-1,4-гликозидными связями. Содержатся в плодах и овощах и для них характерно желеобразование в присутствии органических кислот, что используется в пищевой промышленности (желе, мармелад).

Гетерополисахариды (мукополисахариды, гликозаминогликаны)– полимеры, состоящие из моносахаридов различного вида . По строениюони представляют

неразветвленные цепи построены из повторяющихся дисахаридных остатков , в состав которых обязательно входят аминосахара (глюкозамин, или галактозамин) и гексуроновые кислоты (глюкуроновая, или идуроновая).

Физические, химические свойства целлюлозы

Представляют собой желеподобные вещества, выполняют ряд функций, в т.ч. защитную (слизь), структурную, являются основой межклеточного вещества.

В организме гетерополисахариды не встречаются в свободном состоянии, а всегда связаны с белками (гликопротеины и протеогликаны) или липидами (гликолипиды).

По строению и свойствам делятся на кислые и нейтральные.

КИСЛЫЕ ГЕТЕРОПОЛИСАХАРИДЫ :

В своём составе имеют гексуроновую или серную кислоты. Представители:

Гиалуроновая кислота является основным структурным компонентом межклеточного вещества, способным связывать воду («биологический цемент»). Растворы гиалуроновой кислоты обладают высокой вязкостью, поэтому служат барьером для проникновения микроорганизмов, участвует в регуляции водного обмена, является основной частью межклеточного вещества).

Хондроитинсульфаты.являются структурными компонентами хрящей, связок, сухожилий, костей, клапанов сердца.

Гепарин антикоагулянт (препятствует свёртыванию крови), обладает противовоспалительным действием, активатор ряда ферментов.

НЕЙТРАЛЬНЫЕ ГЕТЕРОПОЛИСАХАРИДЫ: входят в состав гликопротеинов сыворотки крови, муцинов слюны, мочи и др, построенны из аминосахаров и сиаловых к-т. Нейтральные ГП входят в состав мн. ферментов и гормонов.

СИАЛОВЫЕ КИСЛОТЫ – соединение нейраминовой кислоты с уксусной или с аминокислотой – глицином, входят в состав клеточных оболочек, биологических жидкостей. Сиаловые кислоты определяют для диагностики системных заболеваний (ревматизм, системная красная волчанка).