Биологический и геологический круговороты веществ. Большой геологический и малый биологический круговорот веществ в природе

Cтраница 1


Геологический круговорот (большой круговорот веществ в природе) - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.  

Геологический круговорот - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.  

Границы геологического круговорота значительно шире границ биосферы, его амплитуда захватывает слои земной коры далеко за пределами биосферы. И, самое главное, - в процессах указанного круговорота живые организмы играют второстепенную роль.  

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.  

Важнейшую роль в большом цикле геологического круговорота играют малые циклы вещества, как биосферные, так и техносферные, попав в которые вещество надолго выключается из большого геохимического потока, трансформируясь в бесконечных циклах синтеза и разложения.  

Важнейшую роль в большом цикле геологического круговорота играют малые циклы вещества, как биосферные, так и техносферные, попав в которые, вещество надолго выключается из большого геохимического потока, трансформируясь в бесконечных циклах синтеза и разложения.  

Этот углерод принимает участие в медленном геологическом круговороте.  


Именно этот углерод принимает участие в медленном геологическом круговороте. Жизнь на Земле и газовый баланс атмосферы поддерживаются участвующими в малом (биогенном) круговороте относительно небольшими количествами углерода, содержащегося в растительных (5 10й т) и животных (5 109 т) тканях. Однако в настоящее время человек интенсивно замыкает на себя круговорот веществ, в том числе углерода. Так, например, подсчитано, что суммарная биомасса всех домашних животных уже превышает биомассу всех диких наземных животных. Площади культивируемых растений приближаются к площадям естественных биогеоценозов, и многие культурные экосистемы по своей продуктивности, непрерывно повышаемой человеком, значительно превосходят природные.  

Наиболее масштабным во времени и в пространстве является так называемый геологический круговорот веществ.  

Различают 2 типа круговорота веществ в природе: большой или геологический круговорот веществ между сушей и океаном; малый или биологический - между почвой и растениями.  

Извлекаемая растением из почвы вода в парообразном состоянии попадает в атмосферу, затем, охлаждаясь, конденсируется и вновь в виде осадков возвращается в почву или океан. Геологический круговорот воды обеспечивает механическое перераспределение, осаждение, накопление твердых осадков на суше и на дне водоемов, а также в процессе механического разрушения почв и горных пород. Однако химическая функция воды осуществляется при участии живых организмов или продуктов их жизнедеятельности. Природные воды, как и почвы, - сложное биокосное вещество.  

Геохимическая деятельность человека становится сравнимой по масштабам с биологическими и геологическими процессами. В геологическом круговороте резко возрастает звено денудации.  

Фактором, который накладывает основной отпечаток на общий характер и биологич. Вместе с тем геологический круговорот воды беспрерывно стремится вымыть все эти элементы из толщ рухляка суши в бассейн океана. Поэтому сохранение элементов пищи растений в пределах суши требует обращения их в абсолютно нерастворимую в воде форму. Этому требованию отвечает живое органич.  

Все вещества на планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризуется двумя важными моментами: он осуществляется на протяжении всего геологического развития Земли и представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и разрушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и химических элементов. Значительную роль в этих процессах играли и продолжают играть термические свойства поверхности суши и воды: поглощение и отражение солнечных лучей, теплопроводность и теплоемкость. Неустойчивый гидротермический режим поверхности Земли вместе с планетарной системой циркуляции атмосферы обусловливал геологический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и современных геосфер. Со становлением биосферы в большой круговорот включились продукты жизнедеятельности организмов. Геологический круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и другие - участвуют в большом круговороте, проходя от глубинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации

магмы, поступив на поверхность литосферы из глубин Земли, подвергается разложению, выветриванию в области биосферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глубину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис. 32).

Рис. 32. Геологический (большой) круговорот веществ

Наиболее интенсивному и быстрому круговороту подвергаются легкоподвижные вещества - газы и природные воды, составляющие атмосферу и гидросферу планеты. Значительно медленнее совершает круговорот материал литосферы. В целом каждый круговорот любого химического элемента является частью общего большого круговорота веществ на Земле, и все они тесно связаны между собой. Живое вещество биосферы в этом круговороте выполняет огромную работу по перераспределению химических элементов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.


Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, грибами, микроорганизмами и почвой. Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических веществ и их разрушения. Начальный этап возникновения органических веществ обусловлен фотосинтезом зеленых растений, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, магния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I порядка) поглощают соединения этих элементов уже в виде пищи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потребляя пищу более сложного состава, включающую белки, жиры, аминокислоты и другие вещества. В процессе разрушения микроорганизмами (редуцентами) органических веществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следующий виток биологического круговорота (рис. 33).

К эндогенным процессам относятся: магматизм, метаморфизм (действие высо­ких температур и давления), вулканизм, движение земной коры (землетрясения, го­рообразования).

К экзогенным – выветривание, деятельность атмосферных и поверхностных вод морей, океанов, животных, растительных организмов и особенно человека – техногенез.

Взаимодействие внутренних и внешних процессов образует большой геологи­ческий круговорот веществ .

При эндогенных процессах образуются горные системы, возвышенности, океанические впадины, при экзогенных – происходит разрушение магматических горных пород, перемещение продуктов разрушения в реки, моря, океаны и формирование осадоч­ных пород. В результате движения земной коры осадочные породы погружаются в глубокие слои, подвергаются процессам метаморфизма (действию высоких темпера­тур и давления), образуются метаморфические породы. В более глубоких слоях они пе­реходят в расплавленное …
состояние (магматизация). Затем, в результате вулканиче­ских процессов, поступают в верхние слои литосферы, на ее поверхность в виде магматических пород. Так образуются почвообразующие породы и различные формы рельефа.

Горные породы , из которых формируется почва, называются почвообразую­щими или материнскими. По условиям образования они подразделяются на три группы: магматические, метаморфические и осадочные.

Магматические горные породы состоят из соединений кремния, Al, Fe, Mg, Ca, K, Na. В зависимости от соотношения этих соединений различают кислые и ос­новные породы.

Кислые (граниты, липариты, пегматиты) имеют высокое содержание кремне­зема (более 63%), оксидов калия и натрия (7-8%), оксидов кальция и Mg (2-3%). Они имеют светлую и бурую окраску. Почвы, образующиеся из таких пород, имеют рыхлое сложение, повышенную кислотность и малоплодородны.

Основные магматические породы (базальты, дуниты, периодиты) характери­зуются низким содержанием SiO 2 (40-60%), повышенным содержанием CaO и MgO (до 20%), оксидов железа (10-20%), Na 2 O и K 2 O менее менее 30%.

Почвы, образующиеся на продуктах выветривания основных пород, имеют щелочную и нейтральную реакцию, много гумуса и высокое плодородие.

Магматические породы составляют 95% общей массы пород, но в качестве почвообразующих они занимают небольшие площади (в горах).

Метаморфические горные породы , образуются в результате перекристал­лизации магматических и осадочных пород. Это мрамор, гнейсы, кварцы. Занимают небольшой удельный вес в качестве почвообразующих пород.

Осадочные породы . Формирование их обусловлено процессами выветривания магматических и метаморфических горных пород, переносом продуктов выветрива­ния водными, ледниковыми и воздушными потоками и отложением на поверхности суши, на дне океанов, морей, озер, в поймах рек.

По составу осадочные породы подразделяются на обломочные, хемогенные и биогенные.

Обломочные отложения различаются по величине обломков и частиц: это валуны, камни, гравий, щебень, пески, суглинки и глины.

Хемогенные отложения образовались в результате выпадения солей из водных растворов в морских заливах, озерах в условиях жаркого климата или в результате химических реакций.

К ним относятся галоиды (каменная и калийная соль), сульфаты (гипс, ангид­рид), карбонаты (известняк, мергель, доломиты), силикаты, фосфаты. Многие из них являются сырьем для производства цемента, химических удобрений, используются как агро­руды.

Биогенные отложения образованы из скоплений остатков растений и живот­ных. Это: карбонатные (биогенные известняки и мел), кремнистые (доло­мит) и углеродистые породы (угли, торф, сапропель, нефть, газ).

Главными генетическими типами осадочных пород являются:

1. Элювиальные отложения – продукты выветривания горных пород, остав­шиеся на листе их образования. Расположен элювий на вершинах водоразделов, где смыв выражен слабо.

2. Делювиальные отложения – продукты эрозии, отложенные временными во­дотоками дождевых и талых вод в нижней части склонов.

3. Пролювиальные отложения – образовались в результате переноса и отложе­ний продуктов выветривания временными горными реками и потопами у подножий склонов.

4. Аллювиальные отложения – формируются в результате отложения продуктов выветрива­ния речными водами, поступающих в них с поверхностным стоком.

5. Озерные отложения – донные отложения озер. Илы с высоким содержанием органического вещества (15-20%) называются сапропелями.

6. Морские отложения – донные отложения морей. При отступлении (транс­грессии) морей они остаются как почвообразующие породы.

7. Ледниковые (гляциальные) или моренные отложения – продукты выветрива­ния различных пород, перемещенные и отложенные ледником. Это несортирован­ный грубообломочный материал красно-бурого или серого цвета с включениями камней, валунов, гальки.

8. Флювиогляциальные (водно-ледниковые) отложения временных водотоков и замкнутых водоемов, образовавшиеся при таянии ледника.

9. Покровные глины относятся к внеледниковым отложениям и рассматрива­ются как отложения мелководных приледниковых разливов талых вод. Они пере­крывают марену сверху слоем 3-5 м. Имеют желто-бурую окраску, хорошо отсорти­рованы, не содержат камней и валунов. Почвы на покровных суглинках более пло­дородные, чем на марене.

10. Лессы и лессовидные суглинки характеризуются палевой окраской, повы­шенным содержанием пылеватых и илистых фракций, рыхлым сложением, высокой пористостью, высоким содержанием карбонатов кальция. На них образовались пло­дородные серые лесные, каштановые почвы, черноземы и сероземы.

11. Эоловые отложения образовались в результате деятельности ветра. Разру­шительная деятельность ветра слагается из коррозии (оттачивание, шлифование песком горных пород) и дефляции (сдувание и перенос ветром мелких частиц почв). Оба эти процесса вместе взятые представляет собой ветровую эрозию.

Основные схемы, формулы и т.д., иллюстрирующие содержание: презентация с фотографиями видов выветривания.

Вопросы для самоконтроля:

1. Что такое выветривание?

2. Что такое магматизация?

3. Чем отличается физическое и химическое выветривание?

4. Что такое геологический круговорот веществ?

5. Опишите строение Земли?

6. Что такое магма?

7. Из каких слоев состоит ядро Земли?

8. Что такое породы?

9. Как классифицируются породы?

10. Что такое лесс?

11. Что такое фракция?

12. Какие характеристики называются органолептические?

Основная:

1. Добровольский В.В. География почв с основами почвоведения: Учебник для вузов. — М.: Гуманит. изд. Центр ВЛАДОС, 1999.-384 с.

2. Почвоведение/ Под.ред. И.С. Кауричева. М. Агропромиадат изд. 4. 1989.

3. Почвоведение/ Под.ред. В.А. Ковды, Б.Г. Розанова в 2-х частях М. Высшая школа 1988.

4. Глазовская М.А., Геннадьев А.И. География почв с основами почвоведения МГУ. 1995

5. Роде А.А., Смирнов В.Н. Почвоведение. М. Высшая школа, 1972

Дополнительная:

1. Глазовская М.А. Общее почвоведение и география почв. М. Высшая школа 1981

2. Ковда В.А. Основы учения о почвах. М. Наука.1973

3. Ливеровский А.С. Почвы СССР. М. Мысль 1974

4. Розанов Б. Г. Почвенный покров земного шара. М. изд. У. 1977

5. Александрова Л.Н., Найденова О.А. Лабораторно-практические занятия по почвоведению. Л. Агропромиздат. 1985

Биологический (малый) круговорот - циркуляция веществ между растениями, животным миром, микроорганизмами и почвой. Основа его - фотосинтез, т. е. превращение зелеными растениями и особыми микроорганизмами лучистой энергии Солнца в энергию химических связей органических веществ. Фотосинтез обусловил появление на Земле кислорода при помощи зеленых организмов, озонового слоя и условий для биологической эволюции.[ ...]

Малый биологический круговорот веществ имеет особенно большое значение в почвообразовании, поскольку именно взаимодействие биологического и геологического круговоротов лежит в основе почвообразовательного процесса.[ ...]

Круговорот азота в настоящее время подвергается сильному воздействию со стороны человека. С одной стороны, массовое производство азотных удобрений и их использование приводят к избыточному накоплению нитратов. Азот, поступающий на поля в виде удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации. С другой стороны, при снижении скорости превращения аммиака в нитраты аммонийные удобрения накапливаются в почве. Возможно подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности. Однако все эти процессы носят достаточно локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на теплоэлектростанциях и на транспорте. Азот, "фиксированный” в промышленных выбросах, токсичен, в отличие от азота биологической фиксации. При естественных процессах оксиды азота появляются в атмосфере в малых количествах в качестве промежуточных продуктов, но в городах и промышленных районах их концентрации становятся опасными. Они раздражают органы дыхания, а под воздействием ультрафиолетового излучения возникают реакции между окси-дамй азота и углеводородами с образованием высокотоксичных и канцерогенных соединений.[ ...]

Круговороты как форма перемещения вещества присущи и биострому, но здесь они приобретают свои особенности. Горизонтальный круговорот представлен триадой: рождение - размножение- гибель (разложение); вертикальный - процессом фотосинтеза. И тот и другой в формулировке А. И. Перельмана (1975) находят единство в малом биологическом круговороте: «... химические элементы в ландшафте совершают круговороты, в ходе которых многократно поступают в живые организмы («организуются») и выходят из них («минерализуются»)»2.[ ...]

Круговорот биологический (биотический) - явление непрерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энергии1 и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом (рис. 6.2), а в пределах конкретного биогеоценоза - малым кругом биотического обмена.[ ...]

Любой биологический круговорот характеризуется многократным включением атомов химических элементов в тела живых организмов и выходом их в окружающую среду, откуда они вновь захватываются растениями и вовлекаются в круговорот. Малый биологический круговорот характеризуется емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени.[ ...]

В основе малого биологического круговорота веществ лежат процессы синтеза и разрушения органических соединений с участием живого вещества. В отличие от большого малый круговорот характеризуется ничтожным количеством энергии.[ ...]

Напротив, биологический круговорот вещества проходит в границах обитаемой биосферы и воплощает в себе уникальные свойства живого вещества планеты. Будучи частью большого, малый круговорот осуществляется на уровне биогеоценоза, он заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов - консументов. Продукты разложения органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, моллюски, черви, насекомые, простейшие и др.) вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и поэтому вновь вовлекаемых ими в поток вещества.[ ...]

Описанный круговорот веществ на Земле, поддерживаемый солнечной энергией, - круговая циркуляция веществ между растениями, микроорганизмами, животными и другими живыми организмами - называется биологическим круговоротом веществ, или малым круговоротом. Время полного обмена вещества по малому круговороту зависит от массы этого вещества и интенсивности процессов его продвижения по циклу и оценивается в несколько сот лет.[ ...]

Существуют большой и малый - (биологический) круговороты вещества в природе, круговорот воды.[ ...]

Несмотря на относительно малую толщину слоя водяного пара в атмосфере (0,03 м), именно атмосферная влага играет основную роль в циркуляции воды и ее биогеохимическом круговороте. В целом для всего земного шара существует один источник притока воды - атмосферные осадки - и один источник расхода - испарение, составляющее 1030 мм в год. В жизнедеятельности растений огромная роль воды принадлежит осуществлению процессов фотосинтеза (важнейшее звено биологического круговорота) и транспирации. Суммарное испарение, или масса воды, испаряемой древесной или травянистой растительностью, поверхностью почвы, играет важную роль в круговороте воды на континентах. Грунтовые воды, проникая сквозь ткани растений в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений.[ ...]

На базе большого геологического круговорота возник круговорот органических веществ - малый, в основе которого лежат процессы синтеза и разрушения органических соединений. Эти два процесса обеспечивают жизнь на Земле. Энергия биологического круговорота составляет всего 1% уловленной Землей солнечной энергии, но именно она совершает громадную работу по созиданию живого вещества.[ ...]

Солнечная энергия обеспечивает на Земле два круговорота веществ: геологический, или большой, и малый, биологический (биотический).[ ...]

Дестабилизация процесса нитрификации нарушает поступление в биологический круговорот нитратов, количество которых предопределяет ответную реакцию на изменение среды обитания у комплекса денитрификаторов. Ферментные системы денитрификаторов уменьшают скорость полного восстановления, слабее вовлекая закись азота в конечный этап, осуществление которого требует значительных энергетических затрат. В результате этого содержание закиси азота в надпочвенной атмосфере эродированных экосистем достигало 79 - 83% (Косинова и др., 1993). Отчуждение части органических веществ из черноземов под воздействием эрозии отражается на пополнении азотного фонда в ходе фото- и гетеротрофной фиксации азота: аэробной и анаэробной. На первых этапах эрозии быстрыми темпами идет подавление именно анаэробной азотфиксации в силу параметров лабильной части органического вещества (Хазиев, Багаутдинов, 1987). Активность ферментов инвертазы и каталазы в сильносмытых черноземах по сравнению с несмытыми уменьшилась более чем на 50%. В серых лесных почвах по мере увеличения их смытости наиболее резко снижается инвертазная активность. Если в слабосмытых почвах отмечается постепенное затухание активности с глубиной, то в сильносмытых уже в подпахотном слое инвертазная активность очень мала или не обнаруживается. Последнее связано с выходом на дневную поверхность иллювиальных горизонтов с крайне низкой активностью фермента. По активности фосфатазы и, особенно, каталазы четко выраженной зависимости от степени смытости почв не наблюдалось (Личко, 1998).[ ...]

Геохимия ландшафта раскрывает скрытую, наиболее глубинную сторону малого географического круговорота вещества и энергии. Понятие малого географического круговорота еще недостаточно разработано в физической географии. В общем виде его можно представить в виде многострунного не вполне замкнутого кругового потока, состоящего из поступающего и излучаемого тепла, биологического круговорота химических элементов, малого круговорота воды (осадки - испарение, наземный и подземный сток и приток), эоловой миграции - привнося и выноса - минерального вещества.[ ...]

Ослабление дернового процесса почвообразования обусловлено низкой интенсивностью биологического круговорота, малой продуктивностью растительности. Ежегодный опад при общей биомассе около Ют/га не превышает 0,4-0,5т/га. Основная масса опада представлена корневыми остатками. В биологический круговорот вовлекается около 70 кг/га азота и 300 кг/га зольных элементов.[ ...]

Влажные тропические леса - это достаточно древние кли-максные экосистемы, в которых круговорот питательных веществ доведен до совершенства - они мало теряются и немедленно поступают в биологический круговорот, осуществляемый мутуалистическими организмами и неглубокими, большей частью воздушными, с мощной микоризой, корнями деревьев. Именно благодаря этому на скудных почвах так пышно растут леса.[ ...]

Формирование химического состава почвы осуществляется под влиянием большого геологического и малого биологического круговорота веществ в природе. Наиболее легко из почвы выносятся такие элементы, как хлор, бром, йод, сера, кальций, магний, натрий.[ ...]

Из-за высочайшей активности биогеохимических процессов и колоссальных объемов и масштабов оборота веществ биологически значимые химические элементы находятся в постеянном циклическом движении. По некоторым подсчетам, если принять, что биосфера существует не менее чем 3,5-4 млрд. лет, то вся вода Мирового океана прошла через биогеохимический цикл не менее 300 раз, а свободный кислород атмосферы - не менее 1 млн. раз. Круговорот углерода происходит за 8 лет, азота за 110 лет, кислорода за 2500 лет. Основная масса углерода, сосредоточенная в карбонатных отложениях дна океана (1,3 х 1016 т), других кристаллических горных породах (1 х 1016 т), каменном угле и нефти (0,34 х 1016 т), участвует в большом круговороте. Углерод, содержащийся в растительных (5 х 10м т) и животных тканях (5 х 109 т), участвует в малом круговороте (биогеохимическом цикле).[ ...]

Однако на суше, в дополнение к приносимым с океана осадкам, происходит испарение и осадки по замкнутому на суше круговороту воды. Если бы не существовало биоты континентов, то эти дополнительные осадки суши были бы намного меньше осадков, ПрйКОСйМЫХ С ОК6Э.На, так КЗ.К испзрсние с поверхности рек И 03£р ничтожно мало в сравнении с осадками, приносимыми с океана. Только образование растительного покрова и почвы приводит к большой величине испарения с поверхности суши. При образовании растительного покрова происходит накопление воды в почве, растениях и континентальной части атмосферы, что приводит к увеличению замкнутого круговорота на суше. В настоящее время осадки на суше в среднем втрое превосходят речной сток. Следовательно, только одна треть осадков приносится с океана и более двух третей обеспечиваются замкнутым круговоротом воды на суше. Таким образом, вода на суше становится биологически накапливаемой, главная часть водного режима суши формируется биотой и может регулироваться биологически.[ ...]

Выявить некоторые главные особенности проявления первой и второй сил удобно, исходя из представления о действии на Земле круговоротов вещества: большого - геологического (геокруговорот) и малого - биологического (биокруго вор от).[ ...]

Растительные сообщества южной тайги более устойчивы к химическому загрязнению по сравнению с сообществами северной тайги. Малая устойчивость северотаежных ценозов обусловлена их незначительным видовым разнообразием и более простым строением, наличием чувствительных к химическому загрязнению видов (мхи и лишайники), малой продуктивностью и емкостью биологического круговорота, меньшей способностью к восстановлению.[ ...]

Однако любая экосистема, независимо от размера, включает в себя живую часть (биоценоз) и ее физическое, то есть неживое, окружение. При этом малые экосистемы входят в состав все более крупных, вплоть до глобальной экосистемы Земля. Аналогично общий биологический круговорот вещества на планете также складывается из взаимодействия множества более мелких, частных круговоротов.[ ...]

Почваг является неотъемлемым компонентом наземных биогеоценозов. Она осуществляет сопряжение (взаимодействие) большого геологического и малого биологического круговоротов веществ. Почва - уникальное гГо сложности вещественного состава природное образование. Вещество почвы представлено четырьмя физическими фазами: твердой (минеральные и органические частицы), жидкой (почвенный раствор), газообразной (почвенный воздух) и живой (организмы). Для почв характерна сложная пространственная организация и дифференциация признаков, свойств и процессов.[ ...]

Согласно первому следствию мы можем рассчитывать лишь на малоотходное производство. Поэтому первым этапом развития технологий должна быть их малая ресурсоемкость (как на входе, так и на выходе - экономность и незначительные выбросы), вторым этапом будет создание цикличности производств (отходы одних могут быть сырьем для других) и третьим - организация разумного захоронения неминуемых остатков и нейтрализация неустранимых энергетических отходов. Представление, будто биосфера работает по принципу безотходности, ошибочно, так как в ней всегда накапливаются выбывающие из биологического круговорота вещества, формирующие осадочные породы.[ ...]

Сущность почвообразования по В. Р. Вильямсу определяется как диалектическое взаимодействие процессов синтеза и разложения органического вещества, протекающее в системе малого биологического круговорота веществ.[ ...]

На разных этапах развития биосферы процессы в ней не были одинаковыми, несмотря на то, что шли по аналогичным схемам. Наличие ярко выраженного круговорота веществ, согласно закону глобального замыкания биогеохимического круговорота, является обязательным свойством биосферы любого этапа ее развития. Вероятно, это непреложный закон ее существования. Следует особо обратить внимание на увеличение доли биологического, а не геохимического, компонента в замыкании биогеохимического круговорота веществ. Если на первых этапах эволюции преобладал общебиосферный цикл - большой биосферный круг обмена (сначала только в пределах водной среды, а затем разделенный на два подцикла - суши и океана), то в дальнейшем он стал дробиться. Вместо относительно гомогенной биоты появились и все глубже дифференцировались экосистемы различного уровня иерархии и географической дислокации. Приобрели важное значение малые, биогеоценотические, обменные круги. Возник так называемый «обмен обменов» - стройная система биогеохимических круговоротов с высочайшим значением биотической составляющей.[ ...]

В средних широтах приход энергии от Солнца равен 48-61 тыс. ГДЖ/га в год. При внесении дополнительной энергии более 15 ГДЖ/га в год возникают неблагоприятные для среды процессы - эрозия и дефляция почв, заиление и загрязнение малых рек, эфтрофикация водоемов, нарушения биологического круговорота в экосистемах.[ ...]

Для восточно-сибирской области характерны суровые малоснежные зимы и выпадение в основном летних осадков, промывающих почвенную толщу. В результате в восточно-сибир-ских черноземах имеет место периодический промывной режим. Биологический круговорот подавлен низкими температурами. Вследствие этого содержание гумуса в забайкальских черноземах невелико (4-9%) и мощность гумусового горизонта мала. Содержание карбонатов очень незначительно или их совсем нет. Поэтому черноземы восточно-сибирской фуппы называют малокарбонатными и бескарбонатными (например, черноземы выщелоченные малокарбонатные или бескарбонат-ные, черноземы обыкновенные малокарбонатные).[ ...]

Большинство второстепенных элементов в концентрациях, обычных для многих природных экосистем, почти не оказывают влияния на организмы, возможно, потому, что организмы к ним адаптировались. Таким образом, миграции этих элементов мало интересовали нас, если бы в окружающую среду не слишком часто попадали побочные продукты горнодобывающей промышленности, различных производств, химической промышленности и современного сельского хозяйства, продукты, содержащие высокие концентрации тяжелых металлов, ядовитые органические соединения и другие потенциально опасные вещества. Даже очень редкий элемент, если он вносится в среду в форме высокотоксичного соединения металла или радиоактивного изотопа, может приобрести важное биологическое значение, так как даже небольшое (с геохимической точки зрения) количество такого вещества способно оказывать выраженный биологический эффект.[ ...]

Химическая природа витаминов и других стимулирующих рост органических соединений, а также потребность в них человека и домашних животных известны давно; однако исследование этих веществ на уровне экосистемы только началось. Содержание органических питательных веществ в воде или почве так мало, что их следовало бы назвать «питательными микро-микроэлементами» в отличие от «питательных макроэлементов», таких, как азот, и «питательных микроэлементов», таких, как «следовые» металлы (см. гл. 5). Нередко единственным способом измерить их содержание является биологическая проба: используются специальные штаммы микроорганизмов, интенсивность роста которых пропорциональна концентрации органических питательных веществ. Как подчеркивалось в предыдущем разделе, о роли того или иного вещества и скорости его потока не всегда можно судить по его концентрации. Сейчас становится ясно, что органические питательные вещества играют важную роль в метаболизме сообщества и что они могут быть лимитирующим фактором. Эта интереснейшая область исследований в ближайшее время, несомненно, привлечет к себе внимание ученых. Приводимое ниже описание круговорота витамина В12 (кобаламина), взятое из работы Провасоли (1963), показывает, как мало мы знаем о круговороте органических питательных веществ.[ ...]

В.Р.Вильямс (1863-1939) разработал учение о факторах земледелия. Согласно первому закону земледелия, ни один из факторов жизни растений не может быть заменен другим. И, кроме того, все факторы жизни растений, безусловно, равнозначимы (второй закон). Выделим его важную идею о том, что почва - это результат взаимодействия малого - биологического и большого - геологического круговорота вещества.[ ...]

Свои положения в области генетического почвоведения и изучения плодородия почв В. Р. Вильямс тесно связывал с практическими вопросами сельского хозяйства и положил их в основу травопольной системы земледелия. Наиболее важные и оригинальные взгляды были высказаны В. Р. Вильямсом о роли живых организмов в почвообразовании, о сущности почвообразовательного процесса и природе отдельных конкретных процессов, о малом биологическом круговороте веществ, о плодородии почв, почвенном гумусе и структуре почв.[ ...]

Эти подходы соотносятся по существу как стратегия и тактика, как выбор долговременного поведения и меры первоочередных решений. Они не могут быть разъединены: загрязнение окружающей человека среды наносит вред другим организмам и живой природе в целом, а деградация природных систем ослабляет их способность к естественному очищению среды. Но всегда следует понимать, что сохранить качество окружающей человека среды невозможно без участия природных экологических механизмов. Даже если мы освоим мало загрязняющие технологии, мы ничего не достигнем, если одновременно не перестанем мешать природе регулировать состав среды, очищать ее и делать пригодной для жизни. Самые чистые технологии и самые совершенные средозащитные устройства не спасут нас, если будет продолжаться вырубка лесов, уменьшаться разнообразие биологических видов, нарушаться круговорот веществ в природе. Следует подчеркнуть, что с экологической точки зрения концепция «охраны» порочна с самого начала, так как деятельность следует строить таким образом, чтобы не допускать, предотвращать все эффекты и результаты, от которых потом пришлось бы «охранять».[ ...]

Около 99 % всего вещества в биосфере трансформировано живыми организмами, причем суммарная биомасса живого вещества Земли оценивается всего в 2,4 1012 т сухого вещества, что составляет 10“9 часть массы Земли. Ежегодное воспроизводство биомассы составляет около 170 млрд. т сухого вещества. Полная биомасса растительных организмов в 2500 раз больше, чем у животных, но видовое разнообразие зоосферы в 6 раз богаче, чем фитосферы. Если выложить все живые организмы в один слой, то на поверхности Земли образовался бы биологический покров толщиной всего в 5 мм. Но несмотря на малые размеры биоты, именно она определяет локальные условия на поверхности земной коры. Ее существование ответственно за появление в атмосфере свободного кислорода, формирование почв и круговорот элементов в природе.[ ...]

Грибы мы уже описывали выше, и собственно грибом мы называем его плодовое тело, однако это лишь часть огромного организма. Это обширная сеть микроскопических волокон (рифов), которая называется мицелием (грибницей) и пронизывает детрит, в основном древесину, лиственный опад и т. п. Мицелий по мере роста выделяет значительное число ферментов, которые разлагают древесину до состояния, готового к употреблению, и постепенно грибница полностью разлагает валежную древесину. Интересно, как пишет Б. Небел (1993), что можно находить грибы на неорганической почве, так как их мицелий способен извлекать из ее толщи даже весьма малые по концентрации органические вещества. Сходным образом функционируют и бактерии, но уже на микроскопическом уровне. Весьма важной для поддержания устойчивости биологического круговорота является способность грибов и некоторых бактерий образовывать громадные количества спор (репродуктивных клеток). Это микроскопические частицы переносятся воздушными потоками в атмосфере на весьма значительные расстояния, что позволяет им распространяться повсеместно и давать жизнеспособное потомство на любом пространстве при наличии оптимальных условий жизнедеятельности.

Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, которые протекают в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот вещество осуществляется при непрерывном поступлении внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, внутри круговорота веществ можно выделить геологический (большой круговорот), биологический (биогеохимический, малый круговорот) и антропогенный круговороты.

Геологический круговорот (большой круговорот веществ в биосфере)

Этот круговорот осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Движущей силой этого процесса являются экзогенные и эндогенные геологические процессы. Эндогенные процессы происходят под влиянием внутренней энергии Земли. Это энергия, которая выделяется в результате радиоактивного распада, химических реакций образования минералов и др. К эндогенным процессам относят, например, тектонические движения, землетрясения. Эти процессы ведут к образования крупных форм рельефа (материки, океанические впадины, горы и равнины). Экзогенные процессы протекают под влиянием внешней энергии Солнца. К ним относятся геологическая деятельность атмосферы, гидросферы, живых организмов и человека. Эти процессы ведут к сглаживанию крупных форм рельефа (речные долины, холмы, овраги и др.).

Продолжается геологический круговорот миллионы лет и заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. Символом этого круговорота веществ является спираль, а не круг, т.к. новый цикл круговорота не повторяет в точности старый, а вносит что-то новое.

К большому круговороту относится круговорот воды (гидрологический цикл) между сушей и океаном через атмосферу (рис. 3.2).

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается на 2 млн. лет.

Рис. 3. 2. Круговорот воды в биосфере.

В гидрологическим цикле все части гидросферы связаны между собой. В нем ежегодно участвует более 500 тыс. км3 воды. Движущей силой этого процесса является солнечная энергия. Молекулы воды под действием солнечной энергии нагреваются и поднимаются в виде газа в атмосферу (ежесуточно испаряется – 875 км3 пресной воды). По мере поднятия они постепенно охлаждаются, конденсируются и образуют облака. После достаточного охлаждения облака освобождают воду в виде различных осадков, падающих обратно в океан. Вода, попавшая на землю, может следовать двумя различными путями: либо впитываться в почву (инфильтрация), либо стекать по ней (поверхностный сток). По поверхности вода стекает в ручьи и реки, направляющиеся к океану или другие места, где происходит испарение. Впитавшаяся в почву вода, может удерживаться в ее верхних слоях (горизонтах) и возвращаться в атмосферу путем транспирации. Такая вода называется капиллярной. Вода, которая увлекается силой тяжести и просачивается вниз по порам и трещинам называется гравитационной. Просачивается гравитационная вода до непроницаемого слоя горной породы или плотной глины, заполняя все пустоты. Такие запасы называются грунтовыми водами, а их верхняя граница – уровнем грунтовых вод. Подземные слои породы, по которым медленно текут грунтовые воды называются водоносными горизонтами. Под действием силы тяжести грунтовые воды двигаются по водоносному слою до тех пор, пока не найдут «выход» (например, образуя естественные родники, которые питают озера, реки, пруды, т.е. становятся частью поверхностных вод). Таким образом, круговорот воды включает три основные «петли»: поверхностного стока, испарения-транспирации, грунтовых вод. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды и он играет основную роль в формировании природных условий.

Биологический (биогеохимический) круговорот

(малый круговорот веществ в биосфере)

Движущей силой биологического круговорота веществ является деятельность живых организмов. Он является частью большого и происходит в пределах биосферы на уровне экосистем. Состоит малый круговорот в том, что питательные вещества, вода и углерод аккумулируются в веществе растений (автотрофы), расходуются на построение тел и жизненные процессы, как растений, так и других организмов (как правило, животных - гетеротрофов), которые поедают эти растения. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.



В биогеохимических круговоротах различают резервный фонд (вещества, которые не связаны с живыми организмами) и обменный фонд (вещества, которые связаны прямым обменом между организмами и их непосредственным окружением).

В зависимости от расположения резервного фонда биогеохимические круговороты делят на два типа:

Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа, обладая большим обменным фондом, являются более совершенными. И, кроме того, они способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом.

Интенсивность биологического круговорота определяется температурой окружающей среды и количеством воды. Например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

Круговороты основных биогенных веществ и элементов

Круговорот углерода

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы в другую (рис. 3. 3.).

Рис. 3. 3. Круговорот углерода.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода (CO2). Растения поглощают молекулы углекислого газа, в процессе фотосинтеза. В результате атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

· углерод остается в растениях ® молекулы растений идут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений) ® углерод возвращается в атмосферу в качестве CO2;

· растения съедаются травоядными животными ® углерод возвращается в атмосферу в процессе дыхания животных и при их разложении после смерти; либо травоядные животные будут съедены плотоядными и тогда углерод опять же вернется в атмосферу теми же путями;

· растения после гибели превращаются в ископаемое топливо (например, в уголь) ® углерод возвращается в атмосферу после использования топлива, вулканических извержений и др. геотермальных процессов.

В случае растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов: углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно); углерод может войти в ткани морских растений или животных, тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

Скорость круговорота CO2 составляет около 300 лет.

Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания CO2 в атмосфере и развитию парникового эффекта. В настоящее время исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле (в морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15%, в земной коре 47,2%). Соединения кислорода незаменимы для поддержания жизни (играют важнейшую роль в процессах обмена веществ и дыхании, входит в состав белков, жиров, углеводов, из которых «построены» организмы). Главная масса кислорода находится в связанном состоянии (количество молекулярного кислорода в атмосфере составляет всего лишь 0,01% от общего содержания кислорода в земной коре).

Так как кислород содержится во многих химических соединениях, его круговорот в биосфере весьма сложен и главным образом происходит между атмосферой и живыми организмами. Концентрация кислорода в атмосфере поддерживается благодаря фотосинтезу, в результате которого зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Основная масса кислорода продуцируется растениями суши – почти ¾, остальная часть – фотосинтезирующими организмами Мирового океана. Мощным источником кислорода является и фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Кроме того, кислород совершает важнейший круговорот, входя в состав воды. Незначительное количество кислорода образуется из озона под воздействием ультрафиолетовой радиации.

Скорость круговорота кислорода около 2 тыс. лет.

Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот кислорода на значительных территориях. Кроме того, на промышленные и бытовые нужды ежегодно расходуется 25 % кислорода, образующегося в результате ассимиляции.

Круговорот азота

Биогеохимический круговорот азота, так же как и предыдущие круговороты, охватывает все области биосферы (рис. 3.4).

Рис. 3. 4. Круговорот азота.

Азот входит в состав земной атмосферы в несвязанном виде в форме двухатомных молекул (приблизительно 78% всего объема атмосферы приходится на долю азота). Кроме того, азот входит в состав растений и животных организмов в форме белков. Растения синтезируют белки, поглощая нитраты из почвы. Нитраты образуются там из атмосферного азота и аммонийных соединений, имеющихся в почве. Процесс превращения атмосферного азота в форму, усвояемую растениями и животными, называется связыванием азота. При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Эта кислота, вступая в реакцию с находящимися в почве карбонатами (например, с карбонатом кальция СаСОз), образует нитраты. Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Кроме того, свободный азот выделяется при горении органических веществ, при сжигании дров, каменного угля, торфа. Помимо этого, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты), переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву (часть его постепенно выделяется в свободном виде).

К процессам, возмещающим потери азота, относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота (последние с водой дают азотную кислоту, превращающуюся в почве в нитраты). Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - клубеньков. Клубеньковые бактерии, усваивая атмосферный азот, перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота.

В связи с тем, что ежегодно с урожаем с полей убираются наиболее богатые белками части растений (например, зерно), почва «требует» вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений. В основном используют нитрат кальция (Ca(NO)2), нитрат аммония (NH4NO3), нитрат натрия (NANO3), и нитрат калия (KNO3). Также, вместо химических удобрений, используют сами растения из семейства бобовых. Если количество искусственных азотных удобрений, вносимых в почву, излишне велико, то нитраты поступают и в организм человека, где они могут превращаться в нитриты, обладающие большой токсичностью и способные вызывать онкологические заболевания.

Круговорот фосфора

Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. Содержание фосфора в земной коре составляет от 8 - 10 до 20 % (по весу) и находится он здесь в виде минералов (фторапатит, хлорапатит и др.), которые входят в состав природных фосфатов - апатитов и фосфоритов. В биогеохимический круговорот фосфор может попасть в результате выветривания горных пород. Эрозионными процессами фосфор выносится в море в виде минерала апатита. В превращениях фосфора большую роль играют живые организмы. Организмы извлекают фосфор из почв и водных растворов. Далее фосфор передается по цепям питания. С гибелью организмов фосфор возвращается в почву и в илы морей, и концентрируется в виде морских фосфатных отложений, что в свою очередь создает условия для создания богатых фосфором пород (рис. 3. 5.).

Рис. 3.5. Круговорот фосфора в биосфере (по П. Дювиньо, М. Тангу, 1973; с изменениями).

При неправильном применении фосфорных удобрений, в результате водной и ветровой эрозии (разрушение под действием воды или ветра) большое количество фосфора удаляется из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфоросодержащих руд.

С другой стороны, повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение водоемов» и их эвтрофикацию (обогащение питательные веществами).

Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

Круговорот серы

Основной резервный фонд серы находится в отложениях, в почве и атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители (рис. 3. 6.).

Рис. 3. 6. Круговорот серы (по Ю. Одуму, 1975).

В природе в большом количестве известны различные сульфиды железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере до сульфатной серы. Сульфаты поглощаются растениями. В живых организмах сера входит в состав аминокислот и белков, а у растений, кроме того, в состав эфирных масел и т.д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются сложными превращениями серы (микроорганизмы, создают многочисленные промежуточные соединения серы). После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до H2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород в атмосфере окисляется и возвращается в почву с осадками. Кроме того, сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера создает гипс. В свою очередь сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию.

Кроме того, сера в виде SO2, SO3, H2S и элементарной серы выбрасывается вулканами в атмосферу.

Круговорот серы может быть нарушен вмешательством человека. Виной тому становится сжигание каменного угля и выбросы химической промышленности, в результате чего образуется сернистый газ, нарушающий процессы фотосинтеза и приводящий к гибели растительности.

Таким образом, биогеохимические циклы обеспечивают гомеостаз биосферы. При этом они в значительной степени подвержены влиянию человека. И одним из мощнейших антиэкологических действий человека связано с нарушением и даже разрушением природных круговоротов (они становятся ациклическими).

Антропогенный круговорот

Движущей силой антропогенного круговорота является деятельность человека. Данный круговорот включает две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей. Антропогенный круговорот в отличие и геологического и биологического не является замкнутым. Эта незамкнутость становится причиной истощения природных ресурсов и загрязнения природной среды.